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ABSTRACT

Implementing crash recovery in an Object-Oriented Database Sys-
tem (OODBMS) raises several challenging issues for performance
that are not present in traditional DBMSs. These performance con-
cerns result both from significant architectural differences between
OODBMSs and traditional database systems and differences in
OODBMS’s target applications. This paper compares the perfor-
mance of several alternative approaches to implementing crash
recovery in an OODBMS based on a client-server architecture. The
four basic recovery techniques examined in the paper are termed
page differencing, sub-page differencing, whole-page logging, and
redo-at-server. All of the recovery techniques were implemented
in the context of QuickStore, a memory-mapped store built using
the EXODUS Storage Manager, and their performance is com-
pared using the OO7 database benchmark. The results of the per-
formance study show that the techniques based on differencing
generally provide superior performance to whole-page logging.

1. Introduction
This paper examines the performance of several alternative
approaches to implementing crash recovery in QuickStore
[White94], a memory-mapped store for persistent C++ that was
built using the EXODUS Storage Manager (ESM) [Carey89]. Pro-
viding recovery services in a system such as QuickStore raises
several challenging implementation issues, not only because it is a
memory-mapped storage system, but also because of the kinds of
applications that Object-Oriented Database Management Systems
(OODBMSs) strive to support, i.e. CAx, GIS, OIS, etc. Further-
more, since QuickStore is implemented on top of the EXODUS
Storage Manager (ESM), it is a client-server, page-shipping system
[DeWitt90]. This raises additional performance concerns for
recovery that are not present in database systems based on more
traditional designs, i.e. centralized DBMSs or systems based on a
query-shipping architecture.

The paper examines four basic recovery techniques that are termed
page differencing, sub-page differencing, whole-page logging, and
redo-at-server. All of the recovery techniques were implemented
in the context of QuickStore/ESM so that an accurate comparison
of their performance could be made. The performance study was
carried out using the OO7 object-oriented database benchmark
[Carey93]. The performance results illustrate the impact of dif-
ferent database sizes, update patterns, and available client memory
on the relative performance of the various techniques. In addition,
the number of clients accessing the database is varied in order to
compare the scalability of the different recovery algorithms.

The remainder of the paper is organized as follows. Section 2
presents a detailed discussion of the factors (briefly mentioned
above) that make recovery in QuickStore a challenging problem.
Section 3 describes several alternative techniques for implement-
ing recovery in QuickStore. Next, Section 4 describes the perfor-
mance study that was carried out to compare the performance of
the different recovery schemes. Section 5 presents the performance
results. Section 6 discusses related work. Finally, Section 7
presents our conclusions and some proposals for future work.

2. Challenges for Recovery
One challenge faced by QuickStore recovery results from the way
that persistent objects are accessed under its memory-mapped
architecture. As described in [White94], QuickStore supports a
comprehensive pointer swizzling strategy that allows application
programs to manipulate persistent objects directly in the ESM
client buffer pool by dereferencing normal virtual memory
pointers. This strategy allows applications to update persistent
objects at memory speeds with essentially no overhead, but it also
makes detecting the portions of objects that have been updated
more difficult than in systems that use traditional implementation
techniques. For example, in OODBMSs that do not perform
pointer swizzling or that implement pointer swizzling using tradi-
tional software-based techniques, a function that is part of the data-
base runtime system is typically called to perform each update.
This provides a hook that the system can use to record the fact that
the update has occurred. We note that this approach requires spe-
cial compiler support to insert function calls for updates into the
application code in order to make updates transparent.

A second factor affecting the design of a recovery scheme for
QuickStore is that QuickStore, like most OODBMSs, is designed
to handle non-traditional database applications, e.g. CAD, geo-
graphic information systems (GIS), and office information systems
(OIS). Applications of this type typically read objects into
memory and then work on them intensively, repeatedly traversing
relationships between objects and updating the objects as well.
This behavior differs dramatically from that exhibited by relational
database systems, which usually update an individual tuple just
once during a particular update operation. For example, giving all
of the employees in a company an annual raise requires only a sin-
gle update to each employee tuple. Since relational database sys-
tems typically update each tuple only once, they generate a log
record for recovery purposes for each individual update. However,
such a strategy is not practical in an OODBMS where an object
may be updated many times during a single method invocation.
Here it is necessary to batch the effects of updates together in order
to achieve good performance by attempting to generate a single log
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record that records the effects of several updates to an object.

A final consideration in the design of a recovery scheme for Quick-
Store arises from the fact that QuickStore is based on a client-
server architecture in which updates are performed at the client
workstations. This raises the issue of cache consistency between
the clients and the server [Frank93] since both the client and the
server buffer pools can contain cached copies of a page that has
been updated. In addition, to increase availability, the stable copy
of the transaction log is maintained by the server, so clients are
required to ship log records describing updates over a network to
the server before a transaction can commit. This differs from the
traditional approach used in centralized database systems, where
updates are performed at the server and log records are generated
locally at the server as well.

3. Recovery Strategies
This section describes the four basic recovery schemes that were
implemented and evaluated using QuickStore: page differencing,
sub-page differencing, whole-page logging, and redo-at-server. We
begin by describing the implementation of recovery in ESM since
several of the techniques are built on top of or involve
modifications to the underlying ESM recovery scheme. It should
be noted that although the recovery algorithms are discussed in the
context of QuickStore, they are not QuickStore specific and, in
general, are applicable to any similar client-server OODBMS.

3.1. Recovery in ESM
The EXODUS Storage Manager is a client-server, page-shipping
system [DeWitt90] in which both clients and servers manage their
own local buffer pools. When a client needs to access an object on
a page that is not currently cached in its local buffer pool, it sends
a request (usually over a network) to the appropriate server asking
for the page. If necessary, the server reads the page from secon-
dary storage into main memory, sends a copy of the page to the
client, and retains a copy of the page in its own buffer pool as well.

Objects are updated at clients and clients also generate log records
that describe updates for recovery purposes. Log records for
updates contain both redo and undo information for the associated
update operation. For example, if a range of bytes within an object
is updated, then the log record will contain the old and new values
of that portion of the object. Log records are collected and sent
from a client to the server a page-at-a-time. For simplicity, ESM
enforces the rule that log records generated for a page are always
sent back to the server before the page itself is sent. Thus, the
server never has a page cached in its buffer pool for which it does
not also have the log records describing the updates present on the
page.

The ESM server manages a circular, append-only log on secondary
storage and uses a STEAL/NO-FORCE buffer management policy
[Haerd83]. Clients can cache pages in their local buffer pools
across transaction boundaries. However, inter-transaction caching
of locks at clients is not supported. Also, all dirty pages are sent
back to the server at commit time in order to maintain cache con-
sistency between the clients and the server and simplify recovery.
The log records generated on behalf of a transaction must be writ-
ten to the log by the server before the transaction commits, but the
dirty pages themselves are not forced to disk. [Frank92] contains a
more detailed description of the ESM recovery scheme.

3.2. The Page Differencing Approach
The ESM recovery mechanism handles the generation of log
records for updates. However, if recovery were done in a straight-
forward way using the basic services provided by ESM, then each
time an update is performed, a log record would be generated.
This is a situation that we would like to avoid, if possible.

Furthermore, there is no obvious way for a QuickStore application
to detect the fact that an update has occurred since application pro-
grams are allowed to update objects by simply dereferencing stan-
dard virtual memory pointers.

3.2.1. Enabling Recovery for Page Differencing
The problems mentioned above can be addressed by employing a
page differencing (PD) scheme to generate log records. This
approach works as follows. QuickStore gives application pro-
grams access to persistent data by mapping a range of virtual
memory (using the Unix mmap system call) in the address space of
the application process to the location in the client buffer pool of a
particular database page when it is cached in main memory
[White94]. We refer to the range of virtual memory that has been
mapped to a page as a frame of virtual memory. Virtual memory
frames are contiguous and uniform in size (8 Kb). Read permis-
sion is enabled on a virtual frame that is mapped to a page in the
buffer pool so that persistent objects located on the page can be
accessed by the application process. Objects on the page are
accessed by dereferencing standard virtual memory pointers into
the virtual frame. However, write access is not automatically
enabled on a virtual frame that has been mapped. In particular,
write access is never enabled when the actions necessary to enable
recovery for a particular page have not been taken. Thus, any
attempt by an application program to update an object on a page
for which recovery is not enabled will result in a page-fault, caus-
ing the QuickStore fault-handling routine to be invoked.

The QuickStore runtime system maintains an in-memory table that
contains an entry (called a page descriptor) for each virtual frame
that has been associated with a page in the database. The in-
memory table is implemented as a height balanced binary tree.
When the fault-handling routine is invoked, it begins by searching
the in-memory table for the page descriptor corresponding to the
virtual memory address that caused the fault. By inspecting status
information contained in the page descriptor entry, the fault-
handler will detect that the access violation is due to a write
attempt. If recovery is not already enabled on the page—it may be
if paging in the buffer pool is taking place—then the fault-handler
copies the page into an area in memory termed the recovery buffer
and sets the page descriptor entry to point to the copy. The fault-
handler also obtains an exclusive lock on the page from ESM, if
needed, and enables write access on the virtual frame that caused
the fault. At this point, all of the work needed to enable recovery
on the faulted-on page is complete, so control is returned to the
application program which can then proceed to update objects on
the page directly in the client buffer pool.

Figure 1 shows the effect of the actions described above on the in-
memory data structures maintained by QuickStore. In Figure 1
page a, which is cached in the client buffer pool, is shaded to show
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Figure 1. The page diffing approach.



that it has been updated. A copy containing the value of page a
before recovery was enabled has been placed in the recovery
buffer, and the page descriptor for page a has been set to point to
the copy. As Figure 1 shows, the recovery buffer contains room
for M pages, where M is fixed and 1 ≤ M ≤ N (where N is the
number of pages in the ESM client buffer pool). Since M is fixed,
the recovery buffer can become full, so it may be necessary to free
up space periodically when an additional page is updated, by gen-
erating log records for a page that has already been copied into the
recovery buffer. Space in the recovery buffer is managed using a
simple FIFO replacement policy.

3.2.2. Generating Log Records for Pages
At transaction commit time, when paging in the buffer pool occurs,
or when the recovery buffer becomes full, the old values of objects
contained in the recovery buffer and their corresponding updated
values in the buffer pool are compared (diffed) to determine if log
records need to be generated. The actual algorithm used for gen-
erating log records is slightly more sophisticated than the simple
approach of generating a single log record for each modified region
of an object. This simple approach was rejected since it has the
potential to generate a great deal of unnecessary log traffic. For
example, consider an object in which the first and third words (1
word = 4 bytes) have been updated. The simple approach would
generate two log records for the object. Since each ESM log
record contains a header of approximately 50 bytes, the total space
used in the log would be 116 bytes (50 bytes for each log header
plus 4 bytes for each before and after image). On the other hand, if
just one log record were generated, only 74 bytes would have been
used (50 bytes, plus 12 bytes for each before and after image), pro-
viding a 36% savings in the amount of log space used.

The algorithm for generating log records uses diffing to identify
consecutive modified regions in each object on a page; if only one
region exists then a single log record is generated for the object.
(Log records could, in principle, span objects but the current
implementation of recovery in ESM does not allow this.) For
example, Figure 2a shows an object that contains three modified
regions, labeled R1, R2, and R3. The diffing algorithm starts from
the beginning of the object, so initially it would identify the two
modified regions R1 and R2. It is easy to show, given the
before/after-image format of log records in ESM, that if the dis-
tance D1 between R1 and R2 satisfies the equation 2 * size(D1) >
H, where H is the size of a log record header, then generating
separate log records for each region will generate the least amount
of log traffic. If this were the case in the example, then the algo-
rithm would generate a log record for R1 before proceeding to con-
sider additional regions. However, a log record for R2 is not
immediately generated, since it may be advantageous to combine
R2 with some region that has not yet been discovered. If, on the
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Figure 2. Combining modified regions in an object.

other hand, 2 * size(D1) <= H, i.e. the distance between R1 and R2
is small, then the algorithm combines the two regions into a single
region. Figure 2b illustrates the second case. Here, R1 and R2
have been combined into a single region R1’. Again, no log record
is generated at this step, as the algorithm may decide to combine
R1’ with additional regions.

In either case mentioned above, the algorithm continues by identi-
fying the next modified region in the object (if there is one) and
repeats the previous check using the newly discovered region and
either the combined region from the previous iteration or the
region from the previous iteration for which no log record has yet
been generated. In the example shown in Figure 2b, the algorithm
would next examine regions R1’ and R3 to see if they should be
logged separately or combined. Since the distance between R1’
and R3 is large, the algorithm will generate separate log records for
R1’ and R3. Finally, we note that the decision concerning whether
or not to combine consecutive modified regions depends only on
the distance between them and not on their size, so the order in
which the regions are examined does not matter. Thus, the algo-
rithm is guaranteed to generate the minimum amount of log traffic.

3.3. The Sub-Page Differencing Approach
The page differencing recovery scheme described in the previous
section has some potential disadvantages. The most obvious disad-
vantage is that the CPU overhead for copying and diffing a whole
page may be fairly high, especially when very few updates have
actually been performed on the page. In addition, page diffing has
the potential to waste space in the recovery buffer by copying a
whole page when only a few objects on the page have been
updated. This can increase the number of log records generated
during a transaction, if the recovery buffer becomes full. How-
ever, the page-wise granularity of the page diffing scheme is neces-
sary if applications are allowed to update objects via normal virtual
memory pointers as virtual memory is page-based.

An alternative approach is to interpret update operations in
software. One way that this can be accomplished, in general, is by
compiling persistent applications using a special compiler that
inserts additional code to handle update operations. This code can
simply be a function call that replaces the usual pointer dereference
at the points in the application program where updates occur. In
our case, the function that is invoked is part of the QuickStore run-
time system. This approach yields a system in which objects may
be read at memory speed using standard virtual memory pointers,
but in which update operations are more heavy-weight, requiring a
function call and other software overhead. The hope when using
such an approach is that the extra cost incurred on each update will
be repaid through reduced recovery costs.

Figure 3 illustrates the in-memory data structures used by Quick-
Store to implement the sub-page differencing (SD) approach.
Under the SD approach, each page is divided into a contiguous
sequence of regions called blocks. Blocks are uniform in size (We
experimented with block sizes ranging from 8 to 64 bytes.). As
Figure 3 shows, the page descriptor for a page that has been
updated holds a pointer to an array containing pointers to copies of
blocks that have been modified. There is one entry in the array for
each block on the page, and array entries for unmodified blocks are
null. Blocks were used as the sub-page unit of copying and diffing
instead of objects for two reasons. First, it is cheaper in terms of
CPU cost to identify the block on a page that is being updated than
it is the object, when an update occurs (see below). And second,
objects within a page may be rather big (i.e. up to 8K-bytes in
size). If this is the case, then the advantages of the sub-page
diffing approach will be lost when updates are sparse.
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Figure 3. The Sub-page diffing approach.

3.3.1. Enabling Recovery for Sub-Page Differencing
Each time the QuickStore update function is called, it looks up the
page descriptor of the appropriate page using the address of the
memory location that is being updated (which is passed as a
parameter). Once the page descriptor is found, a check is made to
see if the block that is about to be updated has been copied. This
check is relatively inexpensive since the address of the location in
memory being updated can be used to index the array of block
pointers contained in the page descriptor (after applying some sim-
ple logical operations). If a copy of the block has not yet been
made, then a copy is placed in the recovery buffer. In addition, the
status flags in the page descriptor are examined to see if an
exclusive lock has been acquired for the page, and write access is
enabled on the virtual frame mapped to the page (if it is not
already). Finally, the update itself is performed. We note that
write access could be enabled automatically on virtual frames
when using the sub-page approach. We chose not to do this
because not enabling write access allows the runtime system to
catch erroneous writes to virtual frames that have not been
updated, and because the extra cost of the approach we used is
very low.

3.3.2. Generating Log Records for Sub-Pages
Like the page diffing approach, the SD approach generates log
records at transaction commit time, when a modified page is paged
out by the buffer manager, or when the recovery buffer becomes
full. Log records can be generated by diffing the original values of
the blocks contained in the recovery buffer with the modified ver-
sions of the same blocks located in the buffer pool, using the
diffing scheme described in Section 3.2. In addition, one could
avoid the expense of diffing altogether by simply logging entire
blocks. We experimented with both techniques, and refer to the
sub-page approach without diffing as sub-page logging (SL) in the
upcoming discussion on performance.

3.4. The Whole-Page Logging Approach
This section describes the third recovery algorithm included in the
study. This algorithm is termed whole-page logging (WPL) since
entire modified pages are written to the log instead of log records
for updated regions of objects. We note that WPL is also the basic
approach used in ObjectStore [Lamb91], a commercial OODBMS
product. The advantages of WPL are that it avoids the client CPU
cost that is incurred by the two diffing schemes for copying and
diffing. WPL also avoids the memory overhead at clients for stor-
ing the original values of pages/blocks. This can potentially
improve performance by allowing WPL to allocate more memory
to the client buffer pool and, thereby, generate fewer log records.
Finally, WPL allows applications to update objects at memory
speeds by dereferencing normal virtual memory pointers, so the
cost of actually performing updates is low.

The disadvantage of whole-page logging is that it logs entire after-
images of dirty pages at the server. This means that all of the
pages dirtied by a transaction must be forced to the log at the
server before the transaction commits. We note, however, that the
cost of shipping dirty pages back to the server does not add any
additional costs in ESM since its recovery algorithm always sends
updated pages back to the server when a transaction commits (see
Section 3.1). The WPL scheme does not rely on the support pro-
vided by ESM for recovery as the diffing schemes do. Thus, WPL
differs from the previous schemes in the actions taken at both
clients and the server to support recovery.

3.4.1. Actions Performed at Clients
The whole-page logging algorithm works as follows at the clients.
When an application first attempts to update a page at a client, a
page-fault is signaled, as usual. The QuickStore page-fault han-
dling routine marks the copy of the page cached in the buffer pool
as dirty, in addition to requesting an exclusive lock if necessary,
and enables write access on the virtual memory frame that is
mapped to the page. Control is then returned to the application
program. Dirty pages are shipped back to the server when the tran-
saction commits, or possibly sooner if paging in the client buffer
pool occurs. Note that no log records are generated for updates at
the clients under this approach; only dirty pages are shipped back
to the server.

3.4.2. Actions Performed at the Server
When the server receives a dirty page, it appends the page to the
log and caches a copy of the page in its own buffer pool. The
server does not allow the original copy of the page on disk to be
overwritten with the new copy of the page until after the transac-
tion that updated the page commits. If paging in the server buffer
pool causes a dirty page to be replaced during a transaction, then
the page is read from the log if it is reaccessed during the same
transaction. When a transaction reaches its commit point, the ori-
ginal values of any updated pages are still located on disk in their
permanent locations, and the updated values of the pages have
been flushed to the log together with a commit log record for the
transaction. This makes it possible to abort a transaction at any
time before the commit point is reached by simply ignoring, from
then on, any of its updated values of pages located in the log or
cached in memory. No undo processing for updates is required.

A page updated by a committed transaction, must be maintained in
the log until one of two things happens. The first is that the page is
read from the log and used to overwrite its permanent location on
disk. The log space for the page can then be reused since the copy
of the page contained in the log is no longer needed for recovery.
The reason for this is fairly obvious. For example, suppose that
transaction T updates page P and then commits, i.e. P is forced to
the log. If a crash resulting in the loss of the server’s volatile
memory occurs any time after T commits, but before P overwrites
its permanent location on disk, then the value of P stored in the log
must be available in order for the system to correctly restart. If P
has safely overwritten its permanent location on disk, however,
then that copy of P can be used following a restart. Space for a
page in the log can also be reused if a subsequent transaction
updates the page and commits, thereby forcing a new copy of the
page, say C2, to the log, before the initial copy of the page C1 in
the log overwrites the permanent location of the page. In effect,
C1 is not needed at this point, since following a crash C2 will be
used. Note, however, that both C1 and C2 must be maintained in
the log until the transaction that wrote C2 commits.

The server maintains an in-memory table, called the WPL table, to
keep track of pages contained in the log that are needed for
recovery purposes. Each table entry contains the page id (PID) of
the page, which identifies its permanent location on disk. Entries



also contain the log sequence number (LSN) of the log record gen-
erated for the page. The LSN identifies the physical location of the
page in the log. Additional fields stored in each entry include the
transaction id (TID) of the transaction that last dirtied the page and
some additional status information. When a page is initially writ-
ten to the log, the status information records the fact that the tran-
saction that dirtied the page has not yet committed. Finally, table
entries contain a pointer that refers to the entry for a previously
logged copy (if any) of the same page if that copy is still needed
for recovery.

The server also maintains a list, for each active transaction, of the
pages that have been logged for that particular transaction. When a
transaction commits the WPL table entry for each page on this list
is updated to show that the transaction that modified the page has
committed. In order to reclaim log space there is a background
thread that asynchronously reads pages modified by committed
transactions from the log. (As an optimization, pages modified by
a transaction that are still cached in the server buffer pool at com-
mit time are simply marked as having been read.) Once a page has
been read from the log, the server is free to flush the page to disk at
any time. Once this happens, the entry for the page in the WPL
table is removed.

3.4.3. Recovering from a Crash
In order to be able to recover from an unexpected crash, the server
periodically takes checkpoints. At checkpoint time, the WPL table
is written to the log. In order to recover from an unexpected
failure, the server must be able to reconstruct the WPL table so that
it contains entries for all of the pages that have been updated by
committed transactions, but not yet written to their permanent disk
locations. Once this is done, the server can resume normal opera-
tion.

Restart after a crash requires a single pass through the log that
begins at the end of the log and proceeds backward to the most
recent checkpoint record. At the start of the pass, a list that records
committed transactions, termed the committed transactions list
(CTL), is initialized to empty. During the pass a transaction is
added to the CTL when a commit record for the transaction is
encountered during the backward scan. When a log record for a
modified page is encountered, an entry for the page is inserted into
the WPL table if the transaction that updated the page is in the
committed transaction list. Otherwise, the modify record is
ignored since the associated transaction did not commit before the
crash.

When the checkpoint record is reached, the committed transaction
list contains an entry for each transaction that committed after the
checkpoint was taken. The contents of the checkpoint record itself
are then examined. Entries in the checkpoint record that pertain to
members of the CTL, or which are marked as pertaining to transac-
tions that committed before the checkpoint was taken, are added to
the newly constructed WPL table. At this point the WPL table has
been fully reconstructed and normal processing can resume.

3.5. The Redo-at-Server Approach
The final recovery algorithm that we examined is termed redo-at-
server (REDO). This algorithm is a modification of the ARIES-
based recovery algorithm used by ESM in which clients send log
records, but not dirty pages, back to the server. (Recall that the
usual EXODUS recovery algorithm sends both log records and
dirty pages back to the server, although only log records are forced
to disk before commit.) Under REDO, when a log record is
received at the server the redo information in the log record is used
to update the server’s copy of the page. The disadvantage of
REDO is that the server may have to read the page from secon-
dary storage in order to apply the log record.

In addition to the obvious advantage of not having to ship dirty
pages from clients to the server, REDO is also appealing from an
implementation standpoint. It simplifies the implementation of a
storage manager by providing cache consistency between clients
and the server [Frank93]. REDO is currently being used in the ini-
tial version of SHORE [Carey94], a persistent object system being
developed at Wisconsin. Since REDO only involves changes at
the storage manager level, it can be used in combination with any
of the recovery schemes mentioned previously that make use of the
recovery services provided by EXODUS. Here, we will study its
use in conjunction with the PD scheme.

3.6. Implementation Discussion
Each of the four recovery schemes described in this section has
been implemented in the context of QuickStore/ESM. The two
diffing schemes did not require any changes to the base recovery
services provided by ESM. Instead of modifying the gnu C++
compiler—the gnu compiler was used to compile the QuickStore
application code—to insert function calls for updates to support the
sub-page diffing approach, the necessary function calls were
inserted by hand at the application level to save time. In imple-
menting whole-page logging we made use of the existing ESM
recovery code whenever possible. For example, ESM already sup-
ported whole-page logging for newly created pages. The changes
made to the ESM client to support WPL were therefore fairly
minor. The changes made to the server were more substantial, and
involved tasks such as maintenance of the WPL table (Section 3.4)
and rereading pages from the log. Implementing redo-at-server
was also relatively easy. The ESM server already supported redo
as part of the ARIES-based recovery scheme that it uses, and it
was not hard to get the server to apply each log record to the
appropriate page as log records were received by inserting a func-
tion call in the appropriate spot in the server code.

4. Performance Experiments
This section describes the performance study that was conducted to
compare the performance of the recovery algorithms described in
the previous section. The OO7 object-oriented database bench-
mark was used as a basis for carrying out the study [Carey93].

4.1. OO7 Benchmark Database
The structure of the OO7 database benchmark is discussed in detail
in [Carey93], but we describe it briefly here for completeness. The
OO7 database is intended to be suggestive of many different
CAD/CAM/CASE applications. A key component of the database
is a set of composite parts. Each composite part is intended to sug-
gest a design primitive such as a register cell in a VLSI CAD
application. Associated with each composite part is a document
object that models a small amount of documentation associated
with the composite part. Each composite part also has an associ-
ated graph of atomic parts. Intuitively, the atomic parts within a
composite part are the units out of which the composite part is con-
structed. One atomic part in each composite part’s graph is desig-
nated as the "root part". Each atomic part is connected via a bi-
directional association to three other atomic parts (This can be
varied.). The connections between atomic parts are implemented
by interposing a connection object between each pair of connected
atomic parts.

Additional structure is imposed on the set of composite parts by a
structure called the "assembly hierarchy". Each assembly is either
made up of composite parts (in which case it is a base assembly) or
it is made up of other assembly objects (in which case it is a com-
plex assembly). The first level of the assembly hierarchy consists
of base assembly objects. Each base assembly has a bi-directional
association with three composite parts which are chosen at random
from the set of all composite parts. Higher levels in the assembly



hierarchy are made up of complex assemblies. Each complex
assembly has a bi-directional association with three subassemblies,
which can either be base assemblies (if the complex assembly is at
level two in the assembly hierarchy) or other complex assemblies
(if the complex assembly is higher in the hierarchy). Each assem-
bly hierarchy is called a module. Modules are intended to model
the largest subunits of the database application. Each module also
has an associated Manual object, which is a larger version of a
document.

We included two different database sizes in the study, termed
small and big. Table 1 shows the OO7 parameters used to con-
struct the two databases. We note that the parameters used here do
not correspond exactly to the "standard" OO7 database
specification of [Carey93]. As indicated in Table 1, a module in
the small database here is the same size as a module in the small
database of [Carey93]; however, modules in the big database differ
from the small database in that they contain 2,000 composite parts
instead of 500, and there are eight levels in the assembly hierarchy
in the big database versus seven in the small database. Both the
small and big database here contain five modules, as the number of
clients that access the database will be varied from one to five.
During a given experiment, each module will be accessed by a sin-
gle client, so a module represents private data to the client that uses
it. We decided not let the clients share data in order to avoid lock-
ing conflicts and deadlocks both of which can have a major effect
on performance. Removing these effects simplified the experi-
ments and allowed us to concentrate on the differences in perfor-
mance that were due to the recovery mechanisms being studied.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameter Small Bigiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
NumAtomicPerComp 20 20
NumConnPerAtomic 3 3
DocumentSize (bytes) 2000 2000
Manual Size (bytes) 100K 100K
NumCompPerModule 500 2000
NumAssmPerAssm 3 3
NumAssmLevels 7 8
NumCompPerAssm 3 3
NumModules 5 5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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c
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Table 1. OO7 Benchmark database parameters.

Table 2 lists the total size of the databases and the size of a module
within each database. The size of a module in the small database is
6.6 Mb which is small enough that an entire module can be cached
in main memory at a client (12 Mb). In addition, the total size of
the small database (33 Mb) is small enough that it fits into main
memory of the server (36 Mb). Thus, the experiments performed
using the small database test the performance of the recovery algo-
rithms when the entire database can be cached in main memory.
The size of a module in the big database, however, is larger than
the main memory available at any single client. In addition, when
more than a single client is used the amount of data accessed is
also bigger than the memory available at the server. Experiments
performed using the big database test the relative performance of
the algorithms when a significant amount of paging is taking place
in the system.

iiiiiiiiiiiiiiiiiiiiiiii
Small Bigiiiiiiiiiiiiiiiiiiiiiiii

module 6.6 24.3iiiiiiiiiiiiiiiiiiiiiiii
total 33.0 121.5iiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

Table 2. Database sizes (in megabytes)

4.2. OO7 Benchmark Operations
This section describes the OO7 benchmark operations used in the
study. Since the goal of the study is to examine recovery perfor-
mance we only include the OO7 tests that perform updates. In
addition, some of the OO7 update tests stress index updates, these
tests are also not included in the study as they did not shed any
additional light on the performance of the recovery algorithms.

The experiments were performed using the T2A, T2B, and T2C
OO7 traversal operations. The T2 traversals perform a depth-first
traversal of the assembly hierarchy. As each base assembly is
visited, each of its composite parts is visited and a depth first
search on the graph of atomic parts is performed. Each T2 traver-
sal increments the (x,y) attributes contained in atomic parts as fol-
lows and returns a count of the number of updates performed2:

T2A—Update the root atomic part of each composite part.
T2B—Update all atomic parts of each composite part.
T2C—Update all atomic parts four times.

During each experiment, the traversals were run repeatedly at each
client, so that the steady state performance of the system could be
observed. Each traversal was run as a separate transaction. The
client and server buffer pools were not flushed between transac-
tions, so data was cached in memory across transaction boundaries.

4.3. Software Versions
We experimented with several QuickStore recovery software ver-
sions. Table 3 shows the names used to identify the different ver-
sions in the performance section. Each name generally consists of
two parts. The first part identifies the scheme used for generating
log records (PD, SD, or SL), and the second specifies the underly-
ing recovery strategy that was used (ESM or REDO). In addition,
the size of the recovery buffer given to the diffing schemes is
sometimes appended to the name of these systems. For example,
PD-REDO-4 denotes a system using page diffing with a 4 Mb
recovery buffer in combination with redo-at-server recovery. In
the case of whole-page logging the name has only one part (WPL).
We note that the sub-page diffing (SD) versions shown in the per-
formance section use a block size of 64 bytes. We experimented
with other block sizes, but their performance was similar.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PD-ESM page diffing, ESM recoveryiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SD-ESM sub-page diffing, ESM recoveryiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SL-ESM sub-page logging(no diffing), ESM recoveryiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PD-REDO page diffing, REDO recoveryiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
WPL whole page loggingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

Table 3. Example software versions.

4.4. Hardware Used
As a test vehicle we used six Sun workstations on an isolated Eth-
ernet. A Sun IPX workstation configured with 48 megabytes of
memory, two 424 megabyte disk drives (model Sun0424) and one
1.3 gigabyte disk drive (model Sun1.3G) was used as the server.
One of the Sun 0424s was used to hold system software and swap
space. The Sun 1.3G drive was used by ESM to hold the database,
and the second Sun 0424 drive was used to hold the ESM transac-
tion log. The data and recovery disks were configured as raw
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2[Carey93] specifies that the (x, y) attributes should be swapped. We incre-
ment them instead so that multiple updates of the same object change the
object’s value. This guarantees that the diffing schemes always generate a
log record for each modified object.
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Figure 6. T2B, small database.
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Figure 8. T2C, small database.
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Figure 9. Client Writes, small database.

disks. For the clients we used five Sun Sparc ELC workstations
(about 20MIPS) configured with 24 megabytes of memory and one
207 megabyte disk drive (model Sun0207) each. The disk drives
were used to hold system software and as swap devices.

5. Performance Results
This section presents the performance results. We first present and
analyze the results obtained using the small database and then turn
to the results obtained using the big database.

5.1. Unconstrained Cache Results
This section presents results for experiments using the small data-
base. All systems were given 12 megabytes of memory at each
client to use for caching persistent data. For the systems that do
diffing, 8Mb was allocated for the client buffer pool and 4Mb for
the recovery buffer. This allocation of memory allowed all of the
persistent data (modified and unmodified) accessed by a client to
be cached completely in the client’s main memory. Since the
small database was used, all of the data accessed by the clients
could be cached in the server buffer pool as well.

Figures 4 and 5 show the response time and throughput versus
number of active clients for the T2A traversal3 for several software
versions. PD-REDO (page diffing using redo recovery) has the
best performance overall, while WPL (whole-page logging) has the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3T2A: update root atomic part of each composite part.

worst. WPL is 22% slower than PD-REDO when one client is
used, but its performance relative to the other systems steadily
worsens as the number of clients increases. At five clients, WPL is
2.4 times slower than PD-REDO. WPL has slow performance in
this experiment because T2A does sparse updates, causing WPL to
write significantly more pages to the log than the other systems.

Figure 9 shows the total number of pages (data and log) and the
number of log record pages shipped from each client to the server
on average during a transaction. The results in Figure 9 are labeled
according to the underlying recovery scheme used, since that deter-
mined the number of pages sent for each system, e.g. PD-ESM and
SD-ESM had the same write performance since when no paging
occurs at the clients they always generate the same number of log
records and dirty pages. The main difference between PD-ESM
and SD-ESM in this case is in the amount of data copied into the
recovery buffer and diffed per transaction. The number of pages
written to the log by the server was very close to the total number
of pages shipped for WPL, and it was also close to the number of
log pages shipped for the other systems. Figure 9 shows that WPL
writes 435 pages back to the server on average during T2A, while
PD-REDO writes just 5. Thus, the diffing scheme used by PD-
REDO is very effective at reducing the amount work required at
the server for recovery in this case.

The performance of PD-ESM and SD-ESM lies between that of the
other two systems in Figure 4. Surprisingly, the overall response
time of SD-ESM is only slightly faster than PD-ESM (6.5% at 1
client, 3.3% at 5 clients), as the savings in CPU cost provided by
SD-ESM were only a small part of overall response time in this
experiment. The absolute difference in response time between



1 2 3 4 5

# clients

0

10

20

30

40

50

60

70

80
R

es
po

ns
e 

T
im

e 
(i

n 
se

co
nd

s)
WPL

PD-ESM

SD-ESM

PD-REDO

Figure 10. T2A, small, constrained cache.
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Figure 12. T2B, small, constrained cache.

SD-ESM and PD-ESM did not change significantly as the number
of clients varied, and was roughly 1.3 seconds. This amounted to a
savings of 3 milliseconds for SD-ESM for each page that was
updated. The difference in CPU usage between PD-ESM and SD-
ESM in Figure 4 was approximately 8% throughout, which was
also quite low. We believe the small difference in CPU usage was
caused partly by the CPU overhead at clients for shipping dirty
pages back to the server. The response time for SL-ESM is not
shown in Figure 4 since it was basically the same as SD-ESM.
This was because the number of additional log pages generated by
SL-ESM relative to SD-ESM was very small during this experi-
ment.

The throughput results shown in Figure 5 mirror the response time
results in Figure 4. Figure 5 shows that while the throughput
increases with the number of clients for the systems that use
diffing, WPL becomes saturated when more than two clients are
used. The increase in throughput for PD-ESM is 56%, and for
PD-REDO it is 67% as the number of clients increases from 1 to 5.

We turn next to Figures 6 and 7, which show the results of the
T2B5 traversal. Comparing Figure 6 with Figure 4 shows that the
difference in performance between the systems is smaller during
T2B, as T2B performs significantly more updates per page than
T2A—slowing the performance of the diffing schemes. PD-REDO
again has the best overall multi-user performance, however, the
difference in performance between PD-REDO and WPL ranges
from just 5% to 41% as the number of clients increases since PD-
REDO must write a significant number of log records to disk per
transaction (Figure 9). WPL is faster than the remaining systems
when a single client is used, but its performance degrades more
swiftly than the other systems since writing log records at the
server is more of a bottleneck for WPL.

Interestingly, the performance of PD-ESM and SD-ESM is nearly
identical during T2B due to the fact that the client CPU usage of
the two systems was the same. The performance of SD-ESM is a
bit worse relative to PD-ESM during T2B because T2B updates
more objects on each page that is updated, causing SD-ESM to do
more copy and diffing work. In addition, since more updates are
performed, the cost of actually doing the updates is more of a fac-
tor for SD-ESM, since each update incurs the cost of a function
call and other CPU overhead, as described in Section 3. The per-
formance difference between SL-ESM and SD-ESM is approxi-
mately 14% in all cases in Figure 6, showing that it is indeed
worthwhile here to diff the 64 byte blocks copied by the sub-page
diffing scheme. Lastly, Figure 7 shows that the transaction
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4T2B: update all atomic parts of each composite part.

throughput begins to level off after 4 clients for most of the sys-
tems, with WPL showing no increase in throughput beyond 3
clients.

Figure 8 shows the response time results for the T2C5 traversal.
The response time for PD-ESM, PD-REDO, and WPL did not
change significantly relative to T2B because these systems allow
applications to update objects by dereferencing normal virtual
memory pointers. The performance of both SD-ESM and SL-ESM
was 3.5 seconds slower, independent of the number of clients, due
to the higher cost of performing updates in these systems—the
overhead for performing the updates themselves is significant dur-
ing T2C since a total of 1,049,760 additional updates are per-
formed per transaction relative to T2B. Thus, the performance of
PD-ESM is between 12% (1 client) and 6% (5 clients) faster than
the performance of SD-ESM in Figure 8. The throughput results
for T2C are not shown since they were also similar to those for
T2B and can be deduced from the response time results of Figure
8. In addition, the number of pages (total pages and log record
pages) sent from the client to the server during T2C was the same
as during T2B (Figure 9).

5.2. Constrained Cache Results
This section presents results obtained by running the various sys-
tems with a restricted amount of memory at each client. As in the
previous section, the small database is used, but each client is
given only 8 megabytes of memory to use for caching persistent
data here. For the systems that do diffing, 7.5Mb was allocated for
the client buffer pool and .5Mb for the recovery buffer. This allo-
cation of memory results in a client buffer pool that is large enough
to avoid paging. So, for example, the performance of WPL here is
the same as in the previous section. However, now there is
insufficient space in the recovery buffer to hold all of the data
required by the diffing schemes until commit time.

Figures 10 and 11 show the response time and throughput for
traversal T2A in the constrained case. SD-ESM has the best per-
formance in Figure 10. SD-ESM is 31% faster than PD-ESM and
40% faster than WPL at five clients. PD-ESM is slower than SD-
ESM in this case because it experiences more contention in the
recovery buffer. This causes PD-ESM to generate 4 times as many
pages of log records on average per transaction as did SD-ESM
(see Figure 14). WPL has competitive performance when the
number of clients is low, but it has the worst performance when
three or more clients are used. The performance of WPL degrades
faster than the performance of the other systems, as before,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5T2C: update all atomic parts of each composite part four times.
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Figure 14. Client Writes, small, constrained cache.

because server performance is more of a limiting factor for WPL.
On the other hand, the diffing schemes benefit from their ability to
perform more work at the clients, which allows them to scale
better.

The performance of PD-REDO appears to be approaching that of
SD-ESM as the number of clients increases. PD-REDO scales
better than the other systems here because it does not suffer from
the overhead of shipping dirty pages back to the server. PD-REDO
thus has the second best performance when two or more clients are
used and is only 3% slower than SD-ESM at five clients. The
throughput results shown in Figure 11 show that transaction
throughput increases for all of the systems, except WPL (which
becomes saturated), as the number of clients increases. SD-ESM
and PD-REDO show the biggest increases in throughput. The
throughput of SD-ESM increases by 2.5 times when the number of
clients is increased, while the throughput for PD-REDO increases
by a factor of 4.2.

We now turn to Figures 12 and 13, which show the response time
and throughput, respectively, for traversal T2B. WPL has the best
performance at one client, where it is 27% faster than SD-ESM
(which is the next best performer). Beyond two clients, however,
SD-ESM has the best performance, and at five clients, SD-ESM is
30% faster than WPL. SD-ESM scales better than WPL because it
performs most of its recovery work at the clients, while WPL relies
more heavily on the server. The page diffing systems, PD-ESM
and PD-REDO, have the worst performance in Figure 12. The rea-
son for this can be seen in Figure 14 which shows the number of
page writes per transaction for the systems. In Figure 14, PD-ESM
produces 2.2 times as many log pages per transaction as does SD-
ESM during T2B. In addition, the number of log pages produced
by PD-ESM is approaching the number of pages written to the log
per transaction by WPL due to the high level of contention in the
recovery buffer for PD-ESM.

PD-REDO is slightly faster than PD-ESM when the number of
clients is low, but for more than three clients, PD-ESM has better
performance. PD-REDO does not scale as well as PD-ESM in Fig-
ure 11 because of the CPU overhead of applying log records at the
server for PD-REDO. The results for T2C are not shown for this
experiment because they were similar to the results for T2B. The
only difference in the times for T2C was that SD-ESM was con-
sistently slower by a few seconds relative to its times for T2B.

5.3. Big Database Results
This section contains the results of the experiments that were run
using the big database. In these experiments, all of the systems
were given 12Mb of memory at each client to use for caching per-
sistent data. For the systems that do diffing, two alternative stra-
tegies for partitioning the memory between the client buffer pool
and the recovery buffer were explored. Some of the systems were
given 8Mb of memory to use as the client buffer pool, and the
remaining 4Mb was used for the recovery buffer. Others were
allocated 11.5Mb for the buffer pool and just .5Mb for the
recovery buffer.

Figure 15 shows the average response time for each system when
performing traversal T2A. Surprisingly, WPL has the fastest
response time when the number of clients is less than four; how-
ever, when four or more clients are used, PD-ESM-1/2 has the best
performance. PD-ESM-1/2 is 17% faster than WPL for five
clients. Overall, WPL has fast performance in this experiment
because it is able to devote all of available memory at the clients to
the buffer pool; thereby, decreasing the amount of paging in the
system and lessening the burden placed on the server. However,
the server log disk becomes a bottleneck for WPL as the number of
clients increases and eventually PD-ESM-1/2 performs better. As
in previous experiments, the diffing scheme (PD-ESM-1/2) appears
to scale better since it makes use of the clients’ aggregate process-
ing power to lessen the burden placed on the server’s log disk and
CPU.

Comparing the performance of PD-ESM-1/2 and PD-ESM-4 in
Figure 15 shows the importance of choosing a good division of
memory between the client buffer pool and the recovery buffer.
PD-ESM-4 has better performance than PD-ESM-1/2 when one
client is used, but for multiple clients, when paging between the
client and the server becomes relatively more expensive, PD-
ESM-1/2 is always faster. Indeed, as Figure 16 shows, the systems
that were given smaller client buffers pool begin to thrash
significantly when more than two clients are used, while the
throughput for PD-ESM-1/2 continues to increase as the number of
clients increases (although the increase is very small for more than
two clients).

Interestingly, there is little difference in performance between PD-
ESM-4 and SD-ESM-4, in Figure 15. This is because there is a
significant amount of paging going on in the client buffer pool in
Figure 15 (paging in the buffer pool is exactly the same in both
systems), and each time
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a modified page is replaced in the client
buffer pool the same number of log records are generated by both
PD-ESM-4 and SD-ESM-4. Thus, sub-page diffing does not save
nearly as much in terms of the number of log records generated in
Figure 15 as it did in the small, constrained experiment (Figure
10). In fact, SD-ESM-4 only generates 10% fewer log records
than does PD-ESM-4 in Figure 15, as opposed to generating 75%
fewer log records in Figure 10. Finally, we note that although
PD-REDO-4 is competitive with PD-ESM-4 when fewer than three
clients are used; its performance grades more quickly than the
other systems when the number of clients increases beyond three.
This is because a larger number of pages must be reread from disk
at the server by PD-REDO-4 as the number of clients increases, so
that log records describing updates to the pages can be applied.

Comparing the results shown in Figure 15 to those of Figure 17,
we see that the relative performance of the systems during T2B
(dense updates) and T2A (sparse updates) is similar for the big
database. WPL does somewhat better relative to PD-ESM-1/2 dur-
ing T2B, as T2B updates a much larger number of objects per
page, thus causing PD-ESM-1/2 to generate more log records.
However, PD-ESM-1/2 scales better than the other systems
(including WPL) and the performance of PD-ESM-1/2 appears to
surpass that of WPL when five or more clients are used. The

performance of SD-ESM-4 and PD-ESM-4 is almost identical in
Figure 17 (as it was in Figure 15). Again, this is because SD-
ESM-4 generates almost as many log records as PD-ESM-4, and
because the savings in client CPU cost provided by SD-ESM-4 for
performing less diffing and copying work does not provide any
noticeable benefit in terms of performance. The scalability of the
REDO algorithm is again the worst overall in Figure 17 as it was
in the sparse update case (Figure 15). When five clients are used
PD-REDO-4 is 25% slower than PD-ESM-4

Figure 18 shows the throughput for the dense traversal run on the
big database. Not surprisingly, the throughput results for the dense
traversal are similar to those for the sparse traversal (Figure 16).
Figure 18 highlights the fact that the systems that were given a
larger client buffer pool (WPL, PD-ESM-1/2) scale better than the
systems that were given smaller buffer pools (SD-ESM-4, PD-
ESM-4, PD-REDO-4). This is because avoiding paging between
the client and the server when using the big database is more
important for achieving good performance than avoiding the gen-
eration of additional log records as is done by PD-ESM-1/2 and
WPL. Even though WPL was given a large (12Mg) client buffer
pool it begins to thrash for more than three clients, as the server
becomes more of a performance bottleneck.



6. Related Work
This section discusses related work that has been done on the
design and implementation of recovery algorithms for client-server
database systems. We also compare the study presented here with
other studies that have dealt with the issue of recovery perfor-
mance.

[Frank92] describes the design and implementation of crash
recovery in the EXODUS Storage Manager (ESM). In addition,
[Frank92] discusses the issues that must be addressed when imple-
menting recovery in a client-server environment. The recovery
algorithm described in [Frank92] is based on ARIES [Mohan92],
and supports write-ahead-logging and a STEAL/NO FORCE
buffer management policy at the server. However, the ESM
currently requires that all dirty pages be shipped from a client to
the server before a transaction commits. This could be termed a
force-to-server-at-commit policy. We note here that while ESM
addresses the recovery issues raised by a client server architecture,
it does not address the issues discussed in Section 2, i.e. issues that
are specific to object-oriented systems and memory-mapped stores.

More recently, [Mohan94] has presented an algorithm termed
ARIES/CSA which also extends the basic ARIES recovery algo-
rithm to the client-server environment. ARIES/CSA differs from
ESM in that it supports fine-granularity locking which ESM
currently does not. ARIES/CSA also supports unconditional undo.
Another difference between the two approaches is that clients in
ARIES/CSA take their own checkpoints in addition to checkpoints
taken by the server, while in ESM checkpoints are only performed
at the server. In principle the recovery techniques described in
Section 3 that use ESM could also be used in conjunction with
ARIES/CSA. However, it is not clear how features such as fine-
granularity locking that are supported by ARIES/CSA would be
used by a memory-mapped storage system such as QuickStore
since the memory-mapped approach is inherently page-based.

A related study on recovery performance appears in [Hoski93].
The study presented in [Hoski93] differs from the study presented
here, in that it is only concerned with alternative methods for
detecting and recording the occurrence of updates. We consider
these issues as well, and also examine different strategies for pro-
cessing log records in a client-server environment, i.e. ARIES-
based schemes, whole-page logging, and redo-at-server. An
interesting note about the study presented here is that our results
differ substantially from the results presented in [Hoski93]. Some
of the variation in the results is undoubtedly due to architectural
differences between the systems examined in the two studies. For
example, in [Hoski93] the transaction log is located at the client
machine instead of at the server as in ESM. The advantage of
locating the log at the server as ESM does is that it increases sys-
tem availability, since if a client crashes, the server can continue
processing the requests of other clients. Placing the log at the
server impacts performance because log records must be sent from
clients to the server (usually over a network) before they are writ-
ten to disk. Thus, differences in alternative techniques for generat-
ing log records will be smaller in a system in which the log is
located at the server than in a system where log records are written
to disk at the client.

Other reasons for differences in the results have to do with imple-
mentation details. For example, both [Hoski93] and our study
examine the tradeoffs involved in detecting the occurrence of
updates in software versus using virtual memory hardware support.
However, [Hoski93] uses a copy architecture in which objects are
copied one-at-a-time as they are accessed from the client buffer
pool into a separate area in memory called the object cache. The
hardware-based recovery scheme used in [Hoski93] requires that
the virtual memory page in the object cache that will hold an object
be unprotected and then reprotected each time an object is copied
into the page—producing a substantial amount of overhead (up to

100%), even for read-only transactions. Under the approach used
in QuickStore (in-place access, page-at-a-time swizzling) a page’s
protection is only manipulated once, when the first object on the
page is updated. Thus, our results show that the hardware-based
detection scheme does much better than do the results presented in
[Hoski93]. In particular, the scheme used in QuickStore does not
impact the performance of read-only transactions.

[Hoski93] also examines several schemes (termed card marking)
that are similar to the sub-page approach examined here. The
results presented in [Hoski93] show that the size of the sub-page
region used for recovery has a great impact on performance. The
difference in performance reported in [Hoski93] is due to the fact
that using a small sub-page unit for recovery can reduce diffing
costs when updates are sparse. The results presented in this study,
on the other hand, show that the size of the sub-page blocks is
important, not because of savings in CPU costs when the block
size is small, but because smaller block sizes can result in the gen-
eration of fewer log records when space in the recovery buffer is
tight. [Hoski93] does not consider this case. We believe the
differences in the results are due to the fact that we use an in-place
scheme while [Hoski93] uses a copy approach, and to the cost for
supporting concurrency control (the system examined in [Hoski93]
is single user system that do not support concurrency). The study
presented here also differs from [Hoski93] in that we examine the
scalability of the various recovery schemes as the number of
clients accessing the database increases. We also examine the per-
formance of the different recovery techniques when a large data-
base is used and a significant amount of paging (object replace-
ment) is taking place in the system. [Hoski93] does not consider
these issues. We also note the performance study contained in
[White92] also contains some results concerning recovery perfor-
mance. However, the systems compared in [White92] (Object-
Store and E/EXODUS) were not built upon the same underlying
storage manager, so it is not possible to accurately measure the
performance differences due to recovery in [White92].

Although several OODBMSs are commercially available, very lit-
tle has been published concerning the recovery algorithms they
use. The O2 system [Deux91] also uses an ARIES-based approach
to support recovery. O2 differs from ESM and ARIES/CSA in that
it uses shadowing to avoid undo. The most popular commercial
OODBMS is ObjectStore [Lamb91] which like, QuickStore, uses a
memory-mapping scheme to give application programs access to
persistent data. ObjectStore currently uses whole-page logging to
support recovery. The basic idea of this approach is that dirty
pages are shipped from a client to the server and written to the log
before a transaction is allowed to commit. This differs from the
ARIES-based schemes mentioned above which only require that
the log records generated by updates be written to disk at commit
time. [Wilso92] describes the Texas storage manager which also
uses a memory-mapping scheme. [Wilso92] was the first to pro-
pose the use of differencing to detect updates of persistent data.
Finally, we note that the whole-page logging approach to recovery
was first described in [Elhar84] which presents the design of the
database cache.

7. Conclusions
This paper has presented an in-depth comparison of the perfor-
mance of several different approaches to implementing recovery in
QuickStore, a memory-mapped storage manager based on a
client-server, page-shipping architecture. Each of the recovery
algorithms was designed to meet the unique performance require-
ments faced by a system like QuickStore. The results of the per-
formance study show that using diffing to generate log records for
updates at clients is generally superior in terms of performance to
whole page logging. The diffing approach is better because it takes
advantage of the aggregate CPU power available at the clients to
lessen the overall burden placed on the server to support recovery.



This provides much better scalability, as it prevents the server from
becoming a performance bottleneck as quickly when the number of
clients accessing the database increases.

The study also compared the performance of two different underly-
ing recovery schemes upon which the diffing algorithms were
based. These included the recovery algorithm used by the
EXODUS Storage Manager and a simplified scheme termed redo-
at-server (REDO). While the REDO approach provided significant
performance benefits in some cases—when using a small database,
while producing only a moderate number of log records per
transaction—it failed to perform well when the database was
bigger than the server buffer pool, and when the volume of log
records sent to the server per transaction was high. The results
presented in the study show that REDO can suffer from both disk
and CPU bottlenecks at the server. System builders will have to
decide whether the simplifications in system design and coding are
worth the poor scalability of REDO in certain situations.

Finally, the study compared the performance of page-based and
sub-page diffing techniques. Surprisingly, the sub-page diffing
techniques provided very little advantage in terms of performance
over the page-based approach. This is apparently due to the fact
that diffing is a relatively inexpensive operation compared to the
other costs involved in the system, such as network and disk access
costs. The sub-page diffing approach did pay off in one situation,
i.e. when the amount of memory that could be devoted to recovery
was very low. System designers will have to decide whether this
situation is likely to arise often enough in practice to justify using
sub-page diffing. In addition, it was shown that sub-page diffing
can have worse performance than page-diffing when updates are
performed repeatedly. This fact must be weighed against the mild
advantages of the technique when deciding on an implementation
strategy. Finally, the results showed that diffing is even
worthwhile when a sub-page granularity is used for recovery. Sys-
tems that used a sub-page granularity, but which did not use diffing
always had comparable or worse performance than the systems
that used diffing.

In the future, we would like to explore improvements to the
recovery schemes based on differencing to see if the diffing
approach can be enhanced to better adapt to dynamic workload
changes. One class of techniques that we would like to explore
involves dynamically varying the amount of memory allocated to
the buffer pool and the recovery buffer of a client during and
across transactions.
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