
 Flash-Sort: Sorting by in situ Permutation

 Karl-Dietrich Neubert

Abstract

With Flash-Sort we introduce a new sorting algorithm of time complexity O(N).The

algorithm is based on in situ permutation and requires, in addition to the array

holding the elements to be sorted, as an auxiliary memory only a vector of a length

equal to the number of different keys. An essential feature of Flash-Sort is the

condition for identifying new cycle leaders as given by a word LEADER. This

condition is stated here for the first time.

The algorithm and its runtime behaviour will be discussed in detail for the example

of a simple byte array. For the general case of arbitrary string and key length,

typical results will be presented. Also, some Forth specific aspects will be

discussed.

1 Introduction

Great attention has been paid in the past to sorting algorithms based on the

comparison of elements.[1,2,3] In theory, these algorithms require 0(N2) time if

simple and 0(N logN) time if more complex. In contrast, sorting algorithms based

on the classification of elements have found only limited attention. [1,2,3] These

algorithms perform ordering in 0(N) time and thus achieve the absolute lowest

time complexity for sorting N elements. [4] However, since sorting by classification

is believed to require considerable auxiliary memory space, it has not found wide

acceptance despite its favorable time behaviour.

Sorting may be viewed to be that permutation which is the inverse to the

permutation producing the unsorted array of elements from the sorted one. In the

following we understand by permutation this inverse permutation. It is an inherent

property of permutations, that, in general, they do not consist of only one cycle

(Fig.1), but of many.[5]

Number Of Strings N =7 Number Of Strings N =7

6 8 8 11 11 11 11 11 11 6 0 0 0 0 11 11 11 11

5 2 2 2 2 11 11 11 11 5 2 2 2 2 2 2 10 10

4 11 9 9 9 9 9 9 9 4 5 6 6 6 6 6 6 6

3 11 11 11 8 8 8 8 8 3 4 4 5 5 5 5 5 5

2 1 1 1 1 1 1 4 4 2 11 11 11 4 4 4 4 4

1 4 4 4 4 4 2 2 2 1 10 10 10 10 10 10 10 2

0 9 9 9 9 9 9 9 1 0 6 6 6 6 6 0 0 0

Cycle Leader Position Key - Value Cycle Length Cycle Leader Position Key - Value Cycle Length

 0 9 7 0 6 5

 1 10 2

 Fig.1 Permutation consisting of

 a) one cycle b) two cycles .

Thus, two problems arise with in situ permutation:

 - finding the position into which a given element has to be placed in the course

 of permutation cyle.

 - finding a genuine new cycle leader after a given cycle has been completed.

As discussed in Sect. 2, the first problem is solved by constructing a vector of class

pointers[6,7,8] which point to the current "empty" position of a class. After each

movement of an element into its class, the corresponding pointer is updated.

Regarding the second problem, Macleod[9] has shown, in some other context, that

a genuine new cycle leader may always be identified by the method of cycle tracing

which is, however, a rather time consuming method. In a recent paper Pinkus and

Schwarz [10] discuss the feasabilty of only partial sorting in order to circumvent for

certain applications the problem of finding all cycle leaders within an acceptable

time span. As we shall show in the next Section, by optimal use of the structural

information provided by the elements already sorted , a genuine new cycle leader

may be identified by just one test on each candidate for cycle leader and the

problem of finding cycle leaders turns out to be actually non existent anymore.

2 Design of Flash-Sort

In this paper we discuss the essence of the algorithm, Fig.2, by assuming the

elements to be sorted to be strings of length 1 byt e, stored in an array A(i), i = 0, 1,

2, 3, ..., N -1. We take the view that the array is arranged vertically and that in the

ordered state, small numbers reside in the lower and large numbers in the upper

part of the array, i.e. the large numbers tend to sift up during ordering.

We introduce a vector L of length M. Because of ist functional role we call this

vector the class pointer vector. In CLASSIFY the elements of the array A are

counted according to their key for each of the M classes. After completion of the L-

VECTOR, each L(k) is equal to the cumulative number of elements A(i) in all

the classes 0 through k. The final component L(M-1) is equal to N-1, independent of

the distribution of the A(i) into the classes.

Then the words LEADER and PERMUTE are executed in turn until the sorting is

completed. In order to facilitate the discussion, we call the position A(i) “empty" if

A(i) has not yet been replaced by some other element. At the beginning of the

permutation, all positions A(i) are empty, since no element has been moved. If

during the permutation an element A(i) has been replaced by some other element

we call its position "occupied."

Each cycle starts with a cycle leader. If during the permutation cycle as descibed by

the word PERMUTE, the position of an element A(i) becomes occupied by some

element FLASH, the corresponding class pointer L(KEY(FLASH)) will be

decremented and then will point to the next empty position of the class

KEY(FLASH). If the last empty position of that class which provides the cycle

leader, becomes occupied, the current permutation cycle is complete.The

completion of a cycle is flagged by the fact that the pointer L(KEY(A(j))) of the class

providing the cycle leader points to one position below the lowest position of this

class. Thus, if A(j) is a cycle leader, the completion of the corresponding cycle is

given by the condition

 L(KEY(A(j))) < j (1)

as shown in Fig.2 with the notation j == JJ .

\ ----- Flash-Sort: sorting by in situ Permutation , Copyright (c) 1997 Karl-Dietrich Neubert -----------

 VARIABLE NA 1000000 NA ! NA @ ARRAY A
 VARIABLE N
 VARIABLE JJ
 VARIABLE NMOVE
 VARIABLE M 256 M ! M @ ARRAY L
 VARIABLE K

: KEY-VALUE
 (COLUMN @ + COLLATION-TABLE) C@ ;

: CLASSIFY
 0 L M @ WSIZE * 0 FILL
 N @ 0 DO
 1 I A KEY-VALUE L+!
 LOOP ;

: L-VECTOR : LEAP
 -1 M @ 0 DO / JJ @ -1 > IF
 I L DUP >R @ + DUP R> ! / -1 K +!
 LOOP DROP ; / BEGIN
 / 1 K +!
: LEADER / K @ 1+ L @ DUP A KEY-VALUE L @
 LEAP <---------------------| SWAP >=
 BEGIN \ UNTIL
 1 JJ +! \ K @ L @ JJ !
 JJ @ A KEY-VALUE L @ JJ @ >= \ THEN ;
 UNTIL
 JJ @ A KEY-VALUE K ! ;

: PERMUTE
 JJ @ A DUP @
 SWAP KEY-VALUE
 BEGIN
 K @ L @ JJ @ >= WHILE
 K !
 K @ L @ A DUP KEY-VALUE >R
 DUP @ >R
 !
 R>
 R>
 -1 K @ L +!
 -1 NMOVE +!
 REPEAT
 DROP DROP ;

: FLASH-SORT (# of elements ----)
 N !
 CLASSIFY
 L-VECTOR
 -1 JJ !
 N @ NMOVE !
 M @ 1- K !
 BEGIN Fig.2 The algorithm Flash-Sort
 NMOVE @ WHILE
 LEADER
 PERMUTE
 REPEAT ;

j A (j) k L (k)

105 L (7) = 103

104 7 EMPTY

103

102 L (6) = 101

101 6 OCCUPIED

100

99 5 L (5) = 97

98
 OCCUPIED

97 4 AND

 CLASS COMPLETED

Fig. 3 Various typical possibilities of pointer constellation. j = 0 ... 105 ... N.

Typical situations are illustrated by Fig.3. Up to class k = 5, all elements are

sorted. The present cycle leader stems from the position j = 100, class k = 6.

By construction, the pointer L(k) of any class will not be called into action any

further once it points to an element not belonging to this class. Whenever the

current permutation cycle is completed, a new cycle leader has to be found. A new

cycle leader is identified by the rule:

 The cycle leader is the element situated in the lowest empty position.

or:

 The element A(j) is cycle leader if it is the lowest element satisfying the condition

 L(KEY(A(j))) >= j (2)

Accordingly, the first cycle leader is the element A(j) = A(0) and subsequent cycle

leaders are found by increasing j until an element A(j) is found which satisfies

equation (2), as expressed by the word LEADER (Fig.2).

In Fig.3, at the present constellation, the present cycle ends, if the last element of

class k = 6 is found in order to occupy position j = 100. If at that instant position j=

103 should still be empty, it would provide the new cycle leader, otherwise it will be

an element at some higher position, but at least higher than j = 105.

No search for a new cycle is necessary if the counter for movements, NMOVE,

has been decreased from N at the beginning of the process to 0. This is true since

we know that the number of movements and replacements necessary to sort N

elements by permutation is exactly N. Thus, the search for a new cycle leader ends,

if

 NMOVE = 0. (3)

Since the sorting cannot end within a cycle, this condition needs to be checked only

between cycles.

The word LEAP in the code, Fig.2, is optional. If this word is ignored, a cycle leader

is found by considering up to the last cycle leader every element to be a candidate

for cycle leader. Even though suggestive, it is not possible, to test only those

elements which are designated by the L-vector, because this vector points to the

highest elements of a class and not to the lowest. Fortunately, a hybrid method may

be used. The word LEAP first finds, by increasing not j but k, a class just below the

class which contains the cycle leader. A member of this class may then be used as

starting point for finding a new cycle leader by increasing j. Thus, If nnumber of cycles is the

number of cycles, the number of steps to find a new cycle leader is reduced in the

average from N/2 to n number of cycles * N/2M. With M=256 and the conservative estimate

n number of cycles = 8, the reduction factor is equal to about 30.

The reader may have noticed that we do not mention the well-recognized problem

connected with elements already in place before the permutation, elements, which

cannot be distinguished from those put into place during the permutation. Here this

problem does not arise, since every element independent of its class number and

its final position is moved exactly once. In the special case that there is exactly one

empty position left in a class and the corresponding element is cycle leader, the

move degenerate into taking the element out of place and putting it back into the

same place. However, since the class pointer and move counter are at still updated

correctly, no discrepancies arise from these cycles of length 1.

3 Runtimes

Fig. 4 shows the runtime for sorting N random strings of 1 byte length as a

function of N, using a PC with a 166 MHz Pentium Processor and the 80386

UR/FORTH Vers.1.21 of LMI. These runtimes are measured disregarding the word

LEAP. The measured runtimes do not ly on a straight line, but within a cone as

marked by the shaded area. The reason for this spread becomes evident from

Fig.5, where the runtimes for N = 10 6 strings are shown as a function of the

position of the last cycle leader. The runtimes exhibit towards the minimal runtime

an offset, which is proportional to the position of the last cycle leader. This fact

reflects the time needed for finding the last cycle leader. Clearly, the cone in Fig.4 is

a consequence of this effect. The number of cycles, on the other hand, is of no

influence on the runtime. This number usually is a small number, in this example

typically between 5 and 8. Obviously, the smallest runtime occurs, if the last cycle

leader is the element A(0), which implies, that there is only one cycle, which is a

very rare event, indeed. For the other extreme, that the last cycle leader is nearly

the last element of the array - which is also extremely rare - about 30% of the total

runtime would be absorbed in finding cycle leaders.

0

5

10

15

0 250 000 500 000 750 000 1 000 000

 NUMBER OF STRINGS

R
U

N
T

IM
E

 t
 [

 s
e

c
]

0

5

10

15

0 0,25 0,5 0,75 1

POSITION OF LAST CYCLE LEADER

R
U

N
T

IM
E

 t
 [

 s
e

c
]

NUMBER OF STRINGS
 N = 1 000 000

Fig. 4 Runtime for sorting N strings of

 length 1 byte.

 Fig. 5 Runtime as a function of position

 of the last cycle leader for fixed N.

 The position is given as a fraction of N.

The average time for finding cycle leaders are roughly halve as large the maximal

ones. i.e. only about 15% of the total runtime are required in the average. A cycle of

length 1, which is the case rather frequently for the last cycle, refers to an element

already in place and needs not be sorted. Hence, the condition of equat.(3) could

be relaxed to NMOVE = 1, and the average time for finding cycle leaders would

accordingly be reduced.

With a little more effort, by including the word LEAP, we get a remarcable decrease

in the time for finding cycle leaders. Now this time is, in accordance with the

estimate given above, barely measurable, and the total time for sorting 1 000 000

bytes is - with the given hardware - 11.92 sec ± 0.05 sec, i.e. the time for finding

cycle leaders is less than 1% of the total run time.

4 Generalization

Sorting on one byte is of limited use for large numbers and was treated here in

order to study basic properties. We also have implemented a rather general,

recursive version of Flash-Sort. With that version, within the limits of available

memory, any number of strings of any length and any number of keys with

independent selectable collation sequences for any sort order of columns may be

sorted. The overhead due to the more complicated access to the data requires a

factor of about 3.5 in runtime, compared to the basic version presented here. This

is amply compensated by taking advantage of the Native Code Compiler (NCC)

provided by LMI, which results in a speedup by about a factor 5. As an example,

sorting 100 000 strings of 50 bytes length with a 50 byte key takes about 4.6 sec,

sorting 106 strings of the same length and same number of keys requires 46 sec.

5 Discussion

It appears to be a natural phenomenon, that there exist a reciprocal relationship

between runtime and memory space. Very often, faster runtime can be achieved by

use of additional memory, e. g. in the form of a look up table, or, vice versa, if less

memory space is used, the runtime increases. We consider under this aspect the

cost in runtime of the in situ permutation compared to the algorithm Counting-Sort

which is discussed in the book of Cormen, Leiserson and Rivest [11] on standard

algorithms under the heading “Sorting in Linear Time“.

Counting-Sort works such, that it sorts by use of a class pointer vector L from a

source array A not into A itself, but sequentially into a target array B, i.e. it does

not sort in place. The array B will then be copied back into array A. The runtime

difference between Flash-Sort and Counting-Sort is evidently the time required to

find the cycle leaders in Flash-Sort and it is just this additional time, which is the

cost in runtime to save the memory space of array B. For a given hardware

configuration, by not needing the memory space of array B, the maximal number of

elements which may be sorted with Flash-Sort, is almost doubled. The runtime cost

for finding cycle leaders for large N, N >> M, is less than 1% of the total runtime,

which is very low, indeed.

(paper presented at euroFORTH’97, Sept:26-28,1997, Oxford,England)

 E-mail. karl-dietrich.neubert@usa.net

 References

 1. D. E. Knuth, The Art of Computer Programming, Vol. 3:

 Sorting and Searching, Addison Wesley Publ. Co., 1973

 2. N. Wirth, Algorithm und Datenstrukturen, B. G. Teubner, 1983

 3. R. Sedgewick, The Analysis of Quicksort Programs,

 Acta Informatica 7, (1977), 327-355

 4. W. Dobosiewicz, Sorting by Distributive Partitioning,

 Information Processing Letters 7, (1978), 1-5

 5. D.E. Knuth, Mathematical Analysis of Algorithms in :

 Information Processing 71, North Holland Publ. Co., 1972. Pp. 19-27

 6. W. Feurzeig, Algorithm 23: Math Sort,

 Communications of the ACM 3, (1960), 601

 7. E. Gamzon, C. -F. Picard, Algorithme de tri par addressage direct,

 C. R. Acad. Sc. Paris 269, (1969), 38-41

 8. F. Duccin, Tri par addressage direct,

 R.A.I.R.O. Informatique/Computer Science 13, (1979), 225-259

 9. I. D. G. Macleod, An Algorithm for In Situ Permutation,

 The Australian Computer Journal 2, (1970), 16-19

 10. J.Pinkus, J.Schwarz, Topological Sorting,

 Dr.Dobb’s Journal 22 (1997), Issue 8, p.113-116

 11. T.H. Cormen, C. E. Leiserson and R.L. Rivest

 Introduction to Algorithms , p.172 ff

 MIT Press, McGraw-Hill Book Company1991

