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Abstract

The OO7 Benchmark represents a comprehensive test of OODBMS performance. In this

report we describe the benchmark and present performance results from its implementation

in four OODB systems. It is our hope that the OO7 Benchmark will provide useful insight

for end-users evaluating the performance of OODB systems; we also hope that the research

community will �nd that OO7 provides a database schema, instance, and workload that is

useful for evaluating new techniques and algorithms for OODBMS implementation.

Note on Version of January 21

This report is a modi�ed version of the original OO7 technical report (the original report was written

in Spring of 1993.) The most important change to the report is the introduction of Versant numbers,

which were run in December of 1993. In this version of the report and in subsequent versions, we

have eliminated our explanations of what we think is the cause each system's performance (the

Spring 1993 report is available as \techreport.old.ps" via anonymous ftp from ftp.cs.wisc.edu.)

This is in anticipation of future releases of numbers as we get them; revising the explanations for

every new release of numbers is time consuming and would prevent the timely distribution of the

numbers.

1 Introduction

Builders of object-oriented database management systems (OODBMS) are faced with a wide range

of design and implementation decisions, and many of these decisions have a profound e�ect on the

performance of the resulting system. Recently, a number of OODBMSs have become publically

available, and the developers of these systems have made very di�erent choices for fundamental

�DEC provided the funding that began this research. The bulk of this work was funded by DARPA under contract

number DAAB07-92-C-Q508 and monitored by the US Army Research Laboratory. Sun donated the hardware used

as the server in the experiments.
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aspects of the systems. However, perhaps since the technology is so new, it is not yet clear precisely

how these systems di�er in their performance characteristics; in fact, it is not even clear what

performance metrics should be used to give a useful pro�le of an OODBMS's performance. We

have designed the OO7 Benchmark as a �rst step toward providing such a comprehensive OODBMS

performance pro�le.

Among the performance characteristics tested by OO7 are:

� The speed of many di�erent kinds of pointer traversals, including traversals over cached data,

traversals over disk-resident data, sparse traversals, and dense traversals;

� The e�ciency of many di�erent kinds of updates, including updates to indexed and unindexed

object �elds, repeated updates, sparse updates, updates of cached data, and the creation and

deletion of objects;

� The performance of the query processor (or, in cases where the query language was not

su�ciently expressive, the query programmer) on several di�erent types of queries.

By design, the OO7 Benchmark produces a set of numbers rather than a single number. A single

number benchmark has the advantage that it is very catchy and easy to use (and abuse) for

system comparisons. However, a benchmark that returns a set of numbers gives a great deal more

information about a system than does one that returns a single number. A single number benchmark

is only truly useful if the benchmark itself precisely mirrors the application for which the system

will be used. Since at this point there is not any consensus on what constitutes the canonical

OODBMS application, and in fact there is growing evidence that there is no such \canonical

OODBMS" application, we think it would be a mistake at this point to try to build a single

number benchmark.

In this paper, we describe the OO7 benchmark and give preliminary performance results from its

implementation in one public-domain research system (E/Exodus) and three commercially available

OODB systems (Objectivity/DB, which is also available as DEC Object/DB V1.0, Ontos, and

Versant.)1 Lastly, it should be mentioned that we had also expected to include results for another

commercial system, the ObjectStore system from Object Design, Inc. Unfortunately, ODI had

their lawyers send us a notice saying that they were dissatis�ed with the way that we had run the

benchmarking process and that we had to drop our ObjectStore results from the paper or else face

possible legal action. (See the README �le in the OO7 directory of ftp.cs.wisc.edu for more

details.) It is unfortunate that they chose to withdraw, as ODI's approach to persistence provided

some interesting contrasts with the other systems.

The timings presented in this paper present interesting information about the performance of

the systems that we tested, most of which was unavailable before this comparison. In addition to

providing insight into the performance of existing OODBMSs, we hope that in the future OO7 will

provide a rich source of test workloads for the OODBMS research community. We are already seeing

1We are currently �nishing up the benchmark on another commercial system (O2).
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early signs that OO7 will be useful in this context, as it has managed to uncover correctness and/or

performance problems in at least one version of every system that we have run the benchmark on

so far. In fact, at least one of the companies that participated in the benchmark now plans to use

the OO7 Benchmark as part of the performance and correctness tests in the system validation suite

for future releases of their product.

The remainder of the paper is organized as follows. Section 2 compares the OO7 Benchmark

to previous e�orts in OODBMS benchmarking. Section 3 describes the structure of the OO7

Benchmark database. Section 4 describes the hardware testbed con�guration we used to run the

benchmark, and gives a brief overview of the systems tested. Section 5 describes the benchmark's

operations and discusses the experimental results for each operation as it is presented. Finally,

Section 6 contains some conclusions and our plans for future work.

2 Related Work

2.1 The OO1 Benchmark

The OO1 Benchmark [CS92]2, commonly referred to as the Sun Benchmark, was really the �rst

\standard" benchmark that attempted to predict DBMS performance for engineering design appli-

cations. Its intent was to measure performance for navigation and simple updates, and as such it

was primarily intended to capture the cost of database interactions and the presence and the e�ec-

tiveness of client caching. The speci�cation of OO1 was based on its designers' experience with an

initial \simple database operations" benchmark [RKC87] that they had implemented and used at

Sun. Some operations in the initial benchmark were found to be highly correlated with others; e.g.,

small range queries added little insight beyond that obtained from exact-match lookups, so they

were eliminated in OO1. Others were combined into more general operations in OO1; e.g., several

relationship operations in the initial benchmark were subsumed by a more general traversal opera-

tion in OO1. Because of its early visibility and its simplicity, OO1 has became a de facto standard

for OODB benchmarking. As such, it has been run on many of the current OODB products [CS92].

The database that the OO1 Benchmark is based upon consists of part objects and connections

between them. Each part has �ve data �elds: a part id, a type, an (x,y) coordinate pair, and a

build date. Each part has exactly three out-going (\to") connections to other parts plus a variable

number of incoming (\from") connections, and each connection has a type and a length. To provide

a notion of locality in the object graph, OO1 parts are logically ordered by part id, and the \to"

connections for each part are chosen so that each connection has a 90% chance of referencing a

\nearby" part. The OO1 de�nition of a \nearby" part is one within �1% of the part id space.

There are two database sizes against which all OO1 Benchmark operations are run | one with

20,000 parts, to model applications whose working sets �t in memory, and one ten times larger,

with 200,000 parts, to model those applications whose data sets exceed physical memory. (There

is also an optional \huge" database with 2,000,000 parts.)

2Object Operations, version 1.
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The OO1 Benchmark itself consists of three operations. The �rst is a part \lookup" operation,

which looks up 1,000 random parts by their part ids. The second is an object graph \traversal"

operation, which accesses 3,280 connected parts by selecting a random part and then performing

a seven-level depth-�rst traversal (with multiple visits allowed) of the parts reachable from there.3

The third OO1 Benchmark operation is an insert operation that adds 100 new parts to the database.

The benchmark speci�cation calls for two elapsed time measures, \cold" and \warm", for each

operation. Each operation is repeated ten times; the \cold" time is the time required for the �rst

iteration, reecting the elapsed time starting with an empty cache, while the \warm" time measures

the case where the cache has been fully initialized.

2.2 The HyperModel Benchmark

Another benchmark directly related to OO7 is the HyperModel Benchmark developed at Tek-

tronix [And90]. Starting with the initial Sun simple database operations benchmark, the develop-

ers of HyperModel set out to develop a more comprehensive engineering DBMS performance test

suite based a hypertext application model. Compared to OO1, Hypermodel includes both a richer

schema and a wider range of operations.

The HyperModel database, like OO1, is a graph of interconnected nodes. Unlike OO1, which has

just one relationship between nodes (i.e., the M:N connections), nodes in HyperModel participate

in several relationships. The HyperModel nodes participate in one hierarchical (1:N) relationship

and two M:N relationships. And, unlike OO1, where there is just one type of node, HyperModel

databases include three types of nodes. Viewed from the 1:N relationship, which forms a tree with

a �ve-way fanout, a HyperModel database includes k � 1 levels of non-leaf nodes plus a level of

leaf nodes. A non-leaf node holds several integer values, while leaf nodes contain either a small

(10-100 byte) text string or a bitmap of moderate size (100� 100 up to 400� 400). The database

is parameterized by the number of levels, which is set to 4, 5, and then 6 for running benchmark

operations, and there is a 125:1 ratio of text leaf nodes to bitmap leaf nodes. One of the two

M:N relationships is created by randomly interconnecting nodes from adjacent levels of the 1:N

hierarchy; the other, intended to model hypertext links, randomly interconnects nodes throughout

the hierarchy.

The HyperModel Benchmark consists of several di�erent groups of operations, including exact-

match lookups (by integer attribute value and OID), range queries (1% and 10%), group lookups

(which each follow a relationship from a random node to its directly related nodes), reference

lookups (which do the inverse), a sequential scan, a set of \closure" operations, and some editing

operations. HyperModel's closure operations were added in response to the fact that, unlike OO1,

the initial Sun Benchmark had no traversals, which are felt to be important in engineering ap-

plications. Each of the HyperModel closure operations performs a reachability traversal, starting

at a randomly chosen node at level three of the 1:N hierarchy, via one of the three relationships.

3A reverse traversal is also part of the benchmark, but it is not emphasized in terms of evaluating OODB system

performance.
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Several gather lists of the OIDs encountered, several compute aggregate values (a sum or count),

one applies a predicate to avoid traversals from a small subset of the objects, and one modi�es a

�eld of the visited objects. The two editing operations update either the text string �eld or the

bitmap �eld of the leaf nodes, respectively. Like OO1, Hypermodel requests both cold and warm

times for each operation.

2.3 Other OODB Benchmarking Work

There are several other OODB studies that are related to our work on OO7. Engineers at Ontologic

used the initial Sun Benchmark to study the performance of Vbase, their �rst OODB product o�er-

ing [DD88]. Their reections on the work provided a useful summary of some of that benchmark's

shortcomings, including its lack of an opportunity for semantic object clustering (discussed further

below), its very simple schema, and its lack of complex operations such as traversals. Also in

this area, researchers at Altair designed a complex object benchmark (ACOB) for use in studying

alternative client/server process architectures [DFMV90]. Unlike previous OODB benchmarks, a

notion of complex objects was included in the design; however, only a small number of traversal and

update operations were involved, as these were su�cient to expose the tradeo�s among the software

architectures of interest. Finally, Winslett and Chu recently studied OODB (and relational DB)

system performance by porting an actual VLSI layout editor (the MAGIC editor from UC Berkeley)

onto several systems [WC92]. However, since only the �le I/O portions of MAGIC were modi�ed,

this work focused on the systems' save/restore performance rather than their performance when

applications are operating on database objects.

2.4 Why Another Benchmark?

OO1 and HyperModel both represent signi�cant e�orts in the area of OODB benchmarking. Why,

then, did we feel a need for \yet another" benchmark in this area? Basically, as mentioned briey

in the Introduction, none of the existing benchmarks was su�ciently comprehensive to test the

wide range of OODB features and performance issues that must be tested in order to methodically

evaluate the currently available suite of OODB products. OO1 is an excellent test of OODB

performance on simple navigational and update tasks, as intended, but there are a number of

application and system characteristics that it does not measure. For example, while complex objects

are important in many OODB applications, OO1 has no real notion of complex objects. OO1

models inter-object reference locality via its use of \nearby" objects during database generation,

but this has two problems. First, �1% of a large database is not very local; more seriously, while

a given object tends to reference its neighbors, this is quite di�erent than semantically based

complex objects (where a group of objects are used as one aggregate object, providing a natural

unit of clustering). OO1 also does not examine the density of traversals (i.e., the fraction of objects

accessed per page), traverals that involve updates, object queries, and various other potentially

important application and/or OODB system features.

5



HyperModel attempted to correct a number of the Sun (and indirectly, OO1) Benchmark's

shortcomings. Its designers clearly succeeded in developing a more complex benchmark, particu-

larly with respect to the set of operations tested. What is less clear is how much of the added

complexity is actually worthwhile in terms of insights provided by the benchmark. Despite a more

complex schema, there is still no semantic notion of complex objects in the HyperModel design.

While HyperModel includes di�erent read-only traversal operations, they seem to have been de-

signed mainly to be di�erent from one another, as opposed to probing the design/performance

space of OODB systems. (In fact, the performance results in [And90] were presented as an ap-

pendix, with no attempt being made to draw insights or conclusions from the results.) No tests are

included in HyperModel for object queries, updates to indexed vs. non-indexed object attributes,

repeated object updates, the impact of transaction boundaries, or various other performance-related

OODB features that OO7 has been designed to test. Finally, HyperModel is di�cult to implement

consistently from its published speci�cations.4

As will be described in the next section, we tried to be methodical and broad, without going

completely overboard in the area of complexity, when designing OO7. To guide the design process,

we began by surveying the various features (both functional and performance-oriented) found in

current OODB products. We then made a list of those features and techniques that seemed likely to

have a signi�cant impact on relative performance, and we proceeded to develop a series of tests to

cover these features and to distinguish among the techniques use by di�erent vendors to implement

them. While doing this, we were also inuenced signi�cantly by the philosophy underlying the

Wisconsin Benchmark for relational database systems [BDT83]; we wanted OO7 to be a relatively

broad stress test for OODB systems, both in terms of function and system performance.

3 OO7 Database Description

Since the OO7 Benchmark is designed to test many di�erent aspects of system performance, its

database structure and operations are nontrivial. The most precise descriptions of the OO7 Bench-

mark are the implementations of the benchmark. These implementations are available by anony-

mous ftp from the OO7 directory of ftp.cs.wisc.edu. The informal description of the benchmark

given here should su�ce for understanding the basic results; anyone planning to implement the

benchmark should obtain a copy of one of the available implementations.

In any benchmark, there are many opportunities for \cheating" by implementing hacks that

follow the letter of the benchmark speci�cation without following the intentions of the benchmark

designers. Many of these opportunities are only discovered when companies begin \tuning" the

implementations of the benchmark, at which point benchmark designers typically take steps to

disallow the \cheating" in the benchmark speci�cation. At this point we have not tried to write a

4To be fair, completely specifying a complex benchmark is a very di�cult task. As mentioned elsewhere, our

approach to overcoming this di�culty mainly consists of making several reference implementations of OO7 readily

available.
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bullet-proof speci�cation that prevents cheating. We expect that in the future, when we gain expe-

rience from watching others implement the benchmark, the speci�cation will evolve as necessary.

The OO7 Benchmark is intended to be suggestive of many di�erent CAD/CAM/CASE appli-

cations, although in its details it does not model any speci�c application. Recall that the goal

of the benchmark is to test many aspects of system performance, rather than to model a speci�c

application. Accordingly, in the following when we draw analogies to applications we do so to

provide intuition into the benchmark rather than to justify or motivate the benchmark. There are

three sizes of the OO7 Benchmark database: small, medium, and large. Table 1 summarizes the

parameters of the OO7 Benchmark database.

Parameter Small Medium Large

NumAtomicPerComp 20 200 200

NumConnPerAtomic 3,6,9 3,6,9 3,6,9

DocumentSize (bytes) 2000 20000 20000

Manual Size (bytes) 100K 1M 1M

NumCompPerModule 500 500 500

NumAssmPerAssm 3 3 3

NumAssmLevels 7 7 7

NumCompPerAssm 3 3 3

NumModules 1 1 10

Table 1: OO7 Benchmark database parameters.

Appendix A gives a DDL description of the OO7 Benchmark database and a corresponding

ER diagram. The interested reader may wish to consult Appendix A while reading the following

description of the database.

3.1 The Design Library

A key component of the OO7 Benchmark database is a set of composite parts. Each composite part

corresponds to a design primitive such as a register cell in a VLSI CAD application, or perhaps

a procedure in a CASE application; the set of all composite parts forms what we refer to as the

\design library" within the OO7 database. In the design library, the number of composite parts per

module is controlled by the parameter NumCompPerModule, which is currently set to 500. Each

composite part has a number of attributes, including the integer attributes id and buildDate, and

a small character array type. Associated with each composite part is a document object, which

models a small amount of documentation associated with the composite part. Each document has

an integer attribute id, a small character attribute title, and a character string attribute text.

The length of the string attribute is controlled by the parameter DocumentSize. A composite part

object and its document object are connected by a bi-directional association.
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In addition to its scalar attributes and its association with a document object, each composite

part has an associated graph of atomic parts. Intuitively, the atomic parts within a composite

part are the units out of which the composite part is constructed. In the small benchmark, each

composite part's graph contains 20 atomic parts, while in the medium and large benchmarks, each

composite part's graph contains 200 atomic parts. (This number is controlled by the parameter

NumAtomicPerComp.) For example, if a composite part corresponds to a procedure in a CASE

application, each of the atomic parts in its associated graph might correspond to a variable, state-

ment, or expression in the procedure. One atomic part in each composite part's graph is designated

as the \root part."

Each atomic part has the integer attributes id, buildDate, x, y, and docId, and the small

character array type. (The reason for including all of these attributes will be apparent from their

use in the OO7 Benchmark operations, described in Sections 5.2 through 5.4.) The buildDate

values in atomic parts are randomly chosen in the range MinAtomicDate to MaxAtomicDate, which

is currently 1000 to 1999. In addition to these attributes, each atomic part is connected via a

bi-directional association to several (3, 6, or 9) other atomic parts, as controlled by the parameter

NumConnPerAtomic. Our initial idea was to connect the atomic parts within each composite

part in a random fashion. However, random connections do not ensure complete connectivity. To

ensure complete connectivity, one connection is initially added to each atomic part to connect the

parts in a ring; more connections are then added at random. In addition, our initial plans did not

specify a 3/6/9 interconnection variation. This variation was included to ensure that OO7 provides

satisfactory coverage of the OODBMS performance space, as our preliminary tests indicated that

some systems can be very sensitive to the value of this particular benchmark parameter.

The connections between atomic parts are implemented by interposing a connection object

between each pair of connected atomic parts. Here the intuition is that the connections themselves

contain data; the connection object is the repository for that data. A connection object contains

the integer �eld length and the short character array type.

Figure 1 depicts a composite part, its associated document object, and its associated graph of

atomic parts. One way to view this is that the union of all atomic parts corresponds to the object

graph in the OO1 benchmark; however, in OO7 this object graph is broken up into semantic units

of locality by the composite parts. Thus, the composite parts in OO7 provide an opportunity to

test how e�ective various OODBMS products are at supporting complex objects.

3.2 Assembling Complex Designs

The design library, which contains the composite parts and their associated atomic parts (including

the connection objects) and documents, accounts for the bulk of the OO7 database. However, a

set of composite parts by itself is not su�ciently structured to support all of the operations that

we wished to include in the benchmark. Accordingly, we added an \assembly hierarchy" to the

database. Intuitively, the assembly objects correspond to higher-level design constructs in the

application being modeled in the database. For example, in a VLSI CAD application, an assembly
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Id = 248590

type = "typeNumber3"

buildDate = 3587341
title = "widget  #27 docs"

text = "widget #27 doesn’t really do
 very much but we put one in the
 spec so here it is"

docId = 345

documentation

Figure 1: A Composite Part and its associated Document object.

might correspond to the design for a register �le or an ALU. Each assembly is either made up of

composite parts (in which case it is a base assembly) or it is made up of other assembly objects (in

which case it is a complex assembly).

The �rst level of the assembly hierarchy consists of base assembly objects. Base assembly objects

have the integer attributes id and buildDate, and the short character array type. Each base

assembly has a bi-directional association with three \shared" composite parts and three \unshared"

composite parts. (The number of both shared and unshared composite parts per base assembly

is controlled by the parameter NumCompPerAssm.) The OO7 Benchmark database is designed

to support multiuser workloads as well as single user tests; the distinction between the \shared"

and \unshared" composite parts was added to provide control over sharing/conict patterns in

the multiuser workload. (The sharing is on a module basis. If a composite part is referenced as

a private composite part of a base assembly from module i, then it is not referenced as a private

composite part by a base assembly of any module other than module i.) This paper only deals with

the single user tests; only the \unshared" composite part associations are used in the single user

benchmark. The \unshared" composite parts for each base assembly are chosen at random from

the set of all composite parts.

The relationship between the build dates in composite parts and base assemblies is important

in one of the queries of the benchmark (Query 5, which �nds all base assemblies that reference a

composite part with a more recent buildDate than the build date in the base assembly). We con-

trol this relationship as follows: All base assemblies have buildDate chosen randomly in the range

MinAssmDate to MaxAssmDate (currently 1000 to 1999). Composite parts are divided into two cate-

gories. \Young" composite parts have build dates chosen randomly in the range MinYoungCompDate

and MaxYoungCompDate (currently 2000 to 2999), whereas \old" composite parts have build dates
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"Old" comp parts
have build dates
in this range.

Assembly objects
have build dates in
this range.

"Young" comp
parts have build
dates in this range.

0 1000 2000

Figure 2: Build dates for benchmark objects.

chosen randomly in the range MinOldCompDate to MaxOldCompDate (currently 0 to 999). The per-

centage of \young" versus \old" composite parts is controlled by the paramenter YoungCompFrac,

with the interpretation that 1 out of YoungCompFrac composite parts are \young," while all other

composite parts are \old." Currently YoungCompFrac is set to 10. Figure 2 gives a timeline show-

ing the relationship between the build dates for old composite parts, assembly objects, and young

composite parts.

Higher levels in the assembly hierarchy are made up of complex assemblies. Each complex as-

sembly has the usual integer attributes, id and buildDate, and the short character array type;

additionally, it has a bi-directional association with three subassemblies (controlled by the param-

eter NumAssmPerAssm), which can either be base assemblies (if the complex assembly is at level

two in the assembly hierarchy) or other complex assemblies (if the complex assembly is higher

in the hierarchy). There are seven levels in the assembly hierarchy (controlled by the parameter

NumAssmLevels).

Each assembly hierarchy is called a module. Modules are intended to model the largest subunits

of the database application, and are used extensively in the multiuser workloads; they are not used

explicitly in the small and medium databases, each of which consists of just one single module.

Modules have several scalar attributes | the integers id and buildDate, and the short character

array type. Each module also has an associated Manual object, which is a larger version of a

document. Manuals are included for use in testing the handling of very large (but simple) objects.

Figure 3 depicts the full structure of the single user OO7 Benchmark Database. Note that the

picture is somewhat misleading in terms of both shape and scale; the actual assembly fanout used

is 3, and there are only (37�1)=2 = 1093 assemblies in the small and medium databases, compared

to 10,000 atomic parts in the small database and 100,000 atomic parts in the medium database.

4 Testbed Con�guration

4.1 Hardware

As a test vehicle we used a pair of Sun workstations on an isolated piece of Ethernet. A Sun

IPX workstation con�gured with 48 megabytes of memory, two 424 megabyte disk drives (model

Sun0424) and one 1.3 gigabyte disk drive (model Sun1.3G) was used as the server. One of the Sun

0424s was used to hold system software and swap space. The Sun 1.3G drive was used to hold the

database (actual data) for each of the database systems tested, and the second Sun 0424 drive was
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Design Library of Composite Parts
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base
assemblies

complex
assemblies

Manual text

id

type

builddate

manual

design_root

Module i

Figure 3: Structure of a module.

used to hold recovery information (the transaction log or journal) for each system. The data and

recovery disks were con�gured as either Unix �le systems or raw disks depending on the capabilities

of the corresponding OODBMS. Objectivity, for example, uses NFS to read and write non-local

�les, so the disks were formatted as Unix �les for that system. Exodus, on the other hand, prefers

to use raw disks to hold its database and log volumes.

For the client we used a Sun Sparc ELC workstation (about 20MIPS) con�gured with 24

megabytes of memory and one 207 megabyte disk drive (model Sun0207). This disk drive was

used to hold system software and as a swap device. Release 4.1.2 of the SunOS was run on both

workstations.

4.2 Software

E/Exodus

Exodus consists of two main components: The Exodus Storage Manager (ESM) and the E pro-

gramming language. The ESM provides �les of untyped objects of arbitrary size, B-trees, and

linear hashing. The current version of the ESM (Version 2.2) [EXO92] uses a page-server architec-

ture [DFMV90] where client processes request pages that they need from the server via TCP/IP.

If the server cannot satisfy the request from its bu�er pool, a disk I/O is initiated by invoking a

disk process to perform the actual I/O operation. After the disk process has read in the page, the
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server process returns it to the requesting client process and keeps a copy in its own bu�er pool.

The ESM also provides concurrency control and recovery services. Locking is provided at

the page and �le levels (all the normal modes) with a special non-2PL protocol for index pages.

Recovery is based on logging the changed portions of objects [FZT+92]. Pages in the client bu�er

pool are cached across transaction boundaries, but locks must be reacquired from the server when

cached pages are �rst used in subsequent transactions.

The E programming language [RC89] extends C++, adding persistence as a basic storage class,

collections of persistent objects, and B-tree indices. The services provided by E are relatively

primitive compared to its commercial counterparts. There is no support for associations, iterators

with selection predicates, queries, or versions.

The current version of E is based on the GNU g++ 2.3.1 compiler. E uses the ESM for storing

persistent objects. Operations on persistent objects are compiled into instructions for a virtual

machine that are interpreted at runtime [SCD]; the current version of this interpreter is EPVM 3.0.

EPVM 3.0 stores memory-resident persistent objects in the bu�er pool of the ESM client process;

pointers between such memory-resident objects are swizzled (and tested) in software as they are

traversed, as was done in EPVM 2.0 [WD92]. When the ESM decides to replace a page, all pointers

are unswizzled; if the page is dirty, log records for its updated objects are generated and sent to

the server along with the page.

For these experiments, we used a disk page size of 8 Kbytes (this is also the unit of transfer

between a client and the server). The client and server bu�er pools were set to 1,500 (12 MBytes)

and 4,500 pages (36 Mbytes) respectively. Raw devices were used for both the log and data volumes.

Objectivity/DB, Version 2.1

Unlike Exodus, Objectivity/DB, also available as DEC Object/DB V1.0, employs a �le server

architecture [DFMV90]. In this architecture, there is no server process for handling data. Instead,

client processes access database pages via NFS. Since NFS does not provide locking, a separate

lock server process is used. We placed this lock server on the same Sun IPX that was used to

run the server process in the other con�gurations. The current release of Objectivity/DB provides

only coarse grain locking, at the level of a container, and the current B-tree implementation cannot

index objects distributed across multiple containers.

Recovery is implemented via shadows [Gra81]. During the course of a transaction, updates are

written to a shadow database. At commit time, these updates are applied carefully to the actual

database with a journal being used to recover in the event that the commit fails. If the transaction

aborts, the shadow database is simply deleted.

Objectivity, like Ontos (described next), employs a library-based approach to the task of adding

persistence to C++. Instead of modifying the C++ compiler (the approach taken by E), persis-

tent objects are de�ned by inheritance from a persistent root class. In addition to persistence,

Objectivity/DB provides sets, relationships and iterators. Access to persistent objects is through a

mechanism known as a handle. By overloading the \->" operator, handles permit the manipulation
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of persistent objects in a reasonably transparent fashion.

For the benchmark tests, the client bu�er pool was set at 1,500 8K byte pages. Since the

Objectivity architecture does not employ a server architecture, it was not necessary to set its

bu�er pool size. However, because SunOS uses all memory available to bu�er �le pages, the actual

memory for bu�ering pages was roughly the same as for the other systems. As mentioned above,

the database and shadow �les were both stored as Unix �les.

Ontos Version 2.2

Like Exodus, Ontos employs a client-server architecture. However, Ontos is unique in its approach

to persistence. Objects (which inherit from an Ontos de�ned root object class) are created in the

context of one of three di�erent storage managers. The \in-memory" storage manager manages

transient objects much as the heap does in a standard C++ implementation. The \standard"

storage manager implements an object-server architecture [DFMV90], with both the unit of locking

and the unit of transfer between the client and server processes being an individual object. The

third storage manager is called the \group" storage manager, and it implements a page-server

architecture; the granularity for locking and client/server data transfers in this mode is a disk

page.

All three mechanisms can be used within a single application by specifying a storage manager

when the object is created (the C++ new() operator is overloaded appropriately). For the OO7

Benchmark, composite parts, atomic parts, and connection objects were created using the group

manager. The standard object manager was used for the remaining classes of objects.

The features provided by Ontos are slightly richer than the other systems. Ontos provides three

forms of bulk types: sets, lists, and associations. Associations can be either arrays or dictionaries

(B-tree or hash indices). Iterators are provided over each of the bulk types, including a nice object-

SQL interface. Unfortunately, the system lacks a query optimizer for object-SQL, so we did not use

object-SQL to express the benchmark's queries (as performance would not have been acceptable).

Support is also provided for nested transactions, an optimistic concurrency control mechanism,

notify locks, and databases spanning multiple servers.

Recovery is via REDO logging. During the course of a transaction, all updates are bu�ered

in virtual memory. When the transaction commits, the updates are then written to one or more

journal �les on the server. Once the journal �les have been successfully ushed to disk, the updates

are applied to the actual database.

The approach to bu�ering on the client side is di�erent in Ontos from each of the other systems.

Instead of maintaining a client bu�er pool, persistent objects are kept in virtual memory under the

control of a client cache. This approach limits the set of objects a client can access in the scope of

a single transaction to the size of swap space of the processor on which the application is running.

It also relies on the operating system (or the application programmer, by explicit deallocate object

calls) to do a good job of managing physical memory.

When an Ontos transaction commits, the application is given the choice of keeping its cache
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intact or ushing the objects from virtual memory. For the experiments that tested the ability

of a system to cache objects across multiple transactions we did not use the \keep cache" option

because this mode does not insure that the cached data is consistent with respect to transactions

running elsewhere. A solution that we did not have time to investigate would have been to use

notify locks.

For the benchmark, we used the default disk page size of 7.5 Kbytes (this is also the unit of

transfer between a client and the server for the group object manager). Unix �le systems were used

to hold the database and journal �les, as Ontos cannot use a raw �le system.

Versant 3.0 Beta

Like Exodus, the Versant ODBMS employs a client-server architecture. Like Ontos, Versant uses an

object-server architecture. Both the unit of locking and the transfer unit between client and server

processes is an individual object. The Versant Object Manager implicitly caches/un-caches objects

touched during the course of a transaction as needed. The server storage manager performs I/O

with page granularity, but the storage manager, with the exception of administrative clustering

utilities, insulates the rest of the object-server from the notion of pages. Versant's approach to

managing access to groups of objects is dynamic, that is, by a client issuing a group read request.

Versant's locking and logical logging use object-level granularity. The Versant C++ Interface uses

a library-based approach to adding persistence to C++ without modifying the C++ compiler.

5 Results

This section presents the results of OO7 running on four OODBMSs. In order to ensure that all

three implementations were \equivalent" and faithful to the speci�cations of the benchmark, the

E/Exodus, Objectivity, and Ontos implementations were written by the authors of this paper. The

Versant implementation was written by an outside contractor hired by Versant, and then carefully

audited by the authors of this paper. One interesting result of this exercise was that, despite the

lack of a standard OODBMS data model/programming language, we found the features provided

by all of these systems to be similar enough that implementations in one system could be ported

to another fairly easily.

We also took pains to con�gure the systems identically when running the benchmark, again

in the interest of fairness. We also contacted the companies concerned and used their comments

on our implementations to ensure that we were not inadvertantly misusing their systems. For

the Objectivity and Ontos numbers, we gave the companies a 1 March 1993 deadline by which

time they had to send us bug �xes and application-level comments. The results quoted below for

Objecitivty and Ontos represent numbers we achieved on the systems that we had received as of

March 1, 1993. We should emphasize here that these vendors had not yet had a chance to react

to the added feature of varying atomic part fanouts from 3 up to 9.5 The Versant numbers were

5To ensure that our results reect the performance that each tested system is capable of, we chose to allow all
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achieved as of December 15, 1993.

The results presented here are for the \small" and \medium" single user OO7 Benchmark

databases.

In the following, all times are in seconds.

5.1 Database Sizes

In the following, the size of the databases in each of the systems is useful for intepreting the results.

For the small databases, we measured the following sizes6:

Fanout Exodus Objy/DEC ODB Ontos Versant

3 11.5M 5.7M 4.2M ?

6 13.4M 7.7M 4.4M ?

9 15.9M 10.1M 4.9M ?

For the medium databases we measured the following sizes:

Fanout Exodus Objy/DEC ODB Ontos Versant

3 103.8M 54.6M 51.7M ?

6 125.6M 74.9M 122.3M ?

9 152.6M 98.9M ?

5.2 Traversals

The OO7 traversal operations are implemented as methods of the objects in the database. A

traversal navigates procedurally from object to object, invoking the appropriate method on each

object as it is visited. Some of the traversals update objects as they are encountered; other traversals

simply invoke a \null" method on each object.

We ran each traversal over both the \small" and \medium" OO7 Benchmark databases. For

the \small" benchmark, each of the read-only traversals (Traversals 1, 6-9) were run in two ways:

\cold" and \hot." In a cold run of the traversal, the traversal begins with the database cache

empty (both the client and server caches, if the system supports both). We took great pains to

ush all cache(s) between runs. Because of architectural implementation di�erences, the actual

technique used varied from system to system; however, in all cases the mechanisms were tested

thoroughly to con�rm their e�ectiveness. The hot run of the traversal consists of �rst running a

\cold" traversal and then running the exact same query four more times and reporting the average

of the middle three runs. (We omitted the last run from the average so that the overhead of commit

processing was not included in the hot times.) We also tried two ways of running the \cold" and

\hot" traversal: as a single transaction, and as two separate transactions.

vendors to provide pre-released versions of their systems (i.e., versions where known problems in the corresponding

product releases have been �xed). We required each vendor to certify that all changes have been accepted internally

for their next release and to estimate the date of that release.
6We did not record sizes for the Versant databases.
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We considered requiring a third class of traversal, \warm," in which the cache is \warmed" by

�rst running a traversal that is similar but not identical to the \warm" traversal. However, since

warm performance is just a function of cold and hot performance (\cold" when the warm traversal

misses in the cache, \hot" otherwise) we decided that \cold" and \hot" succinctly provided the

most important information. The two approaches produced di�erent results since the systems tested

di�er in their ability to cache objects across transactions. This e�ect is examined for traversal one

in Subsubsection 5.2.1; in the other traversals, in the interest of space we include only the times

for running the two traversals as a single transaction.

For the medium single user OO7 Benchmark database, we ran only the \cold" traversals, since

with the medium database size, either (1) The traversal touched signi�cantly more data than could

be cached, so \cold" and \hot" times were similar, or (2) The traversal touched a small enough

subset of the database that the data could be cached, in which case the \hot" time provided no

information not already present in the small con�guration \hot" time. Similarly, for the update

traversals on both the small and medium databases, we ran only cold traversals; running multiple

update traversals caused the logging tra�c from one transaction to appear in the time for the

next, so hot traversals provided no more information beyond that already in the cold. The e�ect

of updating cached data is investigated in the \cu" traversal.

We present the descriptions and results of the traversals below. Gaps in the numbering of

traversals correspond to traversals that we tested, but that we eliminated from the benchmark

because they contributed no signi�cant new information. The benchmark implementations in the

OO7 directory of ftp.cs.wisc.edu contain implementations of all traversals, including those we

have deleted from this report. The traversals are not presented in numeric order, as we felt the

order used here would make the exposition clearer.

5.2.1 Traversal T1: Raw traversal speed

Traverse the assembly hierarchy. As each base assembly is visited, visit each of its referenced

unshared composite parts. As each composite part is visited, perform a depth �rst search on its

graph of atomic parts. Return a count of the number of atomic parts visited when done.

This traversal is a test of raw pointer traversal speed, and it is similar to the performance metric

most frequently cited from the OO1 benchmark. Note that due to the high degree of locality in

the benchmark, there should be a non-trivial number of cache hits even in the \cold" case. The

left graph in Figure 4 shows the results of traversal 1 on the small database in the \cold" case.

The results from the \hot" traversal on the small database when both the \cold" and the \hot"

traversal were run as a single transaction appear in the right graph in Figure 4.

The following table compares the performance of the systems on the hot traversal with the

cold and hot traversals run as a single transaction (\one") and as multiple transactions (\many").

These traversals were run over the small database with fanout 3.
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Figure 4: T1 traversal, small database.

Exodus Objy/DEC ODB Ontos Versant

one 10.6 17.9 8.1 6.2

many 13.8 22.6 21.2 240.9

Here we see the bene�t of client caching. Since this caching e�ect is duplicated in every operation

of the benchmark, when discussing subsequent results for read-only queries we only report on cold

and hot times that were run as a single transaction.

Figure 5 shows the cold times of the systems on the medium database.

5.2.2 Traversal T6: Sparse traversal speed.

Traverse the assembly hierarchy. As each base assembly is visited, visit each of its referenced

unshared composite parts. As each composite part is visited, visit the root atomic part. Return a

count of the number of atomic parts visited when done.

Note that this is like T1 except that instead of doing a DFS on all of the atomic parts in the

composite part, T6 just visits one (the root part). This test coupled with Traversal T1 provides

interesting insight into the costs and bene�ts of the full swizzling approach to providing persistent

virtual memory. Unfortunately, after ODI withdrew from the benchmark, this test became less

interesting. The left graph in Figure 6 gives the performance we measured for the small database

cold times; the right graph in Figure 6 gives the corresponding hot times. Finally, Figure 7 gives

the T6 performance on the medium database.
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Figure 5: T1, cold traversal, medium database.
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Figure 6: T6 traversal, small database.
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Figure 7: T6, cold traversal, medium database.

5.2.3 Traversal T2: Traversal with updates

Repeat Traversal T1, but update objects during the traversal. There are three types of update

patterns in this traversal. In each, a single update to an atomic part consists of swapping its (x,y)

attributes. The three types of updates are:

A Update one atomic part per composite part.

B Update every atomic part as it is encountered.

C Update each atomic part in a composite part four times.

When done, return the number of update operations that were actually performed.

Figure 8 gives the results of T2A, B, and C on the small database.

In some sense this comparison using T2ABC does not completely characterize the update story

for these systems. Both Exodus and Ontos leave dirty data pages in the server's bu�er pool at

commit time; these pages eventually must be written to disk. Objectivity, on the other hand, forces

all dirty pages back to disk. If subsequent transactions tend to rereference pages in the server's

bu�er pool, the Exodus/Ontos approach is clearly superior. On the other hand, if the pages are

not referenced, subsequent transactions will incur the cost of writing these dirty data pages to disk

in order to make room for their own pages. Using Exodus for the T2 queries we measured the

di�erence between the time required to simply commit the transaction and the time required to
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Figure 8: T2 traversal, small database.
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Figure 9: T2 traversal, medium database.

commit the transaction and ush the server's bu�er pool to disk to be 6 seconds (out of a total of

over 900 seconds). This low overhead is probably partially due to the fact that when running the

T2 traversal the server was able to ush most dirty pages to disk in the background, concurrently

with the traversal running on the client. We are considering adding a new update traversal to test

this aspect of system performance (keeping dirty pages in the server cache after commit).

Figure 9 gives the results of T2A, B, and C on the medium database.

5.2.4 Traversal T3: Traversal with indexed �eld updates

Repeat Traversal T2, except that now the update is on the date �eld, which is indexed. The speci�c

update is to increment the date if it is odd, and decrement the date if it is even.

The goal here is to check the overhead of updating an indexed �eld. This should be done using

the same three variants used in Traversal T2, and again the number of updates should be returned
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Figure 10: T3 traversal, small database.

at the end.

Figure 10 gives the results for T3A, B, and C on the small database.

In our implementations, only Objectivity used automatic index maintenance. (Automatic index

maintenance means that the index is updated transparently as a result of a data member update.)

The Exodus and Ontos numbers reect the overhead of explicit index maintenance coded by hand

in those systems. Ontos does provide implicit index maintenance, although we did not use this

feature in the tests presented in this paper.

Figure 11 gives the results for T3A on the medium database.

5.2.5 Traversals T8 and T9: Operations on Manual.

Traversal T8 scans the manual object, counting the number of occurrences of the character \I."

Traversal T9 checks to see if the �rst and last character in the manual object are the same.

For the medium OO7 database (1M byte manual), we obtained the following cold times. These

results were independent of the atomic part fanout. Also, the small OO7 database times for these

traversals (100K manual) did not provide any insight not already provided by the medium OO7

database times.

Exodus Objy/DEC ODB Ontos Versant

T8 12.3 11.5 5.5 2.9

T9 0.2 11.0 4.8 2.5

5.2.6 Traversal CU (Cached Update)

Perform traversal T1, followed by T2A, in a single transaction. Report the total time minus the

T1 hot time minus the T1 cold time.

The goal of this traversal is to investigate the performance of updates to cached data. The

original T1 traversal warms the cache; the T2A traversal updates some of the objects touched by
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Figure 11: T3A, medium database.

T1. The time to report is de�ned in such a way as to isolate the time for the updates themselves

(and the associated log writes); recall that T2A is like T1 except for the updates to some atomic

parts. Figure 12 gives the times we obtained on the small databases.

5.2.7 Traversals Omitted

We also experimented with traversals that changed the size of document objects, traversals that

scanned documents instead of traversing atomic part subgraphs, and \reverse-traversals" that go

from an atomic part to the root of the assembly hierarchy. These tests were deleted from the �nal

benchmark because, after experimentation, we discovered that they did not provide additional

insight beyond that provided by the other traversals.

5.3 Queries

The queries are operations that ideally would be expressed as queries in a declarative query lan-

guage. Not all of the OO7 queries could be expressed entirely declaratively in all of the systems;

whenever a query could not be expressed declaratively in a system we implemented it as a \free"

procedure that essentially represents a hand coded version of what the query execution engine

would do in order to evaluate the query.

Like the traversals, the queries should be run both cold and hot. In each case, OO7 also tests

the coupling of the query facility with the application programming language by requiring a \do
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Figure 12: Cached update, small databases.

nothing" function to be called with �eld values from each qualifying object. All of the queries are

read-only. Again, gaps in the numbering correspond to queries that we tested but eliminated from

this paper due to space constraints or a lack of useful additional insights.

5.3.1 Query Q1: exact match lookup

Generate 10 random atomic part id's; for each part id generated, lookup the atomic part with that

id. Return the number of atomic parts processed when done.

Note that this is like the lookup query in the OO1 Benchmark. The left graph in Figure 13

gives the results we measured on the small database.

The right graph in Figure 13 gives the results we measured on the small database for the

corresponding \hot" times.

Finally, Figure 14 gives the results we measured on the medium database for the cold queries.

In each case, the systems used the index to avoid scaling the response time with the database;

the relative ordering of the systems' performance is consistent with that of the small results.

5.3.2 Queries Q2, Q3, and Q7.

These queries are most interesting when considered together:

� Query Q2: Choose a range for dates that will contain the last 1% of the dates found in the

database's atomic parts. Retrieve the atomic parts that satisfy this range predicate.
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Figure 13: Q1, small database.
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Figure 14: Q1, cold query, medium database.
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Figure 15: Q4, small database.

� Query Q3: Choose a range for dates that will contain the last 10% of the dates found in the

database's atomic parts. Retrieve the atomic parts that satisfy this range predicate.

� Query Q7: Scan all atomic parts.

Note that queries Q2 and Q3 are candidates for a B+ tree lookup.

On the medium fanout 6 database we obtained the following \cold" numbers. (Similar results

were obtained for fanouts 3 and 9, so we omit them here.)

Fanout 6 Exodus Objy/DEC ODB Ontos Versant

Q2 19.1 37.1 39.5 20.0

Q3 35.0 129.4 63.0 38.9

Q7 31.8 136.3 52.6 123.3

5.3.3 Query Q4: path lookup

Generate 100 random document titles. For each title generated, �nd all base assemblies that use

the composite part corresponding to the document. Also, count the total number of base assemblies

that qualify.

Note that if the system supports path indices, this query can be run without faulting in the

documents or their corresponding composite parts. If the system does not support path indices,

then all objects along the selected paths must be brought in. Unfortunately, ODI was the only

system we tested that supports path indices, so this is another operation that became less interesting

after ODI withdrew from the benchmarking e�ort.

The left graph in Figure 15 shows the small database cold times, while the right graph in

Figure 15 gives the small database hot times. Finally, Figure 16 gives the medium cold times.
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Figure 16: Q4, cold query, medium database.

5.3.4 Query Q5: single-level make

Find all base assemblies that use a composite part with a build date later than the build date of the

base assembly. Also, report the number of qualifying base assemblies found.

This query mimics the processing that the Unix \make" command must do to determine which

base assemblies are rendered out of date after modifying some of the composite parts.

The left graph in Figure 17 shows the small database cold times, while the right graph in

Figure 17 gives the small database hot times.

Figure 18 gives the medium cold times.

5.3.5 Query Q8: ad-hoc join

Find all pairs of documents and atomic parts where the document id in the atomic part matches

the id of the document. Also, return a count of the number of such pairs encountered.

The left graph in Figure 19 shows the small database cold times, while the right graph in

Figure 19 gives the small database hot times. Finally, Figure 20 gives the medium cold times.

5.4 Structural Modi�cation Operations

In this report we present the results from an insert operation (insert �ve new composite parts) and

a delete operation (delete �ve composite parts). We also timed the \build" operation, but since
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Figure 17: Q5, small database.
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Figure 18: Q5, cold query, medium database.
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Figure 19: Q8, small database.
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Figure 20: Q8, cold query, medium database.
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Figure 21: Insert and Delete, small database.

the database build programs were very di�erent among the di�erent systems (e.g., in E/Exodus

and Ontos we used multiple transactions, in Objectivity the build was a single large transaction)

we felt that a comparison of the build times was not meaningful.

5.4.1 Structural Modi�cation: Insert

Create �ve new composite parts, which includes creating a number of new atomic parts (100 in the

small con�guration, 1000 in the large, and �ve new document objects) and insert them into the

database by installing references to these composite parts into 10 randomly chosen base assembly

objects.

The left graph in Figure 21 shows the results of the insert operation in the small databases,

while the left graph in Figure 22 gives the results for the medium databases.

5.4.2 Structural Modi�cation 2: Delete

Delete the �ve newly created composite parts (and all of their associated atomic parts and document

objects).

The right graph in Figure 21 shows the results of the delete operation in the small databases,

while the right graph in Figure 22 gives the results for the medium databases.
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Figure 22: Insert and Delete, medium database.

6 Conclusion

The OO7 Benchmark is designed to provide a comprehensive pro�le of the performance of an

OODBMS. It is more complex than the OO1 Benchmark and more comprehensive than both

the OO1 and HyperModel Benchmarks; however, the results of our tests indicate that the added

complexity and coverage has provided a signi�cant bene�t, as the OO7 test results reported in this

paper (and observed in the tests that were not reported for space or legal reasons) exhibit system

performance characteristics that could not have been observed in OO1 or HyperModel.

OO7 has been designed from the start to support multiuser operations. While these operations

are not yet implemented, the database structure as described in this paper already provides the

framework in which to construct a multiuser benchmark. Speci�cally, the modules and assembly

structure, with their \shared" and \private" composite parts, will allow us to precisely vary degrees

of sharing and conict in multiuser workloads. In future work, we will be re�ning and experimenting

with these multiuser workloads to investigate the performance of OODB systems' concurrency

and versioning facilities. We also plan to add structural modi�cations that test the ability of an

OODBMS to maintain clustering in the face of updates.

30



Acknowledgment

Designing OO7 and getting it up and running on all the systems we tested was a huge task that

we could not have completed without a lot of help. We would like to thank Jim Gray, Mike Kilian,

Ellen Lary, Pat O'Brien, Mark Palmer, and Jim Rye of DEC for initial discussions that led to

this project, and for useful feedback as it progressed. Rick Cattell shared his thoughts with us

early on about what he would change in a successor to OO1, and gave us some feedback on our

design. Rosanne Park and Rick Spickelmier at Objectivity, Gerard Keating and Mark Noyes at

Ontos, Jack Orenstein and Dan Weinreb of ODI, and Johnny Martin of Versant were extremely

helpful in teaching us about their systems and debugging our e�orts. Joseph Burger, Krishna

Kunchithapadam, and Bart Miller helped us track down a strange interaction between one of the

systems and our environment. The law �rm of Foley, Hoag, and Eliot kept our FAX machine

humming and our mailboxes full. Finally, we would like to give a special thanks to four sta�

members at the University of Wisconsin | Joseph Burger, Dan Schuh, C. K. Tan, and Mike

Zwilling | for their help in getting the testbed up and running.

References

[And90] T. Anderson et al. The HyperModel Benchmark. In Proceedings of the EDBT Conference,

Venice, Italy, March 1990.

[BDT83] Dina Bitton, David J. DeWitt, and Carolyn Turby�ll. Benchmarking database systems:

A systematic approach. In Proceedings of the Ninth International Conference on Very

large data bases, pages 8{19, 1983.

[CS92] R. Cattell and J. Skeen. Object operations benchmark. ACM Transactions on Database

Systems, 17(1), March 1992.

[DD88] J. Duhl and C. Damon. A performance comparison of object and relational databases

using the sun benchmark. In Proceedings of the ACM OOPSLA Conference, San Diego,

California, September 1988.

[DFMV90] David J. DeWitt, Philippe Futtersack, David Maier, and Fernando Velez. A study of

three alternative workstation-server architectures for object-oreinted database systems.

In Proceedings of the VLDB Conference, Brisbane, Australia, August 1990.

[EXO92] The EXODUS Group. Using the EXODUS storage manager V2.0.2. Technical Documen-

tation, January 1992.

[FZT+92] Michael J. Franklin, Michael J. Zwilling, C. K. Tan, Michael J. Carey, and David J.

DeWitt. Crash recovery in client-server EXODUS. In Proceedings of the ACM-SIGMOD

Conference on the Management of Data, pages 165{174, June 1992.

31



[Gra81] Jim N. Gray et al. The recovery manager of the System R database manager. ACM

Computing Surveys, 13(2):223 { 242, June 1981.

[RC89] Joel E. Richardson and Michael J. Carey. Persistence in the E language: Issues and

implementation. Software Practice and Experience, 19, December 1989.

[RKC87] W. Rubenstein, M. Kubicar, and R. Cattell. Benchmarking simple database operations.

In Proceedings of the ACM SIGMOD Conference, San Francisco, California, May 1987.

[SCD] D. Schuh, M. Carey, and D. DeWitt. Persistence in E Revisited | Implementation

Experiences. In Proceedings of the Fourth International Workshop on Persistent Object

Systems, Morgan Kaufmann, 1991.

[WC92] M. Winslett and S. Chu. Database management systems for ECAD applications: Archi-

tecture and performance. In Proceedings of the NSF Conference on Design and Manu-

facturing Systems, Atlanta, Georgia, January 1992.

[WD92] S. White and D. DeWitt. A performance study of alternative object faulting and

pointer swizzling strategies. In Proceedings of the VLDB Conference, Vancouver, British

Columbia, August 1992.

A OO7 Benchmark Database Schema

The following is a description of the OO7 schema in a notation that is a hybrid of the C++ based

data de�nition languages (DDLs) of several of the systems that we tested. Inter-object references

are denoted using C++ pointer notation, e.g., the partOf �eld of each atomic part object is a

reference to the composite part object that the atomic part is a part of, and its type is indicated

as CompositePart*. The expressions Set(T*) and Bag(T*) denote sets and bags (multisets) of

references to objects of type T. For example, the to �eld of an atomic part object is a set containing

references to the connection objects that hold data about (outgoing) connections between the atomic

part and other atomic parts. In addition, inverse relationships are denoted in the schema using

<->, pronounced "inverse of". The fact that an atomic part has an inverse relationship with the

connection objects that it is connected to is captured in the DDL description of the atomic part

class via: Set(Connection*) to <-> Connection::from. This says that the �eld to �eld of an

atomic part is inversely related to the from �eld of the connections that it references. Finally, it

should be noted that the OO7 schema includes instances of 1:1, 1:N, and M:N relationships; these

are modeled as inverse relationships between a pair of reference �elds, between a reference �eld and

a set of references, and between two bags of references, respectively.

In addition to type information, the DDL description that follows also notes the top-level

collections (expressed here as type extents) that are needed for the benchmark operations. These

are indicated via the with extent annotation at the end of some of the class de�nitions. Also

listed in the with extent clauses are those attributes (data members) of each class that should
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be indexed in order to provide acceptable performance on the various benchmark operations. It

should be noted that it is not mandatory for the indicated type extents to be implemented as such;

however, some way must be provided to materialize the relevant collections (e.g., the set of all

atomic parts) to support the benchmark operations. Similarly, the indices suggested here are not

mandatory, but omitting one or more of them is likely to lead to inferior OO7 performance results.

Finally, we also avoid dictating any one particular data clustering strategy. Rather, implementors

are free to cluster the objects of the OO7 database however they like in order to achieve good

overall performance { subject to the constraint that the same database instance (and thus the

same clustering strategy) must be used for the entire series of OO7 operations (including tests on

the small, medium, and large databases.)

//--------------------------------------------------------------------------

// DesignObj is the root of the class hierarchy for most OO7 objects

//--------------------------------------------------------------------------

class DesignObj {

int4 id;

char type[10];

int4 buildDate;

};
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//--------------------------------------------------------------------------

// AtomicPart objects are the primitives for building up designs

//--------------------------------------------------------------------------

class AtomicPart: DesignObj {

int4 x, y;

int4 docId;

Set(Connection*) to <-> Connection::from;

Set(Connection*) from <-> Connection::to;

CompositePart* partOf <-> CompositePart::parts;

} with extent (id indexed, buildDate indexed);

//--------------------------------------------------------------------------

// Connection objects are used to wire AtomicParts together

//--------------------------------------------------------------------------

class Connection {

char type[10];

int4 length;

AtomicPart* from <-> AtomicPart::to;

AtomicPart* to <-> AtomicPart::from;

};

//--------------------------------------------------------------------------

// CompositeParts are parts constructed from AtomicParts

//--------------------------------------------------------------------------

class CompositePart: DesignObj {

Document* documentation <-> Document::part;

Bag(BaseAssembly*) usedInPriv <-> BaseAssembly::componentsPriv;

Bag(BaseAssembly*) usedInShar <-> BaseAssembly::componentsShar;

Set(AtomicPart*) parts <-> AtomicPart::partOf;

AtomicPart* rootPart;

} with extent (id indexed);
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//--------------------------------------------------------------------------

// Document objects are used to describe CompositePart objects

//--------------------------------------------------------------------------

class Document {

char title[40];

int4 id;

String text;

CompositePart* part <-> CompositePart::documentation;

} with extent (title indexed, id indexed);

//--------------------------------------------------------------------------

// Manual objects are used to describe a whole Module.

//--------------------------------------------------------------------------

class Manual {

char title[40];

int4 id;

String text;

int4 textLen;

Module* mod <-> Module::man;

};

//--------------------------------------------------------------------------

// Assembly objects are used to build up hierarchical designs

//--------------------------------------------------------------------------

class Assembly: DesignObj {

ComplexAssembly* superAssembly <-> ComplexAssembly::subAssemblies;

Module* module <-> Module::assemblies;

};

class ComplexAssembly: Assembly {

Set(Assembly*) subAssemblies <-> Assembly::superAssembly;

}
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class BaseAssembly: Assembly {

Bag(CompositePart*) componentsPriv <-> CompositePart::usedInPriv;

Bag(CompositePart*) componentsShar <-> CompositePart::usedInShar;

} with extent (id indexed);

//--------------------------------------------------------------------------

// Modules are the designs resulting from Assembly composition

//--------------------------------------------------------------------------

class Module: DesignObj {

Manual* man <-> Manual::mod;

Set(Assembly*) assemblies <-> Assembly::module;

ComplexAssembly* designRoot;

} with extent (id indexed);

Finally, Figure 23 gives an extended Entity-Relationship diagram for the schema of the OO7

database for those readers who prefer to think in terms of E-R modeling concepts.
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Figure 23: Entity-relationship diagram for the OO7 benchmark.
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