
CS302 Remote Computing Lecture Handout ©2015 Deppeler

Command Line Interface:
Writing Programs on a Remote Computer

Most of us greatly appreciate the convenience and time-saving features of an Integrated Develop-
ment Environment (IDE) like Eclipse. However, there are times more simple programing develop-
ment tools will suffice.

Command line interfaces (CLIs) have been around since long before Graphical User Interfaces
(GUIs). They are fast, fun, and often more flexible if not also more functional. Typically, the user
has control over many more environment variables than the GUI version supports.

How to Connect to a Remote Computer (UW-Madison CS Dept)

Launch a terminal Emulator on your local machine

Windows

1. Download Putty or SecureCRT (search the DoIT shelf)
2. Install Putty or SecureCRT (follow installation instructions)
3. Launch (open) Putty or SecureCRT

MacOSX

1. Find and launch the terminal application

What do I do once my terminal application is running?

1. If you have a CS account, use Quick Connect or connect using ssh:
% ssh best-linux.cs.wisc.edu

2. Enter your CS login name (if not already entered) and your CS password and press Enter.

©2015 Deppeler CS302 Remote ComputingLecture Handout Page 1 of 4

CS302 Remote Computing Lecture Handout ©2015 Deppeler

What’s next?: Basic Command-line Programming Tools

Learn Some Basic Linux Commands

pwd print (display) working directory
ls list file names of files and directories in working directory
mkdir dirname create a new subdirectory in the current working directory
cd dirname change to the directory

Learn Some Command-Line Programming Tools

pico a text-only file editor (good for beginners)
– type Ctrl-x to exit and follow prompts to save

nano a text-only file editor (also good for beginners)
– type Ctrl-x to exit and follow prompts to save

emacs a text-only file editor (some programmer’s favorite)
– type Ctrl-x Ctrl-c to exit and save buffers

vi a text-only file editor (has a bit of a learning curve, but Deb’s favorite)
– type Shift-ZZ to write (save) file and exit

javac compile a Java program to bytecode (.class file)
java run a Java program (bytecode)

Example Shell Session

The following is an example of a shell session in which a Java program is created (edited), translated
(compiled), and executed (run).

===
This instructional workstation is installed with RedHat Enterprise Linux 6

If you encounter any issues, please send a problem report to lab@cs.wisc.edu
===

REMINDER: NO FOOD or DRINK IN THE CS INSTRUCTIONAL COMPUTER LABS
NEVER POWER DOWN WORKSTATIONS IN THE COMPUTER LABS

===
galapagos-14[˜]% pwd
/afs/cs.wisc.edu/u/d/e/deppeler
galapagos-14[˜]% ls
private
public
galapagos-14[˜]% mkdir programs
galapagos-14[˜]% mkdir programs
mkdir: cannot create directory ’programs’: File exists
galapagos-14[˜]% mkdir programs/JavaDemo
galapagos-14[˜]% cd programs/JavaDemo
galapagos-14[˜]% pico JavaDemo.java

... pico editor window opens and user may type source code

CS302 Remote Computing Lecture Handout Page 2 of 4

CS302 Remote Computing Lecture Handout ©2015 Deppeler

Edit

Note: pico is a file editor and will open a file for writing. Type the source code for a Java pro-
gram. Be sure to include a main method if you wish to be able to run (execute) the program as a
stand-alone program.

UW PICO 5.07 File: JavaDemo.java Modified

public class JavaDemo {
public static void main(String []args) {

if (args.length > 0)
System.out.println("Hello " + args[0]);

else
System.out.println("Hello World!");

}
}

Type Ctrl-x to save your file and exit the pico editor. Follow prompts to (overwrite) file or save
with a different file name, and exit program. Once the program source code has been written and
saved to a java file, you can compile and run the program.

Compile

Use javac sourcecodefilename.java to compile (translate) the source code to bytecode. If there
are no compiler errors, and there is a main method defined in the class, you can run the Java
program.

Run

Use java bytecodefilename to run the bytecode with the Java Runtime Environment (JRE).

galapagos-14[˜/programs/JavaDemo]\% javac JavaDemo.java
galapagos-14[˜/programs/JavaDemo]\% java JavaDemo.class
Error: Could not find or load main class JavaDemo.class
galapagos-14[˜/programs/JavaDemo]\% java JavaDemo
Hello World!
galapagos-14[˜/programs/JavaDemo]\% java JavaDemo.
Error: Could not find or load main class JavaDemo.
galapagos-14[˜/programs/JavaDemo]\% java JavaDemo student
Hello student
galapagos-14[˜/programs/JavaDemo]\% ls
JavaDemo.class JavaDemo.java
galapagos-14[˜/programs/JavaDemo]\% ls -al
total 8
drwxr-x--- 2 deppeler deppeler 2048 Apr 27 09:53 .
drwxr-x--- 42 deppeler deppeler 4096 Apr 27 09:50 ..
-rw-r----- 1 deppeler deppeler 648 Apr 27 09:53 JavaDemo.class
-rw-r----- 1 deppeler deppeler 210 Apr 27 09:53 JavaDemo.java
galapagos-14[˜/programs/JavaDemo]\%

CS302 Remote Computing Lecture Handout Page 3 of 4

CS302 Remote Computing Lecture Handout ©2015 Deppeler

What else can I do in linux shell?

javadoc *.java run javadoc utility to build javadoc web pages for all java files in
current directory

cp source.txt destination.txt copy source.txt to new file with name destina-
tion.txt

ls -al list acls (permissions) and other file info for files and directories in working
directory

ls dirname list file names of files and directories in named directory
grep text files find files that contain text
fs la . list the file acls (permissions) for this directory
fs sa . system:anyuser read set current directory permissions so anyone can read

this current directory
afs rseta . system:anyuser none recursively set directory permissions so other

users can not read this directory or those below (be sure you still can)
rmdir dirname remove an existing directory
man command read the built-in manual for command

Makefile: a simple way to automate your build (or test) process

A Makefile (case-sensitive) is a text-only file that contains build information for building program
executables. For Java, this means it compiles the source code, and then runs the program using
the java (JRE) tool. Use your favorite editor to create a document named Makefile and type the
following as the contents of the file.

make:
javac *.java
java MainClassName

Exit and save the file and then type make at the terminal’s command prompt. The java files will
be compiled and if there are no compiler errors, the program in MainClass.java will be run.

Note: The lines that follow a make label must have a tab character as their first character.

Add a section labeled clean to your Makefile to give yourself an easy way remove .class files
and get a clean build. Execute this section with the command make clean. The first section is the
section that will be run if make is run without any label, make.

make:
javac *.java
java MainClassName

test:
javac *.java
java TestClassName testArg1 testArg2 testArg3 ...

clean:
\rm *.class

CS302 Remote Computing Lecture Handout Page 4 of 4

