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Abstract 

With Flash-Sort we introduce a new sorting algorithm of time complexity O(N).The

algorithm is  based on  in  situ permutation  and requires,  in  addition  to  the  array

holding the elements to be sorted, as an auxiliary memory only a vector of a length

equal  to  the  number  of  different  keys.  An essential  feature  of  Flash-Sort  is  the

condition  for  identifying  new  cycle  leaders  as  given  by  a  word  LEADER.  This

condition is stated here for the first time. 

The algorithm and its runtime behaviour will be discussed in detail for the example

of  a simple byte  array.  For  the general  case of  arbitrary  string  and key length,

typical  results  will  be  presented.  Also,  some  Forth  specific  aspects  will  be

discussed.

1   Introduction 

Great  attention  has  been  paid  in  the  past  to  sorting  algorithms  based  on  the

comparison of elements.[1,2,3]  In theory,  these  algorithms require 0(N2)  time if

simple and 0( N logN ) time if more complex.  In contrast, sorting algorithms based

on the  classification of  elements  have found only  limited  attention. [1,2,3]  These

algorithms perform  ordering   in 0(N) time and thus achieve the absolute lowest

time complexity for sorting N elements. [4]  However, since sorting by classification

is believed to require considerable auxiliary memory space, it has not found wide

acceptance despite its favorable time behaviour.

Sorting  may  be  viewed  to  be  that  permutation  which  is  the  inverse  to  the

permutation producing the unsorted array of elements from the sorted one. In the

following we understand by permutation this inverse permutation. It is an inherent

property of  permutations, that,  in general,  they do not consist of  only one cycle

(Fig.1), but of many.[5] 

          



    

Number Of Strings N =7 Number Of Strings N =7

6 8 8 11 11 11 11 11 11 6 0 0 0 0 11 11 11 11

5 2 2 2 2 11 11 11 11 5 2 2 2 2 2 2 10 10

4 11 9 9 9 9 9 9 9 4 5 6 6 6 6 6 6 6

3 11 11 11 8 8 8 8 8 3 4 4 5 5 5 5 5 5

2 1 1 1 1 1 1 4 4 2 11 11 11 4 4 4 4 4

1 4 4 4 4 4 2 2 2 1 10 10 10 10 10 10 10 2

0 9 9 9 9 9 9 9 1 0 6 6 6 6 6 0 0 0
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       0       9           7                0        6           5

               1       10           2

                                         Fig.1  Permutation consisting  of

 a) one cycle                                                   b) two cycles .

Thus, two problems arise with in situ permutation:

    -  finding the position into which a given element has to be placed in the course 

       of  permutation cyle. 

    -  finding a genuine new cycle leader after  a given cycle has been completed. 

As discussed in Sect. 2, the  first problem is solved by constructing a vector of class

pointers[6,7,8]   which point  to the current  "empty"  position of a class. After  each

movement  of  an  element  into  its  class,  the  corresponding  pointer  is  updated.

Regarding the second problem, Macleod[9] has shown, in some other context, that

a genuine new cycle leader may always be identified by the method of cycle tracing

which is, however,  a rather time consuming method. In a recent paper Pinkus and

Schwarz [10] discuss the feasabilty of only partial sorting in order to circumvent for

certain applications the problem of  finding all cycle leaders  within an acceptable

time span. As  we shall show in the next  Section,  by  optimal use of  the structural

information provided by the elements already sorted , a genuine new cycle leader

may  be  identified  by  just  one  test  on  each  candidate  for  cycle  leader  and  the

problem of finding cycle  leaders  turns out to be actually non existent anymore. 



2   Design of Flash-Sort 

In  this  paper  we discuss the  essence of  the  algorithm,  Fig.2,  by assuming  the

elements to be sorted to be strings of length 1 byt  e,  stored in an array A(i), i = 0, 1,

2, 3, ..., N -1.  We take the view that  the array is arranged vertically and that in the

ordered state,  small numbers reside in the lower and large numbers in the upper

part of the array, i.e. the large numbers tend to sift up during ordering. 

We introduce a vector L of length M. Because of ist functional role  we call this

vector  the  class  pointer  vector.  In  CLASSIFY  the  elements  of  the  array  A  are

counted according to  their key for each of the M classes. After completion  of the L-

VECTOR, each L(k)  is  equal  to  the  cumulative  number  of elements A(i) in all

the classes 0 through k. The final component L(M-1) is equal to N-1, independent of

the distribution of the A(i) into the classes.

Then the words LEADER and PERMUTE are executed in turn until the sorting is

completed. In order to facilitate the discussion, we call the position A(i) “empty" if

A(i)  has not  yet been replaced by some other  element.  At the beginning of the

permutation, all positions A(i) are  empty, since no element has been moved.  If

during the permutation an element A(i) has been replaced by some other  element

we call its position "occupied."

Each cycle starts with a cycle leader. If during the permutation cycle as descibed by

the word PERMUTE, the position of  an element A(i) becomes occupied by some

element  FLASH,  the  corresponding  class  pointer  L(KEY(FLASH))  will  be

decremented  and  then  will  point  to  the  next  empty  position  of  the  class

KEY(FLASH).  If  the  last  empty  position  of  that  class  which  provides  the  cycle

leader,  becomes  occupied,  the  current  permutation  cycle  is  complete.The

completion of a cycle is flagged by the fact that the pointer L(KEY(A(j))) of the class

providing the cycle leader points to one position below the lowest position of this

class. Thus, if A(j)  is a cycle leader, the completion of the corresponding cycle is

given by the condition 

                                         L(KEY(A( j)))  <  j                          (1) 

as shown in Fig.2 with the notation  j == JJ .



\ ----- Flash-Sort: sorting by in situ Permutation ,  Copyright (c) 1997 Karl-Dietrich Neubert -----------

        VARIABLE   NA         1000000 NA !     NA @ ARRAY A
        VARIABLE   N 
        VARIABLE   JJ
        VARIABLE   NMOVE
        VARIABLE   M                    256  M !       M @ ARRAY L
        VARIABLE   K

: KEY-VALUE
        ( COLUMN @ + COLLATION-TABLE ) C@ ;
 
: CLASSIFY
        0 L M @ WSIZE * 0 FILL
        N @ 0 DO
               1 I A KEY-VALUE L+!
        LOOP ;

: L-VECTOR                                                            : LEAP
     -1 M @ 0 DO                                                       /   JJ @  -1  > IF 
              I L DUP >R @ + DUP R> !                        /          -1 K  +!
       LOOP DROP ;                                                /           BEGIN
                                                                             /               1 K  +!
: LEADER                                                            /                 K @ 1+ L @  DUP A KEY-VALUE L @ 
       LEAP                                <---------------------|                  SWAP >= 
       BEGIN                                                          \              UNTIL
             1 JJ +!                                                      \            K @ L @  JJ  !
             JJ @ A KEY-VALUE L @ JJ @ >=             \   THEN ;            
       UNTIL
             JJ @ A KEY-VALUE K ! ;

: PERMUTE
       JJ @ A         DUP @
       SWAP KEY-VALUE
       BEGIN                                   
       K @ L @ JJ @ >= WHILE
             K !                            
             K @ L @ A DUP KEY-VALUE >R
                                                DUP @ >R
             ! 
             R>
             R>
             -1    K @ L +!
             -1 NMOVE +!                               
      REPEAT
      DROP DROP ;

: FLASH-SORT ( # of elements ---- )
       N !
       CLASSIFY
       L-VECTOR                           
       -1              JJ !
       N @ NMOVE !
       M @ 1-       K !
       BEGIN                                                                         Fig.2 The algorithm Flash-Sort
       NMOVE @ WHILE
             LEADER                                                                         
             PERMUTE
       REPEAT ;                                              
                                           



 

j A  ( j ) k L ( k )

105 L ( 7 ) = 103

104 7  EMPTY

103

102 L ( 6 ) = 101

101 6  OCCUPIED

100

99 5 L ( 5 ) = 97

98          
 OCCUPIED

97 4       AND

     CLASS COMPLETED

Fig. 3  Various typical possibilities of pointer constellation. j =  0 ... 105 ... N.

Typical  situations  are   illustrated  by  Fig.3.  Up to  class k  =  5,  all  elements are

sorted. The present cycle leader  stems from the position j = 100,  class k = 6.

By construction,  the  pointer  L(k)  of  any class will  not  be  called into  action any

further  once  it  points  to  an  element  not  belonging  to  this  class.  Whenever  the

current permutation cycle is completed, a new cycle leader has to be found. A new

cycle leader is identified by the rule: 

    The cycle leader is the  element situated in the lowest empty position. 

or:

    The element A(j) is cycle leader if it is the lowest element satisfying  the condition

                                        L(KEY(A(j))) >=  j                           (2) 

Accordingly, the first cycle leader is the element A(j) = A(0) and subsequent cycle

leaders  are  found  by  increasing  j  until  an element  A(j)  is  found which  satisfies

equation (2), as expressed by the word LEADER  ( Fig.2).

In Fig.3, at the present constellation, the present cycle ends, if the last element of

class k = 6 is found in order to occupy position j  = 100.  If at that instant  position  j=

103 should still be empty,  it would provide the new cycle leader, otherwise it will be

an element  at some higher position, but at least higher than j = 105.



No search for a new cycle is necessary if the counter for  movements, NMOVE,

has been decreased  from N at the beginning of the process to 0. This is true since

we know that the number of  movements and replacements necessary to sort  N

elements by permutation is exactly N. Thus, the search for a new cycle leader ends,

if 

                                    NMOVE = 0.                               (3)

Since the sorting cannot end within a cycle, this condition needs to be checked only

between cycles. 

The word LEAP in the code, Fig.2, is optional. If  this word is ignored, a cycle leader

is found by considering up to the last cycle leader every element to be a candidate

for  cycle  leader.  Even  though  suggestive,  it  is  not  possible,  to  test  only  those

elements which are designated by the L-vector, because this vector points to the

highest elements of a class and not to the lowest. Fortunately, a hybrid method may

be used. The word LEAP first finds, by increasing not j but k, a  class just below the

class which contains the cycle leader. A member of this class may then be used as

starting point for finding a new cycle leader by increasing j.  Thus, If nnumber of cycles is the

number of cycles, the number of steps to find a new cycle leader is reduced in the

average from N/2 to n number of cycles * N/2M. With M=256 and the conservative estimate

n number of cycles = 8, the reduction factor is equal to about 30.

The reader may have noticed that we do not mention the well-recognized problem

connected with elements already in place before the permutation, elements, which

cannot be distinguished from those put  into place during the permutation. Here this

problem does not arise, since every element independent of its class number and

its final position is moved exactly once. In the special case that there is exactly one

empty position left in a class and the corresponding element is cycle leader, the

move  degenerate into taking the element out of place and putting it back into the

same place. However, since the class pointer and move counter are at still updated

correctly, no discrepancies arise from these cycles of length 1.



3 Runtimes 

Fig.  4 shows the runtime  for  sorting N  random strings  of  1 byte length as a

function of  N,  using a PC with a 166 MHz Pentium Processor and  the 80386

UR/FORTH  Vers.1.21 of LMI. These runtimes are measured disregarding the word

LEAP. The measured runtimes do not ly on a straight line, but within a cone as

marked by the shaded area.  The reason for  this  spread becomes evident  from

Fig.5,  where the runtimes for  N = 10 6   strings are shown as a function of the

position of the last cycle leader. The runtimes exhibit towards the minimal runtime

an offset,  which is proportional to the position of the last cycle leader. This fact

reflects the time needed for finding the last cycle leader. Clearly, the cone in Fig.4 is

a consequence of  this effect. The number of cycles, on the other hand,  is of no

influence on the runtime. This number usually is a small number, in this example

typically between 5 and 8. Obviously, the smallest runtime occurs, if the last cycle

leader is the element  A(0), which implies, that  there is only one cycle, which is a

very rare event, indeed.  For the other extreme, that the last cycle leader is nearly

the last element of the array - which is also extremely rare - about 30% of the total

runtime would be absorbed in finding cycle leaders.
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Fig. 4  Runtime for sorting N strings of

           length 1 byte.                       

 Fig. 5 Runtime as a function of position

          of the last cycle leader for fixed N.

  The position is given as a fraction of N.

The  average time for finding cycle leaders are roughly halve as large the maximal

ones. i.e. only about 15% of the total runtime are required in the average. A cycle of



length 1, which is the case rather frequently for the last cycle, refers to an element

already in place and needs not be sorted. Hence, the condition of equat.(3) could

be relaxed to NMOVE = 1, and the average time for finding cycle leaders would

accordingly be reduced.

With a little more effort, by including the word LEAP, we get a remarcable decrease

in  the  time  for  finding  cycle  leaders.  Now this  time  is,  in  accordance  with  the

estimate given above, barely measurable, and the total time for sorting  1 000 000

bytes is - with the given hardware - 11.92 sec ± 0.05 sec, i.e. the time for finding

cycle leaders is less than 1% of the total run time. 

4  Generalization

Sorting on one byte is of limited use for large numbers and was treated here in

order  to  study  basic  properties.  We  also  have  implemented   a  rather  general,

recursive  version of Flash-Sort.  With that version,  within the limits of available

memory,  any  number  of  strings  of  any  length  and  any  number  of  keys  with

independent selectable collation sequences  for any sort order of columns  may be

sorted.  The overhead due to the more complicated access to the data requires a

factor of about 3.5  in runtime, compared to the basic version presented here. This

is amply compensated by taking advantage of the Native Code Compiler ( NCC )

provided by  LMI, which results in a speedup by about a factor 5.  As an example,

sorting  100 000 strings of 50 bytes length with a 50 byte key takes about  4.6 sec,

sorting 106 strings of the same length and same number of keys  requires  46 sec. 

5  Discussion

It appears to be a natural  phenomenon,  that there exist a reciprocal relationship

between runtime and memory space. Very often, faster runtime can be achieved by

use of additional memory, e. g. in the form of a look up table,  or, vice versa, if less

memory space is used,  the runtime increases. We consider under this aspect the

cost in runtime of the in situ permutation compared to the algorithm Counting-Sort

which is discussed in the book  of  Cormen, Leiserson and  Rivest [11]  on  standard

algorithms under the heading  “Sorting in Linear Time“.



Counting-Sort works such, that it sorts by use of a class pointer vector L from a

source array  A not  into A  itself, but  sequentially  into a target array B, i.e. it does

not sort in place. The array B will then be copied back into array A. The runtime

difference between Flash-Sort and Counting-Sort is evidently  the time required to

find the cycle leaders in Flash-Sort and it is just this  additional time, which is the

cost  in  runtime  to  save  the  memory  space  of  array  B.  For  a  given  hardware

configuration, by not needing the memory space of array B,  the maximal number of

elements which may be sorted with Flash-Sort, is almost  doubled. The runtime cost

for finding cycle leaders for large N, N >> M,  is less than 1% of the total runtime,

which is very low, indeed.

(  paper presented  at euroFORTH’97, Sept:26-28,1997, Oxford,England  )
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