
INTRODUCTION TO COMPILERS

FINAL EXAM QUESTIONS

PRESETED TO:
MULHERN

PRESENTED BY:
BRIAN DESARMO

SANTIAGO MELENDRO

UNIVERSITY OF WISCONSIN
NOVEMBER 2009



All relevant files are be located in the svn repository:
/u/d/e/desarmo/shared/cs536-final/

Question 2

Optimizations in Javac

While  not  an  aggressively  optimizing  compiler,  javac  implements  some  simple 
optimizations, including a  constant folding optimization. Explore the optimizations 
that it does perform. Accumulate examples of these optimizations by compiling Java 
examples to bytecode files and using javap to disassemble the bytecode files and 
examine the code. Contrast the optimized code with the code that would result if 
javac  performed  no  optimizations  whatsoever.  Briefly  discuss  how  these 
optimizations might be performed.

The following optimizations have been identified:

Constant Folding

This optimization evaluates constant expressions and generates simplicied 
bytecode. Removing the unecessary operations at compile time. Doing this results 
in fewer cycles freeing processing time.

A simple example is presented on file ConstantFolding.java 

public class ConstantFolding { 

    static int doSomeMath() { 
        return  0 + 1 + 2 + 3 + 4 + 5 +6 + 7 + 8 + 9; 
    } 
} 

After compilation and dissasembly. (ConstantFolding.dissasembled)

Compiled from "ConstantFolding.java" 
public class ConstantFolding extends java.lang.Object{ 
public ConstantFolding(); 
  Code: 
   0:   aload_0 
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 
   4:   return 

static int doSomeMath(); 
  Code: 
   0:   bipush  45 
   2:   ireturn 

}



it can be seen that at compile time javac pre-calculated all constant operations and 
replaces them with the appropriate values.
t can be seen that the optimization removed the code in the foo function leaving 
only the return instruction. 

To implement this optimization javac is likely using DFS to traverse the AST and 
evaluating the subtrees rooted at expression nodes. Closer look at javac reveals 
that if fails to simplify the expression it stops any additional attempts for that 
expression. 

Example code is presented on sm_ConstantFolding.java

public class sm_ConstantFolding { 

    
    static int doSomeMath(int x) { 
        return  0 + 1 + 2 + 3 + 4 + 5 + x + 6 + 7 + 8 + 9; 
    } 
}

which evaluates to:

Compiled from "sm_ConstantFolding.java" 
public class sm_ConstantFolding extends java.lang.Object{ 
public sm_ConstantFolding(); 
  Code: 
   0:   aload_0 
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 
   4:   return 

static int doSomeMath(int); 
  Code: 
   0:   bipush  15 
   2:   iload_0 
   3:   iadd 
   4:   bipush  6 
   6:   iadd 
   7:   bipush  7 
   9:   iadd 
   10:  bipush  8 
   12:  iadd 
   13:  bipush  9 
   15:  iadd 
   16:  ireturn 

}

The first part of the expression 0+1+2+3+4+5 was simplified by Constant Folding 
to bipush 15. However the part that follows the argument 6+7+8+9 could also be 
simplified at compile time reducing the number of instructions.



Dead Code Elimination

This optimization examines code in conditional statements. If the condition will 
always evaluate to false the code will never be executed and therefore it can be 
removed. Overall the optimization reduces the size of the binary file as well as 
improving efficient by avoiding the irrelevant conditional statement.

A simple example is presented on DeadCode.java

public class DeadCode { 

    public static void foo() { 

        if (false) { 
            System.out.println("This should be eliminated"); 
        } 
    } 
}

After compilation and disassembly. (DeadCode.dissasembled)

Compiled from "DeadCode.java" 
public class DeadCode extends java.lang.Object{ 
public DeadCode(); 
  Code: 
   0:   aload_0 
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 
   4:   return 

public static void foo(); 
  Code: 
   0:   return 

}



Question 16

Compile all Field Definitions to Nullary Methods : Implementation 
Project

The Java language prohibits forward references between fields and so does the
simpleJ language. This is due to constraints in the way fields must have their
values set in the static initializer.

Change your compiler so that it compiles all fields to methods which contain
no arguments.
So,

integer field1 = field2;
integer field2 = field1;

becomes equivalent to:

integer field1 () { return with field2() }
integer field2 () { return with field1() }

Note that this would have the surprising effect for a user that field accesses
are potentially non-terminating. But it does allow any field to have a forward
reference to another field.

Clazz.g has been modified to create fields as methods allowing forward reference. 
At this point it needs additional validation but basic test case appears to work.

Input:

class Test1 { 
    integer method1 = method2; 
    integer method2 = method1; 
}

Output:

class Test1 { 

  integer method1 () { 
    return with method2() } 

  integer method2 () { 
    return with method1() } 

}



Question 17

Force a StackOverflowError during execution of a Java 
class with no main method

Construct a simple Java class, Overflower with no main methods such that
invoking the Java interpreter on the class file will result in a StackOverflow-
Error. Disassemble the corresponding class file and use the structure of the
class file to explain why the error occurs.

Below is the java class for Overflower

public class Overflower { 
    static void overflow() { 
        overflow(); 
    } 
} 

This is the resulting byte codes when decompiled using javap

Compiled from "Overflower.java" 
public class Overflower extends java.lang.Object{ 
public Overflower(); 
  Code: 
   0:   aload_0 
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V 
   4:   return 

static void overflow(); 
  Code: 
   0:   invokestatic    #2; //Method overflow:()V 
   3:   return 

}

overflow() is calling itself never reaching the return code. For each recursive call to 
itself a new stack frame is pushed on to the call stack until a StackOverflowError 
occurs. 

To implement this optimization javac is likely constant folding the condition in the 
statements and if the resulting condition is constant it no longer checks for the 
condition (eliminates it) when resulting condition is true. Or, it completely removes 
the statement when the resulting condition is false. 


	Question 2
	Optimizations in Javac
	Constant Folding

	Question 16
	Compile all Field Definitions to Nullary Methods : Implementation Project
	Question 17
	Force a StackOverflowError during execution of a Java class with no main method

