
The Architecture of the EXODUS Extensible DBMS

Michael J. Carey
David J. DeWitt

Daniel Frank
Goetz Graefe

Joel E. Richardson
Eugene J. Shekita
M. Muralikrishna

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT

With non-traditional application areas such as engineering design, image/voice data management,

scientific/statistical applications, and artificial intelligence systems all clamoring for ways to store and efficiently

process larger and larger volumes of data, it is clear that traditional database technology has been pushed to its lim-

its. It also seems clear that no single database system will be capable of simultaneously meeting the functionality

and performance requirements of such a diverse set of applications. In this paper we describe the initial design of

EXODUS, an extensible database system that will facilitate the fast development of high-performance, application-

specific database systems. EXODUS provides certain kernel facilities, including a versatile storage manager and a

type manager. In addition, it provides an architectural framework for building application-specific database sys-

tems, tools to partially automate the generation of such systems, and libraries of software components (e.g., access

methods) that are likely to be useful for many application domains.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
This research was partially supported by the Defense Advanced Research Projects Agency under contract N00014-85-K-0788, by the

Department of Energy under contract #DE-AC02-81ER10920, by the National Science Foundation under grants MCS82-01870 and DCR-
8402818, and by an IBM Faculty Development Award.



1. INTRODUCTION

Until recently, research and development efforts in the database management systems area have focused on

supporting traditional business applications. The design of database systems capable of supporting non-traditional

application areas, including engineering applications for CAD/CAM and VLSI data, scientific and statistical appli-

cations, expert database systems, and image/voice applications, has emerged as an important new research direction.

These new applications differ from conventional applications such as transaction processing and from each other in

a number of important ways. First, each requires a different set of data modeling tools. The types of entities and

relationships that must be described for a VLSI circuit design are quite different from those of a banking applica-

tion. Second, each new application area has a specialized set of operations that must be efficiently supported by the

database system. It makes little sense to talk about doing joins between satellite images. Efficient support for the

specialized operations of each new application area is likely to require new types of storage structures and access

methods as well. For example, R-Trees [Gutt84] are a useful access method for storing and manipulating VLSI

data. For managing image data, the database system needs to support large multidimensional arrays as a basic data

type; storing images as tuples in a relational database system is generally either impossible or terribly inefficient.

Finally, a number of new application areas require support for multiple versions of entities [Daya85, Katz86].

Recently, a number of new database system research projects have been initiated to address the needs of

this emerging class of applications: EXODUS1 at the University of Wisconsin [Care85a, Care86], PROBE at CCA

[Daya85, Mano86], POSTGRES [Ston86b, Ston86c] at Berkeley, GEMSTONE at Servio Logic Corporation

[Cope84, Maie86], STARBURST at IBM Almaden Research Center [Schw86], and GENESIS [Bato86] at the

University of Texas-Austin. Although the goals of these projects are similar, and each uses some of the same

mechanisms to provide extensibility, the overall approach of each project is quite different. For example,

POSTGRES will be a more "complete" database management system, with a query language (POSTQUEL), a

predefined way of supporting complex objects (through the use of POSTQUEL and procedures as a data type), sup-

port for "active" databases via triggers and alerters, and inferencing. Extensibility will be provided via new data

types, operators, access methods, and a simplified recovery mechanism. A stated goal is to "make as few changes as

possible to the relational model". The objective of the PROBE project, on the other hand, is to develop an advanced

DBMS with support for complex objects and operations on them, dimensional data (in both space and time
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 EXODUS: A departure, in this case, from the ways of the past. Also an EXtensible Object-oriented Database System.



1

dimensions), and a capability for intelligent query processing. Unlike POSTGRES, PROBE will provide a mechan-

ism for directly representing complex objects. Like EXODUS, PROBE will use a rule-based approach to query

optimization so that the query optimizer may be extended to handle new database operators, new methods for exist-

ing operators, and new data types. An extended version of DAPLEX [Ship81] is to be used as the query language

for PROBE. GEMSTONE, with its query language OPAL, is a complete object-oriented database system that

encapsulates a variety of ideas from the areas of knowledge representation, object-oriented and non-procedural pro-

gramming, set-theoretic data models, and temporal data modeling. STARBURST is an architecture for an extensi-

ble DBMS based on the relational data model, and its design is intended to allow knowledgeable programmers to

add extensions "on the side" in the form of abstract data types, access methods, and external storage structures.

In contrast to these efforts, and like GENESIS, EXODUS is being designed as a modular (and modifiable)

system rather than as a "complete" database system intended to handle all new application areas. In some sense,

EXODUS is a software engineering project — the goal is to provide a collection of kernel DBMS facilities plus

software tools to facilitate the semi-automatic generation of high-performance, application-specific DBMSs for new

applications. In this paper we describe the overall architecture of EXODUS. Section 2 presents an overview of the

components of EXODUS. Section 3 describes the lowest level of the system, the Storage Object Manager, summar-

izing material from [Care86]. Section 4 describes the EXODUS Type Manager, which provides (among other

things) a general schema management facility that can be extended with application-specific abstract data types.

Section 5 addresses a difficult task in extending a database system: the addition of new access methods. EXODUS

simplifies this task by hiding most of the storage, concurrency control, and recovery issues from the access method

implementor via a new programming language, E; E is an extension of C that includes support for persistent objects

via the Storage Object Manager of EXODUS. Section 6 discusses how application-specific database operations are

implemented in EXODUS, and Section 7 describes the rule-based approach to query optimization employed in

EXODUS. Section 8 outlines some of the user interface issues that lie ahead, and Section 9 briefly summarizes the

paper and discusses our implementation plans.

2. AN OVERVIEW OF THE EXODUS ARCHITECTURE

In this section we describe the architecture of the EXODUS database system. Since one of the principal

goals of the EXODUS project is to construct an extensible yet high-performance database system, the design



2

reflects a careful balance between what EXODUS provides the user2 and what the user must explicitly provide.

Unlike POSTGRES and PROBE, EXODUS is not intended to be a complete system with provisions for user-added

extensions. Rather, it is intended more as a toolbox that can be easily adapted to satisfy the needs of new applica-

tion areas. Two basic mechanisms are employed to help achieve this goal: where feasible, we furnish a generic

solution that should be applicable to any application-specific database system. As an example, EXODUS supplies at

its lowest level a layer of software termed the Storage Object Manager which provides support for concurrent and

recoverable operations on arbitrary size storage objects. Our feeling is that this level provides sufficient capabilities

such that user-added extensions will most probably be unnecessary. However, due to both generality and efficiency

considerations, a single generic solution is not possible for every component of a database system.

In cases where one generic solution is inappropriate, EXODUS instead provides either a generator or a

library to aid the user in generating the appropriate software. As an example, we expect EXODUS to be used for a

wide variety of applications, each with a potentially different query language. As a result, it is not possible for

EXODUS to furnish a single generic query language, and it is accordingly impossible for a single query optimizer to

suffice for all applications. Instead, we provide a generator for producing query optimizers for algebraic languages.

The EXODUS query optimizer generator takes as input a collection of rules regarding the operators of the query

language, the transformations that can be legally applied to these operators (e.g., pushing selections before joins),

and a description of the methods that can be used to execute each operator (including their costs and side effects);

as output, it produces an optimizer for the application’s query language in the form of C source code.

In a conventional database system environment it is customary to consider the roles of two different classes

of individuals: the database administrator and the user. In EXODUS, a third type of individual is required to cus-

tomize EXODUS into an application-specific database system. While we referred to this individual as a "user" in

the preceding paragraphs, he or she is not a user in the normal sense (i.e., an end user, such as a bank teller or a car-

tographer). Internally, we refer to this "user" of the EXODUS facilities as a "database implementor" or DBI. While

the Jim Grays of the world would clearly make outstanding DBIs, our goal is to engineer EXODUS so that only a

moderate amount of expertise is required to architect a new system using its tools. Once EXODUS has been cus-

tomized into an application-specific database system, the DBI’s role is completed and the role of the database

administrator begins.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 Our use of the word user will be more carefully explained in the following paragraphs.



3

We present an overview of the design of EXODUS in the remainder of this section. While EXODUS is a

toolkit and not a complete DBMS, we find that it is clearer to describe the system from the viewpoint of an

application-specific database system that was constructed using it. In doing so, we hope to make it clear which

pieces of the system are provided without modification, which must be produced using one of the EXODUS genera-

tors, and which must be directly implemented by the DBI using the E programming language.

2.1. EXODUS System Architecture

Figure 1 presents the structure of an application-specific database management system implemented using

EXODUS. The following tools are provided to aid the DBI in the task of generating such a system:

(1) The Storage Object Manager.

(2) The E programming language and its compiler for writing database system software.

(3) A generalized Type Manager for defining and maintaining schema information.

(4) A library of type independent access methods which can be used to associatively access storage objects.

(5) Lock manager and recovery protocol stubs to simplify the task of writing new access methods and other
database operators.

(6) A rule-based query optimizer and compiler.

(7) Tools for constructing user front ends.

At the bottom level of the system is the Storage Object Manager. The basic abstraction at this level is the

storage object, an untyped, uninterpreted variable-length byte sequence of arbitrary size. The Storage Object

Manager provides capabilities for reading, writing, and updating storage objects (or pieces of them) without regard

for their size. To further enhance the functionality provided by this level, buffer management, concurrency control,

and recovery mechanisms for operations on shared storage objects are also provided. Finally, a versioning mechan-

ism that can be used to implement a variety of application-specific versioning schemes is supported. A more detailed

description of the Storage Object Manager and its capabilities is presented in Section 3.

Although not shown in Figure 1, which depicts the runtime structure of an EXODUS-based DBMS, the

next major component is the E programming language and compiler. E is the implementation language for all com-

ponents of the system for which the DBI must provide code. E extends C by adding abstract data types and a notion

of persistent object pointers to the language’s type definition repertoire. For the most part, references to persistent

objects look just like references to other C structures; the DBI’s index code can thus deal with index nodes as arrays

of key-pointer pairs, for example. Whenever persistent objects are referenced, the E translator is responsible for

adding the appropriate calls to fix/unfix buffers, read/write the appropriate piece of the underlying storage object,



4

OPERATOR

QUERY

PARSER
QUERY

OPTIMIZER
&

COMPILER

COMPILED

QUERY

METHODS

ACCESS
METHODS

CC/RECOVERY
STUBS

STORAGE OBJECT
MANAGER

TYPE

MANAGER

SCHEMA

DATABASE

Figure 1: EXODUS System Architecture.

lock/unlock objects, log images and events, etc. Thus, the DBI is freed from having to worry about the internal

structure of persistent objects. For buffering, concurrency control and recovery, the E language includes statements

for associating locking, buffering, and recovery protocols with variables that reference persistent objects. Thus, the

DBI is provided with a mechanism by which he or she can exercise control (declaratively) — insuring that the

appropriate mechanisms are employed. E should not be confused with either database programming languages such



5

as RIGEL [Rowe79], Pascal/R [Schm77], Theseus [Shop79], or PLAIN [Kers81], as these languages were intended

to simplify the development of database applications code through a closer integration of database and programming

language constructs, or with object-oriented query languages such as OPAL [Cope84, Maie86] — the objective of E

is to simplify the development of internal systems software for a DBMS.

Layered above the Storage Object Manager is a collection of access methods that provide associative

access to files of storage objects and further support for versioning (if desired). For access methods, EXODUS will

provide a library of type-independent index structures including B+ trees, Grid files [Niev84], and linear hashing

[Litw80]. These access methods will be implemented using the "type parameter" capability provided by the E

language (as described in Section 5). This capability enables existing access methods to be used with DBI-defined

abstract data types without modification — as long as the capabilities provided by the data type satisfy the require-

ments of the access methods. In addition, a DBI may wish to implement new types of access methods in the process

of developing an application-specific database system. EXODUS provides two mechanisms to greatly simplify this

task. First, since new access methods are written in E, the DBI is shielded from having to map main memory data

structures onto storage objects and from having to write code to deal with locking, buffering, and recovery proto-

cols. EXODUS also simplifies the task of handling concurrency control and recovery for new access methods using

a form of layered transactions, as discussed in Section 5.

While the capabilities provided by the Storage Object Manager and Access Methods Layer are general pur-

pose and are intended to be utilized in each application-specific DBMS constructed using EXODUS, the third layer

in the design, the Operator Methods Layer, contains a mix of DBI-supplied code and EXODUS-supplied code. As

implied by its name, this layer contains a collection of methods that can be combined with one another in order to

operate on (typed) storage objects. EXODUS will provide a library of methods for a number of operators that

operate on a single type of storage object (e.g., selection), but it will not provide application or data model specific

methods. For example, it cannot provide methods for implementing the relational join operator or for examining an

object containing satellite image data for the signature of a particular crop disease. In general, the DBI will need to

implement one or more methods for each operator in the query language associated with the target application. E

will again serve as the implementation language for this task.

At the center of the EXODUS architecture is the Type Manager. The EXODUS Type Manager is designed

to provide schema support for a wide variety of application-specific database systems. The data modeling facilities

provided by EXODUS are those of the type system of the E programming language, with the Type Manager acting



6

as a repository (or "persistent symbol table") for E type definitions. The type system of E includes a set of primitive,

built-in types (e.g., int, float, char), a set of type constructors (record, union, variant, fixed-length array, and insert-

able array or variable-length sequence), and an abstract data type (ADT) facility which allows the DBI to define

new data types and operations. In addition, the Type Manager maintains the associations between EXODUS files

and the E types of the objects that they contain; it also keeps track of type-related dependencies that arise between

types and other types, files and types, stored queries and types, etc. In designing the type facilities of EXODUS, our

goal was to provide a set of facilities that would allow the capabilities of the Storage Object Manager to be

exploited, and that would allow the modeling needs of a wide range of applications to be handled with little or no

loss of efficiency.3 Section 4 presents a more detailed overview of the capabilities provided by the Type Manager,

including a discussion of its dependency-maintenance role.

Execution of a query in EXODUS follows a set of transformations similar to that of a relational query in

System R [Astr76]. After parsing, the query is optimized, and then compiled into an executable form. The parser is

responsible for transforming the query from its initial form into an initial tree of database operators. During the

parsing and optimization phases, the Type Manager is invoked to extract the necessary schema information. The

executable form produced by the query compiler consists of a rearranged tree of operator methods (i.e., particular

instances of each operator) to which query specific information such as selection predicates (e.g., name = "Mike"

and salary > $200,000) will be passed as parameters. As mentioned earlier, EXODUS provides a generator for pro-

ducing the optimization portion of the query compiler. To produce an optimizer for an application-specific database

system, the DBI must supply a description of the operators of the target query language, a list of the methods that

can used to implement each operator, a cost formula for each operator method, and a collection of transformation

rules. The optimizer generator will transform these description files into C source code for an optimizer for the tar-

get query language. At query execution time, this optimizer behaves as we have just described, taking a query

expressed as a tree of operators and transforming it into an optimized execution plan expressed as a tree of methods.

Finally, the organization of the top level of a database system generated using EXODUS will depend on

whether the goal is to support some sort of interactive interface, an embedded query interface such as EQUEL

[Allm76], or an altogether different form of interface. We plan to provide a generator to facilitate the creation of
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 While we initially considered providing a generalized class hierarchy, such a facility can be efficiently supported on top of the type facili-
ties that we provide. We also felt that different applications would be likely to want very different things from such a hierarchy.



7

interactive interfaces, and we are exploring the use of the Cornell Program Synthesizer Generator [Reps84] as a user

interface generator for EXODUS4. This tool provides the facilities needed for implementing structured editors for a

wide variety of programming languages, the goal of such editors being to help programmers formulate syntactically

and semantically correct programs. Since the syntax and semantics of typical query languages are much simpler

than that of most modern programming languages, it is clear that we will be able to apply the tool in this way; it

remains to be seen whether or not it is really "too powerful" (i.e., overkill) for our needs. As for supporting queries

that are embedded programs, two options exist. First, if the program simply contains calls to operator methods,

bypassing the parser and optimizer, then a linker can be used to bind the program with the necessary methods

(which can be viewed as a library of procedures). The second option, which will be a difficult task, is to provide a

generalized tool to handle programs with embedded queries (ala EQUEL). It will be relatively easy to provide a

generic preprocessor which will extract queries and replace them with calls to object modules produced by the

parser, optimizer, and compiler; however, it is unclear how to make the underlying interface between the application

program and database system independent of the (application-specific) data model. For example, in the relational

model a tuple-at-a-time or portal [Ston84] interface is commonly used, whereas with the Codasyl data model, the

database system and application program exchange currency indicators as well as record occurrences. These issues

will be explored further in the future.

3. THE STORAGE OBJECT MANAGER

In this section we summarize the key features of the design of the EXODUS Storage Object Manager. We

begin by discussing the interface that the Storage Object Manager provides to higher levels of the system, and then

we describe how arbitrarily large storage objects are handled efficiently. We discuss the techniques employed for

versioning, concurrency control, recovery, and buffer management for storage objects, and we close with a brief

discussion about files of storage objects (known as file objects). A more detailed discussion of these issues can be

found in [Care86].

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 We have experimented with the idea of generating a QUEL-like interface using this tool.



8

3.1. The Storage Object Manager Interface

The Storage Object Manager provides a procedural interface. This interface includes procedures to create

and destroy file objects and to open and close file objects for file scans. For scanning purposes, the Storage Object

Manager provides a call to get the object ID of the next object within a file object. It also provides procedures for

creating and destroying storage objects within a file. For reading storage objects, the Storage Object Manager pro-

vides a call to get a pointer to a range of bytes within a given storage object; the desired byte range is read into the

buffers, and a pointer to the bytes there are returned to the caller. Another call is provided to inform EXODUS that

these bytes are no longer needed, which "unpins" them in the buffer pool. For writing storage objects, a call is pro-

vided to tell EXODUS that a subrange of the bytes that were read have been modified (information that is needed

for recovery to take place). For shrinking/growing storage objects, calls to insert bytes into and delete bytes from a

specified offset in a storage object are provided, as is a call to append bytes to the end of an object. Finally, for tran-

saction management, the Storage Object Manager provides begin, commit, and abort transaction calls; additional

hooks are provided to aid the access methods layer in implementing concurrent and recoverable operations for new

access methods efficiently (as discussed in Section 5).

In addition to the functionality outlined above, the Storage Object Manager is designed to accept a variety

of performance-related hints. For example, the object creation routine mentioned above accepts hints about where

to place a new object (i.e., "place the new object near the object with id X ") and about how large the object is

expected to be (on the average, if it varies); it is also possible to hint that an object should be alone on a disk page

and the same size as the page (which will be useful for the access methods level). The buffer manager accepts hints

about the size and number of buffers to use and what replacement policy to employ. These hints will be supported

by allowing a scan group to be specified with each object access, and then having the buffer manager accept these

hints on a per-scan-group basis, allowing easy support of buffer management policies like DBMIN [Chou85].

3.2. Storage Objects and Operations

As described earlier, the storage object is the basic unit of data in the Storage Object Manager. Storage

objects can be either small or large, a distinction that is hidden from higher layers of EXODUS software. Small

storage objects reside on a single disk page, whereas large storage objects occupy potentially many disk pages. In

either case, the object identifier (OID) of a storage object is an address of the form (page # , slot # ). The OID of a

small storage object points to the object on disk; for a large storage object, the OID points to its large object



9

header. A large object header can reside on a slotted page with other large object headers and small storage objects,

and it contains pointers to other pages involved in the representation of the large object. Other pages in large

storage objects are private rather than being shared with other objects (although pages are shared between versions

of a storage object). When a small storage object grows to the point where it can no longer be accommodated on a

single page, the Storage Object Manager will automatically convert it into a large storage object, leaving its object

header in place of the original small object. We considered the alternative of using logical surrogates for OID’s

rather than physical addresses, as in other recent proposals [Cope84, Ston86b], but efficiency considerations led us

to opt for a "physical surrogate" scheme — with logical surrogates, it would always be necessary to access objects

via a dense surrogate index5.

Figure 2 shows an example of our large object data structure; it was inspired by Stonebraker’s ordered

relation structure [Ston83], but there are a number of significant differences [Care86]. Conceptually, a large object

is an uninterpreted byte sequence; physically, it is represented as a B+ tree like index on byte position within the

object plus a collection of leaf blocks (with all data bytes residing in the leaves). The large object header contains a

number of (count , page # ) pairs, one for each child of the root. The count value associated with each child pointer

gives the maximum byte number stored in the subtree rooted at that child, and the rightmost child pointer’s count is

therefore also the size of the object. Internal nodes are similar, being recursively defined as the root of another

object contained within its parent node, so an absolute byte offset within a child translates to a relative offset within

its parent node. The left child of the root in Figure 2 contains bytes 1-421, and the right child contains the rest of the

object (bytes 422-786). The rightmost leaf node in the figure contains 173 bytes of data. Byte 100 within this leaf

node is byte 192 + 100 = 292 within the right child of the root, and it is byte 421 + 292 = 713 within the object as a

whole. Searching is accomplished by computing overall offset information while descending the tree to the desired

byte position. As described in [Care86], object sizes up to 1 GB or so can be supported with only three tree levels

(header and leaf levels included).

Associated with the large storage object data structure are algorithms to search for a range of bytes (and

perhaps update them), to insert a sequence of bytes at a given point in the object, to append a sequence of bytes to

the end of the object, and to delete a sequence of bytes from a given point in the object. The insert, append, and

delete operations are novel because inserting or deleting an arbitrary number of bytes (as opposed to a single byte)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 This is true unless the objects are kept sorted on surrogate ID. In this case, a non-dense surrogate index can be used.



10

PAGES

HEADER (ROOT)

INTERNAL

BLOCKS

LEAF

OID

786421

365192421282120

173192139162120

Figure 2: An example of a large storage object.

into a large storage object poses some unique problems compared to inserting or deleting a single record from an

ordered relation. Algorithms for these operations are described in detail in [Care86] along with results from an

experimental evaluation of their storage utilization and performance characteristics. The evaluation showed that the

EXODUS storage object mechanism can provide operations on very large dynamic objects at relatively low cost,

and at a reasonable level of storage utilization (typically 80% or higher).

3.3. Versions of Storage Objects

The Storage Object Manager provides primitive support for versions of storage objects. One version of

each storage object is retained as the current version, and all of the preceding versions are simply marked (in their

object headers) as being old versions. The reason for only providing a primitive level of version support is that dif-

ferent EXODUS applications may have widely different notions of how versions should be supported [Ston81,

Dada84, Katz84, Bato85, Clif85, Klah85, Snod85, Katz86]. We do not omit version management altogether for

efficiency reasons — it would be prohibitively expensive, both in terms of storage space and I/O cost, to maintain

versions of large objects by maintaining entire copies of objects.

Versions of large storage objects are maintained by copying and updating the pages that differ from version

to version. Figure 3 illustrates this by an example. The figure shows two versions of the large storage object of Fig-

ure 2, the original version, V 1, and a newer version, V 2. In this example, V 2 was created by deleting the last 36

bytes from V 1. Note that V 2 shares all nodes of V 1 that are unchanged, and it has its own copies of each modified



11

120 162 139 192 173

120 282 421 365

421 786

192 192

421 750

329

137

V1 2V

Figure 3: Two versions of a large storage object.

node. A new version of a large storage object will always contain a new copy of the path from the root to the new

leaf (or leaves); it may also contain copies of other internal nodes if the change affects a large fraction of the object.

Since the length of the path will usually be two or three, however, and the number of internal pages is small relative

to the number of pages of actual data (due to high fanout for internal nodes), the overhead for versioning large

objects in this scheme is small — for a given fixed tree height, it is basically proportional to the difference between

adjacent versions, and not to the size of the objects.

Besides allowing for the creation of new versions of large storage objects, which is supported by allowing

the insert, append, delete, and write (i.e., read and modify a byte range) operations to be invoked with versioning

turned on, the Storage Object Manager also supports deletion of versions. This is necessary for efficiency as well as

to maintain the clean abstraction. The problem is that when deleting a version of a large object, we must avoid dis-

carding any of the object’s pages that are shared (and thus needed) by other versions of the same object. [Care86]

describes an efficient version deletion algorithm that addresses this problem, providing a way to delete one version

with respect to a set of other versions that are to be retained.

3.4. Concurrency Control and Recovery

The Storage Object Manager provides concurrency control and recovery services for storage objects.

Two-phase locking [Gray79] of byte ranges within storage objects is used for concurrency control, with a "lock

entire object" option being provided for cases where object level locking will suffice. To ensure the integrity of the



12

internal pages of large storage objects while insert, append, and delete operations are operating on them (e.g.,

changing their counts and pointers), non-two-phase B+ tree locking protocols [Baye77] are employed. For

recovery, small storage objects are handled using before/after-image logging and in-place updating at the object

level [Gray79]. Recovery for large storage objects is handled using a combination of shadowing and logging —

updated internal pages and leaf blocks are shadowed up to the root level, with updates being installed atomically by

overwriting the old object header with the new header [Verh78]. The name and parameters of the operation that

caused the update are logged, and a log sequence number [Gray79] is maintained on each large object’s root page;

this is done to ensure that operations on large storage objects can be logically undone or redone as needed. A simi-

lar scheme is used for versioned objects, but the before-image of the updated large object header (or entire small

object) is retained as an old version of the object.

3.5. Buffer Management for Storage Objects

An objective of the EXODUS Storage Object Manager design is to minimize the amount of copying from

buffer space that is required. A second (related) objective is to allow sizable portions of large storage objects to be

scanned directly in the buffer pool by higher levels of EXODUS software. To accommodate these needs, buffer

space is allocated in variable-length buffer blocks, which are integral numbers of contiguous pages, rather than in

single-page units. When an EXODUS client requests that a sequence of N bytes be read from an object X , the

non-empty portions of the leaf blocks of X containing the desired byte range will be read into one contiguous buffer

block by obtaining a buffer block of the appropriate size from the buffer space manager and then reading the pages

into the buffer block in (strict) byte sequence order, placing the first data byte from a leaf page in the position

immediately following the last data byte from the previous page. (Recall that leaf pages of large storage objects are

usually not entirely full.) A scan descriptor will be maintained for the current region of X being scanned, including

such information as the OID of X , a pointer to its buffer block, the length of the actual portion of the buffer block

containing the bytes requested by the client, a pointer to the first such byte, and information about where the con-

tents of the buffer block came from. The client will receive a pointer to the scan descriptor through which the buffer

contents may be accessed6. Free space for the buffer pool will be managed using standard dynamic storage alloca-

tion techniques, and buffer block allocation and replacement will be guided by the Storage Object Manager’s hint

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6 As is discussed in Section 5, the E language actually hides this structure from the DBI.



13

mechanism.

3.6. File Objects

File objects are collections of storage objects, and they are useful for grouping objects together for several

purposes. First, the EXODUS Storage Object Manager provides a mechanism for sequencing through all of the

objects in a file, so that related objects can be placed in a common file for sequential scanning purposes. Second,

objects within a given file are placed on disk pages allocated to the file, so file objects provide support for objects

that need to be co-located on disk. Like large storage objects, a file object is identified by an OID which points to its

root (i.e., an object header); storage objects and file objects are distinguished by a header bit. Like large storage

objects, file objects are represented by an index structure similar to a B+ tree, but the key for the index is different in

this case — a file object index uses disk page number as its key. Each leaf page of the file object index contains a

collection of page numbers for slotted pages contained in the file. (The pages themselves are managed separately

using standard disk allocation techniques.) The file object index thus serves as a mechanism to gather the pages of a

file together, but it also has several other nice properties — it facilitates the scanning of all of objects within a given

file object in physical order for efficiency, and it allows fast deletion of an object with a given OID from a file

object (since the OID includes a page number, which is the key for the file object index). Note that since all of the

objects in a file are directly accessible via their OIDs, a file object is not comparable to a surrogate index — any

indices on the objects within a given file will contain entries that point directly to the objects being indexed, a

feature important for performance. Further discussion of file object representation, operations, concurrency control,

and recovery may be found in [Care86].

4. TYPES AND THE TYPE MANAGER

4.1. EXODUS Type Definition Facilities

Files in EXODUS contain what we refer to as typed objects, which are storage objects as viewed by the E

programming language through its type system. Files are constrained to contain objects of only one type; this is not

as restrictive as it may sound, however, because E includes union and variant as type constructors. Thus, if

Employee and Department records should be stored together on disk for efficiency reasons, for example, an Emp-

Dept variant type could be defined to serve as the type of file for storing the records.

The EXODUS type system allows types for typed objects to be defined by combining base types via type



14

constructors. Base types are types that are accessible only through the set of operations defined on them; they

correspond to the abstract data types of ADT INGRES [Ston86a] or of conventional programming languages. The

primitive EXODUS base types include int, float, char, and enumerations. In addition, EXODUS provides support

for the addition of new base types (e.g., rectangle, complex number, or even a large base type such as image) and

their operations via a flexible ADT facility (described further in Section 5). The definition of such ADTs is one of

the tasks of the DBI. The type constructors provided by E include pointers, fixed length arrays, insertable arrays

(i.e., variable length sequences), records, unions, and variants. Type constructors may be used in a nested fashion

(e.g., an array of records is permissible). Whenever possible, such as for arrays of fixed length records, the E com-

piler will produce code which minimizes the amount of run time interpretation incurred in accessing an instance of a

constructed type.

As a final note, observe that the presence of pointers (which are physically realized as object IDs) together

with the other type constructors makes it possible to model more complex recursive types (i.e., typed objects within

other typed objects) at a higher level of an application-specific DBMS. We expect this extensible type system to be

sufficiently powerful to serve most applications satisfactorily.

4.2. The Role of the Type Manager

The Type Manager provides a facility for the storage of all persistent type information. In addition to E

type definitions, it maintains information about all of the pieces (called fragments7) that go into making up a com-

piled query, as well as information about the relationship of these pieces to each other. It also keeps track of the

correspondence of files to their types. In short, the Type Manager keeps track of type information and most every-

thing else that is related to or dependent upon such information.

Since the fragments of a query include the types of the objects stored in the files that it references, there is a

close relationship between what the Type Manager does and what traditional schema facilities do. The Type

Manager does not, however, provide a complete schema facility for for end users, as it does not store information

about things such as cardinalities or protection and security. Requirements for such non-type-related schema infor-

mation are expected to vary from application to application, so maintaining this sort of information is left to each

application-specific DBMS. The DBI is expected to maintain a set of catalogs for storing such information, presum-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 The type definitions themselves are also referred to as fragments, just like all other pieces of query-related information.



15

ably defined in terms of the end-user data model that the target system is designed to support.

4.2.1. Fragments

EXODUS is based on a late binding model of database architecture. That is, database systems built using

EXODUS tools compile information on the database structure and operations into fragments that are stored by the

Type Manager. Compiled query plans are the last fragments bound, and they are compiled and linked (sometime

prior to the execution of the query) to fragments that were compiled earlier. This process requires that the Type

Manager maintains dependency information between the fragments. As described in the next section, maintaining

this ordering information is an important part of the Type Manager’s job.

Files are treated like fragments, but they slightly different in that they do not exist as code. To the Type

Manager, a file is a triple of the form <fname, ftype, fid>, where fname is the character string naming the file, ftype

is the name of the type of the file, and fid is its file id as defined by the Storage Manager.

4.2.2. Dependencies

As indicated above, certain time ordering constraints must hold between all fragments constituting a com-

plete query, including files. For example, a compiled and linked query plan must have been created more recently

than the program text for any of the methods or ADT operations that it employs; otherwise, out-of-date code will

have been used in its creation. In addition, we observe that a given type or set of operations is likely to have several

representations: the E source code, perhaps an intermediate, parsed representation, a linkable object, and, for

queries, an executable binary. Similar time ordering constraints must also hold between these representations.

This is not unlike the problem of determining whether or not the constituent parts of a large software sys-

tem are all up to date, and in fact the functionality of the Type Manager shold not be unfamiliar to users of the

Unix make facility [Feld79]. However, unlike make, which only examines dependencies and timestamps when it

is started up, the Type Manager maintains a graph of inter-fragment dependencies at all times; this graph may

change as fragments and dependencies are added to and subtracted from the database.

The Type Manager also plays a role in maintaining data abstraction that distinguishes it from make. In

particular, a type used by a query plan is likely to in turn use other types to constitute its internal representation.

The first type is not, strictly speaking, dependent upon the linkable object code of these constituent types; that is,

while it must be eventually be linked with with their code, it is not necessary that their object code be up to date, or



16

even compiled, until link time. We call fragments of this sort companions; make has no facilities for specifying

and using companions. The Type Manager, however, requires such a facility, as otherwise it would be unable to

provide a complete list of objects constituting a query, which is necessary when a query is to be linked.

4.2.3. Rules and Actions

The Type Manager maintains the correct time ordering of fragments via two mechanisms: rules and

actions. The set of fragments constitutes the nodes of an acyclic directed graph; rules generate the arcs of this

graph. When a fragment is found to be older than those fragments upon which it depends (with the dependencies

being determined from the rules), a search is made for an appropriate action that can be performed to bring the frag-

ment up to date. Both rules and actions are defined using a syntax based on regular expressions so as to allow a

wide range of default fragment dependencies to be specifed with a minimum of actual rule text. Disambiguating

heuristics exist to deal with possible action conflicts (such as when two regular expressions match the same frag-

ment name).

5. ACCESS METHODS IN EXODUS

Application-specific database systems will undoubtedly vary from one another in the access methods that

they employ. For example, while B+ trees and an index type based on some form of dynamic hashing are usually

sufficient for conventional business database systems (e.g., a relational DBMS), a database system for storing and

manipulating spatial data is likely to need a spatial index structure such as the KDB tree [Robi81], R tree [Gutt84],

or Grid file [Niev84] structures. We plan to provide a library of available access methods in EXODUS, but we

expect this library to grow — new, specialized index structures will undoubtedly continue to be developed as

emerging database applications seek higher and higher performance. A complication is that a given index structure

is expected to be able to handle data of a variety of types (e.g., integers, reals, character strings, and even newly-

defined types) as long as the data type meets the prerequisites for correct operation of the index structure (e.g., a B+

tree requires the existence of a total ordering operator for its key type) [Ston86a]; this includes operating on data

types that are not defined by the DBI until after the index code has been completely written and debugged.

As described in Section 2, access methods reside on top of the Storage Object Manager of EXODUS in the

architecture of application-specific database systems. In addition, type information missing at compile time must be

somehow provided to the access method code at run time. One of the goals of the EXODUS project is to simplify



17

the task of adding new access methods to a new or existing application-specific database system. The major sources

of complexity in adding a new access method seem to be (i) programming (and verifying) the access method algo-

rithms, (ii) mapping the access method data structure onto the primitive objects provided by the storage system, (iii)

making the access method code interact properly with the buffer manager, and (iv) ensuring that concurrency con-

trol and recovery are handled correctly and efficiently. Although the access method designer is probably only

interested in item (i), this can comprise as little as 30% of the actual code that he or she must write in order to add

an access method to a typical commercial DBMS, with items (ii)-(iv) comprising the remaining 70% [Ston85]. To

improve this situation — dramatically, we hope — EXODUS provides a programming language for the DBI to use

when implementing new access methods (and other operations). This language, E, effectively shields the DBI from

items (ii)-(iv) — the E translator produces code to handle these details based on the DBI’s index code plus a few

declarative "hints".

In the remainder of this section, we outline the way in which new access methods are added to EXODUS,

including how the programming constructs chosen for E simplify the writing of access method code, and how

buffering, concurrency control, and recovery issues are handled "under the covers" in a nearly transparent fashion.

We should note that many important details of the design of E are necessarily omitted from the following discus-

sion; it is intended only to give the reader the general introduction to the ideas. For more detail, see [Rich86].

5.1. The E Implementation Language

The E language is a derivative of C [Kern78] with the addition of a set of programming constructs care-

fully chosen to provide high leverage to the DBI. A number of these constructs were inspired by developments in

programming languages over the last 10 years, most notably, from CLU [Lisk77] and Pascal [Jens75]. Its major

features include the ability to bind a pointer variable to an object in a file, and to declare abstract data types in the

spirit of CLU clusters. Program structure is fully modular, with separate compilation possible for all modules

(including parameterized modules, which have a certain amount of missing type information). In addition there are

several new type constructors and control abstractions.

By providing these facilities, E allows the DBI to define and then to manipulate the internal structure of

storage objects for an access method (e.g., a B+ tree node) in a more natural way than by making direct calls to the

Storage Object Manager and explicitly coding structure overlays and offset computations. In particular, E allows

the DBI to ignore the fact that storage objects can be arbitrarily large; the E translator will insert appropriate calls to



18

get the storage object byte ranges needed by the DBI. The output of the E language translator is C source code with

EXODUS-specific constructs replaced by collections of appropriate lower-level C constructs, additional routine

parameters, and calls to the Storage Object Manager. In other words, the Storage Object Manager is effectively the

E translator’s "target machine", and the resulting C source code will be linked with the Storage Object Manager.

In addition to these facilities, the E language provides the DBI with declarative access to the Storage

Object Manager’s hint facilities (which were described in Section 3). Associated with each file-bound pointer vari-

able in an E source program is a scan descriptor as described in Section 3; such a variable inherits the hints associ-

ated with its type definition. In the absence of hints, E will provide reasonable default assumptions, but hints make

it possible for a knowledgeable DBI to tune the performance of his or her code by recommending the appropriate

lock protocol, buffer replacement strategy, storage object size, etc., to be associated with a persistent object (scan)

variable. E will also provide a hint mechanism that will permit the DBI to influence the way that E types are laid

out on secondary storage (providing the dual of a buffering hint, in a sense).

5.2. Writing Access Methods in E

To demonstrate the usefulness of the E implementation language and to further explain its features, let us

consider how the DBI might go about implementing B+ trees. We define B+ tree as an abstract data type, that is, as

a type whose operations are available to users of the type, but whose internal representation is hidden. In this case,

the operations probably include create_index, destroy_index, lookup, insert, and delete. To describe the internal

structure of a B+ tree node, the DBI would define a C-like structure to represent its contents. Within an ADT

module, there may be many typedefs; the one which has the same name as the ADT is the representation type. The

ADT module BTree defined in Figure 4 is an example of such a definition; the variant typedef BTree is the

representation type for the ADT.

Note that the module has several parameters representing the "unknowns" at the time the DBI is writing the

code. These include the type of the key over which the index is built, the ordering operators on those keys, and the

type of entity being indexed; within the module, these parameters are used freely as type and procedure names.

The implementation of parameterized types such as BTree is such that the unknown quantities are compiled into

extra, hidden parameters to the routines that form the ADT’s interface.



19

adt BTree[ entity_type, key_type, equal, less ]
type entity_type;
type key_type has int equal( ), int less( );
{

typedef enum { INTERNAL, LEAF } NodeType;

typedef struct { key_type value; BTree *child; } key_ptr_pair;

typedef struct { key_type value; entity_type *ptr[ ? ]; } key_ptr_list;

typedef variant { NodeType nodetype;
INTERNAL: { int height; key_ptr_pair data[ ? ]; };
LEAF: { key_ptr_list data[ ? ]; };

} BTree # obj(PAGESIZE); lock(HIERARCHICAL); buffer(LIFO, 3) #;

/* figure out which pointer to follow */

private int search_node( node, key )
BTree *node;
key_type key;
{

/* simple binary search over node */
int min, max, middle;

min = 0;
max = lengthof( node->data ) - 1;
while( min <= max ) {

middle = (min + max)/2;
if( equal(key, node->data[middle].value) ) return( middle );
else if( less(key, node->data[middle].value) ) max = middle - 1;
else min = middle + 1;

}

return( -1 );
} /* search_node */

/* find first entity with specified key */

public entity_type *BT_lookup( key )
key_type key;
{

...
} /* BT_lookup */

...

} /* BTree */

Figure 4: A Partial B+ Tree Example.

BTree’s definition also hints8 to the E translator that new B+ tree nodes should be one page in size, that
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

8 The hint facilities are currently being designed, so the hint syntax used in our example is preliminary; our intent is simply to convey the



20

hierarchical locking should be used in B+ tree operations, and that a LIFO buffer management policy with three

buffer blocks should be used for the scan. (Buffers and locks are allocated on a per scan basis.)

Given these definitions, the DBI can proceed to access and manipulate storage objects as though they were

standard in-memory structures. Figure 4 also gives an example code fragment from a B+ tree search routine. In this

routine, the parameter node is a pointer to a BTree. Each time the E translator encounters a statement in which

node is dereferenced, it will translate this reference into a sequence of several C statements — at runtime this

sequence will check to see if the appropriate bytes of the object are already in the buffer pool by inspecting node ’s

scan descriptor, calling the Storage Object Manager to read the desired bytes (and perhaps subsequent bytes) into

the buffer pool if not; then the actual reference will take place in memory. Since key_type is unknown when this

code is compiled, the E translator will compile code such that the needed information (e.g. its size) is passed in

under the covers; the resulting offset calculations which index into the key-pointer-pair arrays will make use of

these parameters.

E provides other operations on pointers into files as well. For example, the call new( n ) creates a new

object in the file to which n is bound and sets n to point at it; free( n ) disposes of the object to which n is pointing.

Other calls will also be provided, including calls to create and destroy files. The E translator will recognize these

calls and replace them with appropriate lower-level Storage Object Manager calls.

5.3. Transparent Transaction Management

We have described how the E language simplifies the DBI’s job by allowing access method structures and

algorithms to be expressed in a natural way, and we have indicated how the E translator adds Storage Object

Manager calls when producing C code. In this section we describe how concurrency control and recovery fit into

the picture; the problem is complicated by the fact that access methods often require non-two-phase locking proto-

cols and have specialized recovery requirements for performance reasons [Ston86a]. These functions will be han-

dled by the E translator through a combination of layered transactions and protocol stubs.9

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
flavor of the hint facilities that E will provide.
9Currently, we are focusing our efforts on the difficult problem of automatically buffering pieces of large objects; our thoughts on how to

deal with concurrency control and recovery are still in a preliminary state.



21

5.3.1. Layered Transactions

Transaction management for access methods in EXODUS is loosely based on the layered transaction

model proposed by Weikum [Weik84]. Weikum’s model is based on the notion of architectural layers of a database

system, with each layer presenting a set of objects and associated operations to its client layers. Each operation is a

"mini-transaction" (or nested transaction) in its own right, and thus a transaction in a client layer can be realized as a

series of mini-transactions in one or more of its servant layers. Concurrency control is enforced using two-phase

locking on objects within a given layer of the system. Objects in a servant layer are locked on behalf of the transac-

tion in its client layer, and these locks are held until the client transaction completes. Recovery is layered in a simi-

lar manner. As a mini-transaction executes, it writes level-specific recovery information to the log; when it com-

pletes, its log information is removed and replaced by a simpler client-level representation of the entire operation.

To undo the effects of an incomplete layered transaction at a given level, the effects of a number of completed

mini-transactions plus one in-progress mini-transaction must be undone; we must first undo the incomplete mini-

transaction (recursively, in general) using its log information, then run the inverse of each completed mini-

transaction. Weikum proposes what amounts to a per-transaction stack-based log for recovery.

While we draw much inspiration from Weikum, our access method transaction management facilities differ

in some respects. First, EXODUS is not strictly hierarchical in nature, instead being a collection of interacting

modules. (This does not invalidate the notion of a layered transaction, however.) Also, we provide more general

locking than the strict two-phase model in Weikum’s proposal, allowing locks set by a servant to be either explicitly

released or passed to its client. This is particularly important for access methods, as two-phase locking (even within

a single index operation) is often considered to be unacceptable [Baye77]. Lock passing is also needed to prevent

phantoms when a new key-pointer pair is inserted into an index — unless the client retains a lock on the index leaf

page, other transactions may run into consistency problems due to incorrect existence information. Lastly, efficient

log management is essential to overall performance, and we view Weikum’s per-transaction stack-based log as too

unwieldy. Instead, we employ standard circular log management techniques, ignoring entries for completed mini-

transactions during recovery processing.

Returning to our discussion of access methods, note that the access methods layer presents objects (e.g.,

indices) and operations (e.g., insert, delete, search, etc.) to its clients. If a client transaction executes a series of

inserts, its effects can be undone via a series of corresponding deletes. The access methods layer, in turn, is a client

of the Storage Object Manager, which presents storage objects and such operations as create object, insert bytes,



22

append bytes, etc.

5.3.2. Protocol Stubs

Layered transactions will simplify the task of writing access methods because calls to other layers can be

viewed as primitive, atomic operations. However, this is just a transaction model; the task of actually implementing

the model still remains. For example, someone must still write the code to handle B+ tree locking and recovery, and

getting this correct can be quite difficult. EXODUS will provide a collection of protocol stubs, managed by the E

compiler, to shield the DBI from the details of this problem as much as possible. Briefly, a protocol stub is an

abstraction of a particular locking protocol, implemented as a collection of code fragments (which the E translator

inserts at appropriate points during the compilation of an E program) plus related data structures. The code frag-

ments consist of locking/logging calls to the EXODUS transaction manager (a component of the Storage Object

Manager). The data structures describe information on lock modes (and their compatibility) which is passed to and

used by the lock manager. We currently expect that the generation of new protocol stubs will be a complicated task,

and that stubs will be considered by the average DBI as being a non-extensible part of the basic EXODUS system.

The use of existing stubs will be easy, on the other hand, and EXODUS will provide a collection of stubs for two-

phase locking and for the hierarchical locking (or lock chaining) protocol of [Baye77]. A DBI writing a new access

method will only need to (1) select the desired protocol at compile time via E’s declarative hints, as mentioned ear-

lier; (2) bracket each access method operation with begin and end transaction keywords in E; and then maybe (3)

include one or two stub-specific routine calls in the access method operation code (an example of which is given

below).

As a concrete example, we briefly sketch a protocol suitable for concurrent and recoverable access to most

sorts of hierarchical index structures. The basic idea is to use the B+ tree lock-chaining protocol of [Baye77] for

concurrency control, and to use shadowing for operation-atomicity [Verh78]. Consider a B+ tree insert operation:

Using lock chaining as we descend the tree, we can release locks on all ancestors of a safe node once we have

locked that node. To realize this protocol, the hierarchical locking protocol stub will implicitly set locks on nodes as

they are referenced, keeping track of the path of locked nodes. When the DBI’s code determines that a "safe" node

has been reached, it can call a lock stub routine called top-of-scope to announce that previously accessed nodes

(excluding the current one) are no longer in the tree scope of interest to the insert operation. The appropriate lock

release operations can then be transparently handled by the lock stub routine. As for recovery, the insert operation



23

will cause node splitting to occur up to the last top-of-scope. If changed nodes below this level are automatically

shadowed, then the insert can be atomically installed at end-of-operation by overwriting the top-of-scope node after

its descendent pages have been safely written to disk [Care85b]. (While the Storage Object Manager does not

directly support shadow-based recovery, the E translator can generate C code which uses the versioning mechanism

of the Storage Object Manager to accomplish this task.)

5.4. Other Uses of E

We have described briefly how the E language provides the DBI with a facility for writing access method

operations without worrying about such issues as the size of objects, making calls to the Storage Object Manager, or

access method specific concerns of concurrency control and recovery. E is actually more than just an implementa-

tion language for access methods. The E compiler is really at the heart of an EXODUS system. For example, if

some application needs a specialized fundamental type then the new type and its operations are written in E by the

DBI. Since such operations may need to deal with arbitrarily large portions of objects — for example, the DBI

might wish to add an ADT called "matrix" and then provide a matrix multiplication operator — the DBI’s job will

be significantly simpler if he or she can write the desired code without regard for the size of the underlying storage

objects. Finally, the operators which implement the application’s data model are also written in E.

6. OPERATOR METHODS

The Operator Methods Layer contains the E procedures used to implement the operators provided to the

user of the database system. For each operator, one or more procedures (or methods) may exist. For example, in a

relational DBMS this layer might contain both nested-loops and sort-merge implementations of the relational join

operation. In general, the operators associated with a data model are schema independent. That is, the operators

(and their corresponding implementations) are defined independently of any conceptual schema information — the

join operator, for example, will join any two relations as long as the corresponding join attributes are compatible

with one another (even if the result happens to be semantically meaningless).

There are two strategies for implementing such generic operators. First, the procedures implementing the

operators could request the necessary schema information at run-time from the Type Manager. The second strategy

is to have the query optimizer and compiler compile the necessary schema information into code fragments that the

compiled query can pass to the operator method at run-time. For example, in the case of the join, the optimizer



24

would produce four code fragments: two to extract the source relation join attributes (with one procedure for each

source relation), one to compare the two join attributes, and one to compose a result tuple from the two source

tuples. Again, the solution for this layer is the use of parameterized modules; it is the types of the tuples being

joined (or projected, or...) which are unknown in this case.

Instead of providing generic (and, hence, semantics-free) operators to the database users, a number of

researchers [Webe78, Rowe79, Derr86, Lyng86] have proposed to provide only "schema dependent" operations to

the users. For example, in a database of employees and departments, the type of operations supported would be of

the form hire-employee, change-job, etc. When the hire-employee operation is invoked, the necessary base entities

are updated in such a fashion as to insure that the database remains consistent. Given the capabilities of EXODUS,

implementing this style of operators is quite obviously feasible. The DBI could implement the operators directly

using the functionality provided by the Access Methods and Storage Object Manager. Alternatively, they could be

implemented using more generic operators. It appears that the database administrator of an IRIS database [Derr86,

Lyng86] is expected to implement the schema-specific operators using an underlying database system that is basi-

cally relational in nature.

As is the case for access methods, we anticipate providing some level of operator support via a library of

operator methods. For example, most data models are likely to want methods for performing associative accesses

(i.e. selection) and for scanning through all of the objects contained in a particular file object.

7. RULE BASED QUERY OPTIMIZATION AND COMPILATION

Given the unforeseeably wide variety of data models we hope to support with EXODUS, each with its own

operators (and corresponding methods), EXODUS includes an optimizer generator that produces an application-

specific query optimizer from an input specification. The generated optimizer repeatedly applies algebraic transfor-

mations to a query and selects access paths for each operation in the transformed query. This transformational

approach is outlined by Ullman for relational DBMSs [Ullm82], and it has been used in the Microbe database pro-

ject [Nyug82] with rules coded as Pascal procedures. We initially considered using a rule-based AI language to

implement a general-purpose optimizer, and then to augment it with data model specific rules. Prolog [Warr77,

Cloc81], OPS5 [Forg81], and LOOPS [Bobr83] seemed like interesting candidates, as each provides a built-in

"inference engine" or search mechanism. However, this convenience also limits their use, as their search algorithms

are rather fixed and hard to augment with search heuristics (which are very important for query optimization).



25

Based on this limitation, and also on further considerations such as call compatibility with other EXODUS com-

ponents and optimizer execution speed, we decided instead to provide an optimizer generator [Grae86] which pro-

duces an optimization procedure in the programming language C [Kern78].

The generated optimization procedure takes a query as its input, producing an access plan as its output. A

query in this context is a tree-like expression with logical operators as internal nodes (e.g., a join in a relational

DBMS) and sets of objects (e.g., relations) as leaves. We do not regard it as part of the optimizer’s task to produce

an initial algebraic query tree from a non-procedural expression; this will be done by the user interface and parser.

An access plan is a tree with operator methods as internal nodes (e.g., a hash join method) and with files or indices

as leaves. Once an access plan is obtained, it will then be transformed into an iterative program using techniques

due to Freytag [Frey85, Frey86].

There are four key elements which must be given to the optimizer generator (in a description file) in order

for it to generate an optimizer: (1) the operators, (2) the methods, (3) the transformation rules, and (4) the imple-

mentation rules. Operators and their methods are characterized by their name and arity. Transformation rules

specify legal (equivalence-preserving) transformations of query trees, and consist of two expressions and an

optional condition. The expressions contain place holders for lower parts of the query which will not be affected by

the transformation, and the condition is a C code fragment which is inserted into the optimizer at the appropriate

place. Finally, an implementation rule consists of a method, an expression that the method implements, and an

optional condition. As an example, here is an excerpt from the description file for a relational DBMS:

%operator 2 join
%method 2 hash-join merge-join
join (R, S) <-> join (S, R);
join (R, S) by hash-join (R, S);

Both the operator and method declarations specify the number of inputs. The symbol "<->" denotes equivalence,

and "by" is a keyword for implementation rules. If merge-join is only useful for joining sorted relations, then a rule

for merge-join would have to include a condition to test whether each input relation is sorted.

In addition to this declarative description of the data model, the optimizer requires the DBI to supply a col-

lection of procedures. First, for each method, a cost function must be supplied that calculates the method’s cost

given the characteristics of the method’s input. The cost of an access plan is defined as the sum of the costs of the

methods involved. Second, a property function is needed for each operator and each method. Operator property



26

functions determine logical properties of intermediate results, such as their cardinalities and record widths. Method

property functions determine physical properties (ie. side effects), such as sort order in the example above.

The generated optimization procedure operates by maintaining two principal data structures, MESH and

OPEN. MESH is a directed acyclic graph containing all the alternative operator trees and access plans that have

been explored so far. A rather complex pointer structure is employed to ensure that equal subexpressions are stored

and optimized only once, and also that accesses and transformations can be performed quickly. OPEN is a priority

queue containing the set of applicable transformations; these are ordered by the cost decrease which would be

expected from applying the transformations.

MESH is initialized to contain a tree with the same structure as the original query. The method with the

lowest cost estimate is selected for each node using the implementation rules, and then possible transformations are

determined and inserted into OPEN using the transformation rules. The optimizer then repeats the following

transformation cycle until OPEN is empty: The most promising transformation is selected from OPEN and applied

to MESH. For all nodes generated by the transformation, the optimizer tries to find an equal node in MESH to avoid

optimizing the same expression twice. (Two nodes are equal if they have the same operator, the same argument,

and the same inputs.) If an equal node is found, it is used to replace the new node. The remaining new nodes are

matched against the transformation rules and analyzed, and methods with lowest cost estimates are selected.

This algorithm has several parameters which serve to improve its efficiency. First, the promise of each

transformation is calculated as the product of the top node’s total cost and the expected cost factor associated with

the transformation rule. A matching transformation with a low expected cost factor will be applied first. Expected

cost factors provide an easy way to ensure that restrictive operators are moved down in the tree as quickly as possi-

ble; it is a general heuristic that the cost is lower if constructive operators such as join and transitive closure have

less input data. Second, while it seems to be wasted effort to perform an equivalence transformation if it does not

yield a cheaper solution, sometimes such a transformation is necessary as an intermediate step to an even less

expensive access plan. Such transformations represent hill climbing, and we limit their application through the use

of a hill climbing factor. Third, when a transformation results in a lower cost, the parent nodes of the old expression

must be reanalyzed to propagate cost advantages. It appears to be a difficult problem to select values for each of

these parameters which will guarantee both optimal access plans and good optimizer performance. Thus, it is would

be nice if they could be determined and adjusted automatically. Our current prototype initializes all expected cost

factors to 1, the neutral value, and then adjusts them using sliding geometric averages. This has turned out to be



27

very effective in our preliminary experiments. We are currently experimenting with the hill climbing and reanalyz-

ing factors to determine the best method of adjustment.

8. EXODUS USER INTERFACES

As discussed in Section 2, a database system must provide facilities for both ad hoc and embedded queries.

While tuple-at-a-time and portal [Ston84] interfaces look appropriate for record-oriented database systems, we have

only just begun thinking about how to provide a more general technique for handling embedded queries in pro-

grams. Certainly, given the goals of the EXODUS project, we will need to develop data model independent tech-

niques to interface programs to application specific database systems, but this may prove to be quite difficult. For

example, it is hard to envision a generic interface tool that could satisfactorily interface a VLSI layout tool to a

VLSI database system; in such an environment, it may be that the only sensible approach is to treat the application

program and its procedures as operators in the database system, thus enabling the program to directly access typed

objects in the buffer pool. Alternatively, it may be possible to provide a library of interface tools: portals for

browsing sets of objects, graphical interfaces for other applications, etc. We intend to explore alternative solutions

to this problem in the future.

For ad hoc query interfaces, tools based on attribute grammars appear promising. Unlike the grammars

used by generators like YACC, which can be used for little besides parsing the syntax of an input query, grammars

which allow complex sets of attributes and attribution functions may capture the semantics of a query, incorporating

knowledge of schema information to guide query construction, detect errors, and generate appropriate structures for

transmission to the optimizer. To test these ideas we are constructing a QUEL interface using the Cornell Program

Synthesizer Generator [Reps84]. The Generator takes a formal input specification, producing as its output an

interactive, syntax- and semantics-driven editor similar in flavor to Emacs. For a query language, the editor will

guide the user step-by-step in creating properly formed queries and will transform this calculus representation of the

query into a syntax tree in the operator language recognized by the optimizer. During the process of producing this

syntax tree, the editor will be responsible for translating from a calculus representation to an initial algebraic

representation of the query. The editor will call on the Type Manager to provide access to schema information, as

schema information determines a large part of the underlying semantics of the query. Since the concrete syntax of

the query language, its abstract syntax, and the translation between the abstract syntax and the database operator

language are all generated automatically from a formal specification, it should be a straightforward process to



28

change or enhance the language recognized by the user interface.

9. SUMMARY AND CURRENT STATUS

In this paper we described the design of EXODUS, an extensible database system intended to simplify the

development of high-performance, application-specific database systems. As we explained, the EXODUS model of

the world includes three classes of database experts — ourselves, the designers and implementors of EXODUS; the

database implementors, or DBIs, who are responsible for using EXODUS to produce various application-specific

DBMSs; and the database administrators, or DBAs, who are the managers of the systems produced by the DBIs. In

addition, of course, there must be users of application-specific DBMSs, namely the engineers, scientists, office

workers, computer-aided designers, and other groups that the resulting systems will support. The focus of this paper

has been the overall architecture of EXODUS and the tools available to aid the DBI in his or her task.

As we described, EXODUS includes two components that require little or no change from application to

application — the Storage Object Manager, a flexible storage manager that provides concurrent and recoverable

access to storage objects of arbitrary size, and the Type Manager, a repository for type information and such related

information as file types, dependencies of types and code on other types, etc. In addition, EXODUS provides

libraries of database system components that are likely to be widely applicable, including components for access

methods, version management, and simple operations. The corresponding system layers are constructed by the DBI

through a combination of borrowing components from the libraries and writing new components. To make writing

new components as painless as possible, EXODUS provides the E database implementation language to largely

shield the DBI from the details of internal object formats, buffer management, concurrency control, and recovery

protocols. E is also the vehicle provided for defining new ADTs, which makes it easy for the DBI to write opera-

tions on ADTs even when they are very large (e.g., an image ADT). At the upper level of the system, EXODUS

provides a generator that produces a query optimizer and compiler from a description of the available operations

and methods, and tools for generating application-specific front-end software are also planned.

The initial design of EXODUS is now basically complete, including all of the components that have been

described here, and implementation of several of the components has begun. Some preliminary prototyping work

was done in order to validate the Storage Object Manager’s algorithms for operating on large storage objects

[Care86], and over half of the Storage Object Manager has been implemented since that time. A first



29

implementation of the rule-based query optimizer generator is basically complete, and it has been used to generate

most of a full relational query optimizer. The Type Manager and the E programming language translator implemen-

tation efforts are getting underway now, and we hope to have initial implementations of most of the key components

of EXODUS by the middle of 1987. Soon thereafter we expect to bring a relational DBMS up on top of EXODUS

as a test of our tools, and we will then begin looking for more challenging applications with which to test the flexi-

bility of our approach.

REFERENCES

[Ait86] Ait-Kaci, H. and R. Nasr, "Logic and Inheritance," Proceedings of the 1986 POPL Conference, St.
Petersburg, FA, January 1986.

[Allm76] Allman, E., Held, G. and M. Stonebraker, "Embedding a Data Manipulation Language in a General
Purpose Programming Language," Proceedings of the 1976 SIGPLAN-SIGMOD Conference on Data
Abstraction, Salt Lake City, Utah, March 1976.

[Astr76] Astrahan, M., et. al., "System R: Relational Approach to Database Management", ACM Transactions on
Data Systems 1, 2, June 1976.

[Bato85] Batory, D., and W. Kim, Support for Versions of VLSI CAD Objects, M.C.C. Working Paper, March
1985.

[Bato86] Batory, D., Barnett, J., Garza, J., Smith, K., Tsukuda, K., Twichell, C., and T. Wise, "GENESIS: A
Reconfigurable Database Management System," Technical Report, TR-86-07, Department of Computer
Sciences, University of Texas at Austin, March 1986.

[Baye77] Bayer, R., and Schkolnick, M., "Concurrency of Operations on B-trees", Acta Informatica 9, 1977.

[Bobr83] Bobrow, D.G. and M. Stefik, "The LOOPS Manual," in LOOPS Release Notes, XEROX, Palo Alto,
CA., 1983.

[Care85a] Carey, M. and D. DeWitt, "Extensible Database Systems", Proceedings of the Islamorada Workshop on
Large Scale Knowledge Base and Reasoning Systems, February 1985.

[Care85b] Carey, M., DeWitt, D., and M. Stonebraker, personal communication, July 1985.

[Care86] Carey, M. J., DeWitt, D. J., Richardson, J. E., and E. Shekita, "Object and File Management in the
EXODUS Extensible Database System," Proceedings of the 1986 VLDB Conference, Kyoto, Japan,
August 1986.

[Chou85] Chou, H-T., and D. DeWitt, "An Evaluation of Buffer Management Strategies for Relational Database
Systems", Proceedings of the 1985 VLDB Conference, Stockholm, Sweden, August 1985.

[Clif85] Clifford, J., and A. Tansel, "On An Algebra for Historical Relational Databases: Two Views",
Proceedings of the 1985 SIGMOD Conference, Austin, Texas, May 1985.

[Cloc81] Clocksin, W. and C. Mellish, Programming in Prolog, Springer-Verlag, New York, 1981.

[Cope84] Copeland, G. and D. Maier, "Making Smalltalk a Database System", Proceedings of the 1984 SIGMOD
Conference, Boston, MA, May 1984.

[Dada84] Dadam, P., V. Lum, and H-D. Werner, "Integration of Time Versions into a Relational Database Sys-
tem", Proceedings of the 1984 VLDB Conference, Singapore, August 1984.

[Daya85] Dayal, U. and J. Smith, "PROBE: A Knowledge-Oriented Database Management System", Proceed-
ings of the Islamorada Workshop on Large Scale Knowledge Base and Reasoning Systems, February
1985.

[Derr86] Derrett, N., Fishman, D., Kent, W., Lyngaek, P., and T. Ryan, "An Object-Oriented Approach to Data
Management," Proceedings of the 1986 COMPCON Conference, San Francisco, CA., February 1986.



30

[Feld79] Feldman, S., "Make — A Program for Maintaining Computer Programs," Software — Practice and
Experience, vol. 9, 1979.

[Forg81] Forgy, C.L. "OPS5 Reference Manual," Computer Science Technical Report 135, Carnegie-Mellon
University, 1981.

[Frey85] Freytag, C.F. "Translating Relational Queries into Iterative Programs," Ph.D. Thesis, Harvard Univer-
sity, September 1985.

[Frey86] Freytag, C.F. and N. Goodman, "Translating Relational Queries into Iterative Programs Using a Pro-
gram Transformation Approach," Proceedings of the 1986 ACM SIGMOD Conference, May 1986.

[Grae86] Graefe, G. and D. DeWitt, "The EXODUS Optimizer Generator," submitted for publication, December,
1986.

[Gray79] Gray, J., "Notes On Database Operating Systems", in Operating Systems: An Advanced Course, R.
Bayer, R. Graham, and G. Seegmuller, eds., Springer-Verlag, 1979.

[Gutt84] Guttman, T., "R-Trees: A Dynamic Index Structure for Spatial Searching", Proceedings of the 1984
SIGMOD Conference, Boston, MA, May 1984.

[Jens75] Jensen, K., and Wirth, N., Pascal: User Manual and Report, Springer-Verlag, New York, 1975.

[Katz84] Katz, R. and T. Lehman, "Database Support for Versions and Alternatives of Large Design Files",
IEEE Transactions on Software Engineering SE-10, 2, March 1984.

[Katz86] Katz, R., E. Chang, and R. Bhateja, "Version Modeling Concepts for Computer-Aided Design Data-
bases", Proceedings of the 1986 SIGMOD Conference, Washington, DC, May 1986.

[Kern78] Kernighan, B.W. and D.N. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
N.J., 1978.

[Kers81] Kersten, M. L. and A. I. Wasserman, "The Architecture of the PLAIN Data Base Handler," Software —
Practice and Experience, V 11, 1981, pp. 175- 186.

[Klah85] Klahold, P., G. Schlageter, R. Unland, and W. Wilkes, "A Transaction Model Supporting Complex
Applications in Integrated Information Systems", Proceedings of the 1985 SIGMOD Conference, Aus-
tin, TX, May 1985.

[Lisk77] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., "Abstraction Mechanisms in CLU", Comm.
ACM, 20(8), August, 1977.

[Litw80] Litwin, W., "Linear Hashing: A New Tool for File and Table Addressing," Proceedings of the 1980
VLDB Conference, Montreal, Canada, October 1980.

[Lyng86] Lyngbaek, P. and W. Kent, "A Data Modeling Methodology for the Design and Implementation of
Information Systems", Proceedings of the International Workshop on Object-Oriented Database Sys-
tems, Pacific Grove, CA, September 1986.

[Nguy82] Nguyen, G.T., Ferrat, L., and H. Galy, "A High-Level User Interface for a Local Network Database
System," Proceedings of the IEEE Infocom, pp. 96-105, 1982.

[Maie86] Maier, D., Stein, J., Otis, A., and A. Purdy, "Development of an Object Oriented DBMS," Proceedings
of OOPSLA ’86, Portland, OR, September 1986.

[Mano86] Manola, F., and Dayal, U., "PDM: An Object-Oriented Data Model," Proceedings of the International
Workshop on Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

[Niev84] Nievergelt, J., H. Hintenberger, H., and Sevcik, K.C., "The Grid File: An Adaptable, Symmetric Multi-
key File Structure," ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984.

[Reps84] Reps, T. and T. Teitelbaum, "The Synthesizer Generator," Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environ-
ments, Pittsburgh, Penn., Apr. 23-25, 1984. Appeared as joint issue: SIGPLAN Notices (ACM) 19, 5,
May 1984, and Soft. Eng. Notes (ACM) 9, 3, May 1984, 42-48.

[Rich86] Richardson, J., and Carey, M., "Programming Constructs for Database System Implementation in
EXODUS", submitted for publication.



31

[Robi81] Robinson, J.T., "The k-d-B-tree: A Search Structure for Large Multidimentional Dynamic Indexes,"
Proceedings of the 1981 SIGMOD Conference, June, 1981.

[Rowe79] Rowe, L. and K. Schoens, "Data Abstraction, Views, and Updates in RIGEL, Proceedings of the 1979
SIGMOD Conference, Boston, MA., 1979.

[Schm77] Schmidt, J., "Some High Level Constructs for Data of Type Relations," ACM Transactions on Database
Systems, 2, 3, September 1977.

[Schw86] Schwarz, P., et al, "Extensibility in the Starburst Database System," Proceedings of the International
Workshop on Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

[Ship81] Shipman, D., "The Functional Data Model and the Data Language DAPLEX", ACM Transactions on
Database Systems 6, 1, March 1981.

[Shop79] Shopiro, J., "Theseus — A Programming Language for Relational Databases," ACM Transactions on
Database Systems 4, 4, December 1979.

[Snod85] Snodgrass, R., and I. Ahn, "A Taxonomy of Time in Databases", Proceedings of the 1985 SIGMOD
Conference, Austin, TX, May 1985.

[Ston81] Stonebraker, M., "Hypothetical Data Bases as Views", Proceedings of the 1981 SIGMOD Conference,
Boston, MA, May 1981.

[Ston83] Stonebraker, M., H. Stettner, N. Lynn, J. Kalash, and A. Guttman, "Document Processing in a Rela-
tional Database System", ACM Transactions on Office Information Systems 1, 2, April 1983.

[Ston84] Stonebraker, M., and L. Rowe, "Database Portals - A New Application Program Interface," Proceed-
ings of the 1984 VLDB Conference, Singapore, August 1984.

[Ston85] Stonebraker, M., personal communication, July 1985.

[Ston86a] Stonebraker, M., "Inclusion of New Types in Relational Data Base Systems," Proceedings of the 2nd
Data Engineering Conference, Los Angeles, CA., February, 1986.

[Ston86b] Stonebraker, M., and L. Rowe, "The Design of POSTGRES", Proceedings of the 1986 SIGMOD
Conference, Washington, DC, May 1986.

[Ston86c] Stonebraker, M., "Object Management in POSTGRES Using Procedures," Proceedings of the Interna-
tional Workshop on Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

[Ullm82] Ullman, J.D., Principles of Database Systems, Computer Science Press, Rockville, MD., 1982.

[Verh78] Verhofstad, J., "Recovery Techniques for Database Systems", ACM Computing Surveys 10, 2, June
1978.

[Warr77] Warren, D.H., Pereira, L.M., and F. Pereira, "PROLOG — The Language and its Implementation Com-
pared With Lisp," Proceedings of ACM SIGART-SIGPLAN Symp. on AI and Pro- gramming
Languages, 1977.

[Webe78] Weber, H. "A Software Engineering View of Database Systems," Proceedings of the 1978 VLDB
Conference, pp. 36-51, 1978.

[Weik84] Weikum, G., and H-J. Schek, "Architectural Issues of Transaction Management in Multi-Layered Sys-
tems," Proceedings of the 1984 VLDB Conference, Singapore, August 1984.


