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Abstract and more complex types like swiss—cheese—polygons (which

This paper describes PBSM (Partition Based Spatial-Merge), anew?® PO'VQO”S with holes) 'that are derived from the simpler
algorithm for performing spatial join operation. This algorithm is 9€0metric types. A S_Patla! databg;e system must support
especially effective when neither of the inputs to the join have an dueries on these spatial objects efficiently. Spatial database
index on the joining attribute. Such a situation could arise if both users frequently need to combine two spatial inputs based on
inputs to the join are intermediate results in a complex query, or in some spatial relationship between the objects in the two in-
a parallel environment where the inputs must be dynamically redis-puts. For examplanap overlap, which requires combining
tributed. The PBSM algorithm partitions the inputs into manage- two maps to produce a third, is an important operation in a
able chunks, and joins them using a computational geometry base%patial database [Bur86, MGR91]. This operation of combin-
plane-sweeping technique. This paper also presents a performancg,q o inputs based on their spatial relationship is called a
study comparing the the traditional indexed nested loops join algo-Spatiaj join. Spatial joins, just like their counterparts in a re-

rithm, a spatial join algorithm based on joining spatial indices, and lational svstem. are an expensive operation. Consequent]
the PBSM algorithm. These comparisons are based on complete im- Y ! P P ) q Y

plementations of these algorithms in Paradise, a database system fcﬁffICIent §pat|al join algorithms are a critical component of
handling GIS applications. Using real data sets, the performance@ny Spatial database system.

study examines the behavior of these spatial join algorithmsinava-  Since the representation of a spatial object can be very
riety of situations, including the cases when both, one, or none oflarge (for example, a spatial object representing a swiss—
the inputs to the join have an suitable index. The study also exam-cheese—polygon might require thousands of points to repre-
ines the effect of clustering the join inputs on the performance of sent the exact geometric shape), spatial operations, including

these join algorithms. The performance comparisons demonstrateghe spatial join, typically operate in two steps [Ore90]:
the feasibility, and applicability of the PBSM join algorithm.

) e Filter Step: In this step, an approximation of each spatial
1 Introduction object, such as its minimum bounding rectangle, is used to

With the increasing popu|arity of automated processes in eliminate tUpleS that cannot be part of the result. This Step
fields like Earth Sciences, Cartography, Remote Sensing, Producesandidatesthat are a superset of the actual result.
Land Information Systems etc., and the rapid increase in the These candidates are usually represented as a pair of object
availability of data from a wide variety of sources like satel-  identifiers.

lite images, mapping agencie.s, simulgtion outputs etc., the , Refinement Step: In this step, each candidate is examined
last decade has witnessed an increase in the demands for sys-(which usually requires fetching a pair of objects from disk)
tems that can store, manage, and manipulate spatial data. In- 1o check if it is part of the result. This check generally

creasingly, a database system has been employed to meet equires running a CPU—intensive computational geometry
these requirements. Examples of commercial database sys- algorithm.

tems that have been used for these applications are ARC/INFO
[Arc95], Intergraph’'s MGE [Cor95], and lllustra [Ube94]).
Data stored in thesgpatial database systems includes sim-

ple geometric types like points, lines, polygons, and surfaces

Numerous algorithms have been proposed to execute the
filter step of a spatial join. Many of the earlier algorithms are
'based on transforming an approximation of a spatial object

“This work was partially supported by NASA Contracts #USRA-5555- INt0 another domain (e.g. a 1-dimensional domain), and
17, #NAGW-3895, and #NAGW-4229, and by an IBM Research Initiation performing the filter step in the new domain [OM88, Ore86,
Grant. BHF93]. The drawback of this approach is that in the new
domain some spatial proximity information is lost, making
the algorithms complex and less efficient. Most of the newer
algorithms are based on using spatial indices for performing
the filter step of the spatial join [BKS93,893, HS95], and
require a spatial index on both the join inputs. Thase
join algorithms can be described as synchronized depth—first
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searches of both indices, with the two depth—first searches2 Related Work

being guided by hints from each other. As mentioned in the introduction, spatial join algorithms op-

While spatial indices might exist on both the inputs during €rate in two steps: a filter step and a refinement step. Most
the join of two base relations, there are many situations wheref the spatial join algorithms that have been proposed previ-
neither join input will have a spatial index built on it. Such ously only solve the filter step. In this section, we summa-
a situation could arise if the inputs to the join are interme- rize relevant work in this area. Throughout this section, we
diate results in a complex query, or in a parallel environment Use the term spatial join to refer to the filter step of the spatial
where the inputs have been dynamically redistributed. A spa- join.
tial DBMS must evaluate these joins efficiently. One solution  In [Ore86, OM88], Orenstein proposes an approach based
to this problem is to build a spatial index on both inputs and on approximate geometry, wherein the universe of the spatial
then use a tree join algorithm [LR95]. Another solution to data is regularly decomposed by superimposing a grid on it.
this problem comes from the VLSI domain where one needs Each element of the grid is called a pixel, and spatial objects
to compute the pairwise intersection between two potentially are approximated by pixels that overlap them. Each pixel,
large sets of rectangles that don't fit entirely in main mem- which is described by its spatial location, is transformed into
ory [GS87]. However, the VLSI algorithms are generally not a 1-dimensional domain by applying a mapping called the
very efficient with respect to the number of disk I/Os. z—order. The transformed values, which are called z—values,

) o o are then used in a spatial join algorithm that merges two se-

This paper makes two contributions. First, it presents a quences of z-values. The z-values, being 1-dimensional
new spatial join algorithm, called the Partition Based Spatial- ya|yes, can be stored in traditional indexing structures like
Merge (PBSM) Join, that does not require indices on either of 5 g_tree [OM84]. The performance of the spatial join algo-
its inputs. The algorithm partitions the inputs into “manage- yithm using z—values was found to be sensitive to the choice
able” chunks and joins the chunks using a computational ge- of the grid [Ore89]. Choosing a fine grid increases the ef-
ometry algorithm that can be considered as the spatial equiv-ficiency of the filtering technique, but it also increases the

alent of sort-merge. The algorithm incorporates a complete space requirement since a larger number of z—values are re-
solution to the spatial join problem as it performs both the fil- - qyired to approximate an object.

ter and the refinement step. In the relational domain, [Val87] proposed the use of join

Second, it includes the results of a comprehensive perfor-indice"s to imprqve the performance of.the relational join
mance study of three spatial join algorithms: a simple in- operator. Draw!ng.a'n .analogy from j[h's’ Rotem [Rot91]
dexed nested loops based join algorithm, an R—tree based joirproposed a spaugl join index that parpally precqmputes the
algorithm, and the PBSM algorithm. The performance study resu]ts .OT a spatial jon. The .algorlth_m for building th_e
is based on actual implementations of the three algorithms in SPatial join index requires gr_ld files for indexing the SP""“.""'.
Paradise [DKL94], which is an experimental GIS database Qata, a”d, uses these grid files to compute the spatial join
system. Using real data from the TIGER [Tig] and the Se- index. Grid files [NHS84] and kd—'trees [B('an75,. Ben?gl haye
quoia [SFGM93] data sets, the study examines the behaviord!SO been employeq for evaluating multi—attribute joins in
ofthe algorithms in a variety of situations, including the cases the relational domain [KHT89, HNKTQQ, BHF93]. These
when none, one, or both the inputs to the join have asuitablemet.hOdS can alsq be used for evalgatlng_ the filter s.tep by
index. The study also investigates the effect of clustering the stormg th? bouqdmg box of the spatial objects as points in
join inputs. Many of the tree—based join algorithms that have & Nigher dimension [BHF93]. .
been considered in earlier performance studies, use multiple  Recently, spatial index structures like R-trees [Gut84],
inserts to build an index [HS95, LR94]. It is a well known R*-trees [CFR87], R*-trees [BKSS90], and PMR quad trees
fact that bulk loading an index is much more efficient than [NS86] have been used to speed up the evaluation of the spa-
performing multiple inserts to construct it. For example, us- tial join. Using analytical models, @ither compares join al-
ing a buffer pool size of 16MB, Paradise takes 109.9 secondsgorithms that use generalization trees (which is a class of tree
to bulk load 122K objects into an 6.5MB R*-tree index, and structures that includes the R-tree, R*-tree and R+tree) with
864.5 seconds to build the same index using multiple inserts! the nested loops join e'm.d join indi.c'esqe].' T.his study
Hence, in this study, for both the indexed nested loops and congludes that fqr !0W10|n selectivities, Jomllndlce's. usually
the R-tree based join algorithms, whenever required, indicesProvide the best join performance, but for higher join selec-

are built using the Paradise bulk loading mechanism. tivities generalization trees are more efficient. The proposed
join algorithm using the generalization trees, is similar to the

The remainder of this paper is organized as follows. Sec- join algorithm on R-trees proposed by Brinkhoff, Kriegel
tion 2 summarizes the related work in this area. Section 3 and Seeger [BKS93]. This algorithm can be used only if an
describes the PBSM algorithm. The performance study com- R—tree index exists on both the join inputs, and can be de-
paring various spatial join algorithms is presented in Section scribed as a synchronized depth—first search of both indices,
4. Finally, Section 5 contains our conclusions and some fu- with the two depth—first searches being guided by hints from
ture plans. each other. Similar tree joins have been proposed for other
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Require Use of an Index

e Z—values [OM84], e Join Indices [Rot91]

e Grid Files [HNKT90, BHF93]

e kd-trees [KHT89, HNKT90]

¢ Synchronized Tree ¢ External VLSI algo [GS87]
Traversal [BKS93, @193, HS95] e PBSM

¢ Build 1 or 2 indices before joining [LR94, LR95] e Spatial Hash Join [LR96]

Operatewithout an I ndex

Transform the
approximation into
another dimension
Use the approximation
directly in the

two dimensional space

e Z—values [Ore86, OM88]

Table 1: Classification of Various Spatial Join Algorithms

data structures. In [HS95], Hoel and Samet propose a treejoin.  For the sake of concreteness, letand S denote
join algorithm for the PMR quad tree, and compare the ef- the two inputs to the join. We assume that the inputs are a
ficiency of variants of the PMR quad tree with variants of the sequence of tuples, and that each tuple has a spatial attribute

R-tree [HS95].

that is used in the join condition. We also assume that the

When one of the inputs to the spatial join does not have a system has a unique identifier for each tuple. This unique

spatial index, Lo and Ravishankar [LR94] propose building
a seeded tree index on that input. A seeded tree is a R—tree
that is allowed to be height unbalanced. The algorithm for

identifier is referred to as th@I D of the tuple.
The PBSM algorithm operates in the following two steps.

o Filter Step: The spatial attribute involved in the join may

constructing the seeded tree uses the existing index on one pe a complex spatial feature like a polygon, a polyline, or

of the two inputs as a starting point, and tries to minimize the
number of random I/Os incurred during the tree construction.
The two indices are then joined using the tree join algorithm
described in [BKS93].  In [LR95], Lo and Ravishankar

extend this work to handle the case when neither of the
inputs have an index. In this approach, spatial sampling

a swiss—cheese polygon. In this step, the PBSM algorithm
makes use of an approximation of the spatial feature to
get a “rough estimate” of the characteristics of the spatial
attribute. The minimum bounding rectangMBR), is used

as an approximation in this step.  The filter step uses
partitioning to partition large inputs into smaller chunks. A

techniques are used for constructing seeded trees on both computational geometry plane-sweeping technique is used
inputs, and the seeded trees are joined using the tree join tg join the chunks. The result of the filter step is a set of

algorithm of [BKS93].

The problem of finding pairwise intersection between two
sets of rectangles has been extensively studied in the VLSI
domain [MCB80], and numerous solutions exist for the case
when both the input set of rectangles fit in memory [PS88].
In [GS87], Qiting and Shilling examine the rectangle inter-
section problem when the inputs are too large to fit in mem-
ory, and analyze the time and space complexity of two algo-
rithms that are based on external computational geometry al-
gorithms. However, these algorithms are not very efficient
with respect to the number of disk I/Os, and in some cases
require logarithmic number of passes over the input.

Concurrent with our work on PBSM, Lo and Ravishankar
have proposed a spatial hash join algorithm [LR96] that is, in
many aspects, similar to PBSM. The spatial hash algorithm

OID pairs such that one OID of the pair refers to a tuple
from the inputR and the other OID refers to a tuple from
the inputS. Furthermore, for each pair, the BR of the
spatial join attribute of th& tuple overlaps with thé/ BR

of the spatial join attribute of th& tuple.

¢ Refinement step: Since two non overlapping spatial fea-
tures can have overlapping BRs, and since the filter
step “joins” the inputs based on thd BR of the joining
attributes, the filter step generally will produce a superset
of the join result. In theefinement step, the R andS tuples
represented by th®ID pair produced by the previous step
are fetched from disk, and their join attributes are examined
to determine if the join predicate is actually satisfied.

The next section describes tfiker step in detail, and the

first partitions both the inputs, and then joins each of the par- section following that describes tiefinement step.

titions. Upper levels of a seeded tree are used for the partition
function, and afiltering technique is employed during the par-

3.1 Filter Step

titioning phase. A performance study, based on counting the The filter step of the PBSM algorithm, begins by reading the

number of disk I/Os, is also presented in [LR96]. [LR96] ig-
nores the very expensive refinement step.

To summarize, we can classify all these algorithms as
shown in Table 1.

3 Partition Based Spatial-Merge Join

This section describes a new algorithm, called the Partition
Based Spatial-Merge (PBSM) join, for evaluating a spatial

tuples from the inpuf?. For each tuple of the input, the

M BR ofthe joining attribute and the OID of the tuple, which
is collectively called akey—pointer element, are appended
to a temporary relation on disk. Let us denote this relation
by R, Similarly, the inputS is read and a relatio§*?

is produced. The goal of the filter step is to “pair” tuples
from R and S such that the/ BRs of their join attributes
overlap.R*? andS*? have theM B Rs for the join attributes

of both the inputs® andS. The problem then simplifies to
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finding all M BRs in R*P that intersect with somé/BR try based plane—sweeping technique [PS88]. This technique,
in S*r. Rectangle intersection (the BRs are rectangles)  which was also used in [BKS93] for joining the entries of
has been extensively studied in the computational geometrytwo R*—tree nodes, can be thought of as the spatial equiv-
field [PS88]. Given two sets of rectangles, such thath alent of the sort—-merge algorithm. The details of the algo-
the sets fit entirely in main memory, efficient computational rithm for merging the partitioan” ande” are as follows.
geometry algorithms, based phane—-sweeping techniques, Let M BR.xl represent the lower x-coordinate of a MBR and
exist for reporting all pairs of intersecting rectangles between let M BR.zu represent the upper x-coordinate. First, the in-
the two sets. Now, if bot®*? andS* fitin memory, then a putstp andep, which are a sequence of key—pointer ele-
plane—sweeping algorithm can be used to find all paifs'af ments, are sorted on the lower x values of ii& R, namely
andS*? key—pointer elements that have overlapplid3 Rs. M BR.xl. Then, theM BRs from the first key—pointer ele-

For such “matching” key—pointer elements pairs, @I ments ofRf” ande” are examined, and th& BR which
information is extracted, and the OID pair is added to the has a smalled/ BR.xl value is selected. Let denote this
output of this step. M BR, and let us assume thabelongsto the inpupr. Us-
If R¥» andS*” are too large to fit entirely in memory, then  ing ther.zu value, the key—pointer elements of the in{if
each is divided intaP (non—disjoint) partitions?;?, R5?, are scanned until a key—pointer element whdgBR has a

... R? andS}*, S§”, ... S}7 respectively. These partitions M BR.zl value greater thanzu is reached. Effectively, all
are formed in a way such that for each key—pointer element the elements osf” that overlap with- along the x—axis are
in a partition?;”, all the key—pointer elements 6% that  scanned. Each of these elements§t, is then checked for
have an overlapping/ BR are present in the corresponding overlap withr along the y—axis. If an overlap exists, then
Sf” partition. Furthermore, the size of the partitions are such the OID pair corresponding to the OIDs in the key—pointer

that foreachi{ <= i <= P) Rf” andep canboth fit elements is added to the result (the result of the filter step

simultaneously in memory. is a set of OID pairs). After thig; is marked as processed
To form these partitions, a spatial partitioning function is and is removed from consideration for the in;ﬂ(i”. The

used. The spatial partitioning function works as follows: algorithm continues by picking from the unprocessed part of

the inputsRkt” and S/”, the element that has the smallest

M BR.xl value. The smallest element is then “joined” with
elements in the other input. This continues until one of the
two inputs has been fully processed.

e From the catalog information for the joining attribute of
input R, the algorithm estimates thamiverse of the input.
The universe for a particular spatial join attribute is the
rectangle that is the minimum cover of the join attribute of

all the tuples in the input.
3.2 Refinement Step: Checking the Candidate OID

e The universe is then decomposed int® aubparts P is pairs for Exact Match

the number of partitions). As an example, consider Figure 1 o ] N . .
where the number of partitions is 4. After joining each pair of partitions, the result is a relation

. ) o . ) whose tuples have the forrma OIDg,0OIDg >, such that
¢ Finally, the_ spr?mal part|t|on|ngfunct|on (see Septlon 3.4f0r the M BR of the joining attribute of the tuple correspond-
more details) is applied to tBR of a key—pointer ele-  jng 1001 D, overlaps with thel/ BR of the joining attribute
ment. Thg part|t|o'n|ng fgnctlon determines all the'subparts of theS tuple correspondingt©1Ds. Since the partitioning
of the universe with which th#1BR overlaps, and inserts i, the filter step might insert a tuple into multiple partitions,
the key—pointer element into each partition corresponding there could be duplicates in this relation. The refinement step
to these subparts. Thus, ifBR overlaps with multiple  giminates these duplicates, and examines the aftaallS
subparts of the universe, then itis inserted into multiple par- pjes to determine if the attributes actually satisfy the join
titions. 'For'example,.the kgy—pomtgreleme'n.tforthe object ~ondition. To avoid random seeks in fetching theand S
shown in Figure 1, will be inserted into partitions 0 and 2. tuples, a strategy similar to that used in [Val87] is employed.
First, the OID pairs are sorted usiiy Dg as the primary
Partition 0 [Partition 1 sort key and) I Dg as the secondary sort key. Duplicates en-
'||| i tries are eliminated during this sort. Next, as ma&htuples
I, b

as can fitin memory are read from disk along with the corre-

i
Al LTI

1 spondingarray ok OIDg,OIDg > pairs. TheDIDg part

| H T H ” H 1

L of this array is “swizzled” to point to th& tuples in memory,

| Partition 3 andthenthe arrayis sorted O4 D g (this makes the accesses

Partition 2

to S sequential). Th8 tuples are then read sequentially into
. . o _ memory, and the join attributes of tieand theS tuple are
Figure 1: The Spatial Partitioning Function. checked to determine whether they satisfy the join condition.

MBR Polygon Attribute  Universe

After both the inputsk andS have been partitioned, the 1This check for overlap can be speeded up by organizingfi&Rs of
algorithm joins the partitions using a computational geome- 5** that overlap with- along the x—axis in an interval-tree [PS88].
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3.3 Determining the Number of Partitions

The number of partitions for the PBSM algorithm can be
estimated as follow. Lef|R|| represent the cardinality of
the inputR, and||S|| represent the cardinality of the input
S. Also, let M represent the size of the main memory in
bytes, and lefSize.,—pir denote the size of a key—pointer
element (whichis & M BR,OID > pair) in bytes. Since,
the plane—sweep algorithm used in merging the partitions
requiresboth the partitions,R*? and S*?, to fit entirely in
memory, the number of partitioR is computed as :

(R[] + IS]]) * Sizekey—pir

1 ] 1)

. . - . The spatial partitioning function just described is the spa-
34 Choosing a Spatial Partitioning Function tial analog of virtual processor round robin partitioning for
We now explore some of the alternatives that exist in select- handling skews in parallel relational joins [DNSS92]. A sim-
ing a spatial partitioning function. The spatial partitioning jlar partitioning function has been independently proposed
funCtiOI’] described in Section 3.1 decomposes the Universefor redundancy_based deciustering Ofspatiai Objects in a par-
into P subparts (wheré” is the number of partitions deter-  gie| spatial database [TY95], but in that proposal the number
mined by Equation 1). However, in the presence of a non- of tiles always equals the number of partitions.

uniform diStribUtion, this partitioning function could prOduce The design space for Choosing the Spatiai partitioning func-
partitions that have large differences in their sizes. As an ex- tion has two axes: the number of tiles used in the partitioning
ample, consider Figure 2 where the number of partitions is 4. function, and the tiie_to_partition mapping scheme. Decom-
Here, most of the tuples are in the top left corner, and the spa-posing the universe into small tiles produces many small con-
tial partitioning function will map all these tuples to partition  tainers, which are easier to pack into partitions to produce a
0. Partitions 2 and 3, on the other hand will have very few mgre uniform partition distribution. However, spatial objects

Tile 8/Part 2 | !Tile o/parto | I Tile 10/Part 1 ITile 11/Part 2

MBR Polygon Attribute Universe

Figure 3: Spatial Partitioning Function using Tiles.
P=]

tuples. that span tiles from multiple partitions have to be replicated
_ — in all the partitions, thereby increasing the replication over-
Partition 0 Partition . " .
o head. For the tile-to—partition mapping scheme, one could
O ]IJ i = use either round robin or hashing on the tile number.
--E---E-J, ------------- To explore these alternatives, we have chosen two data
i | sets. The first data set is derived from the TIGER/Line
— - i:i files [Tig], and represents roads in the state of Wisconsin.
Partition 2 ! Partition 3 . . . . .
This data set is 62.4MB in size, and contains 456,613 tuples.
Universe The second data set contains the polygon data from the Se-
Figure 2: Spatial Partitioning Skew guoia benchmark [SFGM93]. This data set contains 58,115

polygons and is 21.9MB in size.
To remedy this situation, the partitioning function used  First, we explore the design space of the spatial partition-

whereNT is greater than or equal tB. Starting from the ~ ©Of increasing the number oftiles, and choosing different tile—
upper left corner, the tiles are numbered from OM@ — 1. to—partition mapping schemes. The graph uses the coefficient

Each tile is mapped to a partition using a scheme like round of variatior? of the distribution of the tuples in each partition
robin or hashing. For example, consider Figure 3 where the 8S its metric. A perfect spatial partitioning function would
universe is divided into 12 tiles, the number of partitions is 3, P€ one that assigns equal number of tuples to each partition,
and tiles are mapped to partitions using a round robin scheme 2nd, consequently, would have a coefficient of variation of 0
Thus tiles 0, 3, 6, and 9 are mapped to partition 0, tiles 1, 4, for the d|str|but|9n of the tuplles in each partition. _From E|g—

7 and 10 are mapped to partition 1, and tiles 2, 5, 8 and 11 Ure 4, the followmg observat|or_15 can be made. First, using a
are mapped to partition 2. To apply the spatial partitioning large number of tiles and hashing on the tile number gives a
function to aMBR, all the tiles which overlap with th®1BR good partitioning function. Second, all the partitioning func-
are determined, and, for each tile, the key—pointer elementtions improve as the number of tiles is increased. This is
corresponding to th®IBR s inserted into the corresponding Pecause with a larger number of tiles, “dense” regions get
partition. Thus, if aVIBR overlaps with tiles from multiple ~ Subdivided into more tiles, and these tiles can be mapped to
partitions, then its key—pointer element will be inserted into different partitions. Third, for a given number of tiles, the
all those partitions. Consequently, the key—pointer element partitioning function yields a more uniform distribution for
for the object shown in Figure 3, will be inserted to partitions ™ 2the coefficient of variation is defined as the standard deviation divided
0,1and?2. by the mean.
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Figure 4: Spatial Partitioning Func-

tion Alternatives: Tiger Road Data

Figure 5. Replication Overhead:
Tiger Road Data (16 Partitions).

Figure 6: Replication Overhead: Se-
quoia Polygon Data(16 Partitions).

a smaller number of partitions (compare the graphs for hash-join algorithm [ZG90]. However, the currentimplementation
ing with 4 and 16 partitions). This, once again, is because the of PBSM does not incorporate any of these techniques.
distribution of tiles that cover “dense” regions is better with
a sma.ller number of p_artitions_,. For egample, when the uni- 4 Performance Evaluation
verse is decomposed into 25 tiles, 13 tiles cover 81.5% of the
data. These 13 tiles can be spread across 4 partitions morén this section, we compare the PBSM join algorithm with
uniformly than over 16 partitions, and, as a result, the coeffi- two other spatial join algorithms. The first algorithm is based
cient of variation for 4 partitions is lower than that for 8 par- 0n the traditional indexed nested loops algorithm and the
titions. other is based on the R—tree join algorithm [BKS93]. These

Figure 5 measures the replication overhead—the increasedlgorithms use spatial indices, and were chosen because most
in the number of tuples created due to replication during spatial databases support some form of spatial indexing (for
partitioning—for various number of tiles. The Figure shows example, R-treesin lllustra[Ube94]). Such systems can eas-
that, for the Tiger data set, the replication overhead is very ily use these index based join algorithms. This study, is not a
modest even for a very large number of tiles (increasing the meantto be a comprehensive performance study of all possi-
number of tuples by 4.8% for 4000 tiles). The figure also ble spatial join algorithms (refer to Table 1 for a classification
shows some spikes in the curve for round robin. This is be- Of spatial join algorithms). However, the algorithms that we
cause with round robin, when the number of tiles is an in- Study are alternatives that can be used in a spatial database
tegral multiple of the number of partitions, it is possible for System that does not transform approximations of spatial ob-
an entire column to get mapped to a single partition. This is jects into another domain (e.g. a 1-dimensional domain). To
equivalentto having fewer number of tiles (each column now the best of our knowledge, most commercial spatial database
behaves like a single tile), Consequently, fewer tuples have Systems do not transform the approximations of spatial ob-
to be replicated. However, at these points, the partitions pro-J€ects into another domain (for example, ARC/INFO [Arc95],
duced by the partitioning function are less balanced (observeand lllustra [Ube94]).
the jumps in Figure 4 for round robin with 16 nodes). The remainder of this section is organized as follows. First

For the Sequoia data, we found that the effect of increasing the index nested loops and the R-tree based join algorithms
the number of tiles on the tile—to—partition mapping scheme are described. This s followed by a description of the method-
is very similar to the effect on the Tiger Data. However, the ©0logy used in the study, and, finally, the results of the study
replication overhead, which is shown in Figure 6, is much are presented.
higher.

4.1 Indexed Nested LoopsJoin

3.5 Handling Partition Skew Let R andS denote the two relations that are being joined,

Similar to the partition skew problem for Grace Join, it is
possible for the PBSM algorithm to end up with partition
pairs that do not fit entirely in memory (for example, if
most of the data is concentrated in a very small cluster).
One possible way to handle this would be to dynamically
repartition the overflown partition pair. Another alternative
is to increase the number of partitions (limited &6) and

and assume thdt has fewer tuples tha$\. If neither join in-

put has an index on the joining attribute, the indexed nested
loops join algorithm first builds an index on the smaller input
R. The index is built using a bulk loading mechanism that
reads the exten® and extracts th&ey—pointer information

(< MBR,OID >) for each tuple. The key—pointer infor-
mation is then spatially sorted based on MeéBR. Spatial

using schemes similar to those used by the Adaptive Hashsorting is accomplished by transforming the center point of
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Data # of Total | R*—tree Data # of Total | R*-tree
Type Objects Size Size Type Objects Size Size
Road 456,613| 62.4 MB | 24.0 MB Polygons| 58,115| 21.9MB | 3.0 MB
Hydrography| 122,149 25.2MB | 6.5MB Islands 21,007| 6.2MB | 1.1MB
Ralil 16,844 2.4MB | 1.0MB Table 3: Sequoia Data.

Table 2: Wisconsin TIGER Data

was used as a raw device to hold the database. The log for
the system was kept on a second 2GByte Seagate disk.

For the performance study, the PBSM algorithm used 1024
tiles for the spatial partitioning function. We explored the
effect of the number of tiles on the execution time of PBSM,
but found that changing the number of tiles had a very small
effect on the overall execution time (less than 5%). The full
length version of this paper [PD] presents this result.

the M BR into a Hilbert value, and using this value for order-
ing the key—pointerinformation. This sorting brings together
key—pointers whose joining attributes are spatially close. The
spatial index, which in our case is a R*—tree, is then built in
a bottom up fashion [DKI£94]. After building the index on
the join attribute ofR, a scan is started of. Each tuple of

S is used to probe the index di The result of the probe is

a set of (possibly empty)I Ds of R. The tuples ofR corre-

sponding to thes@1Ds are then fetched (from disk, if nec- e performance study was carried out in two parts. The

essary) and checked with tiSetuple to determine if the join ~ firSt part examined the performance of the three algorithms

condition is satisfied. Fetching eaghtuple from disk will ~ When neither join input had a pre-existing index, and the

generally incur a random disk I/O. second part examined the performance of these algorithms
when indices existed on one or both join inputs.

4.2 R-treeBased Join Algorithm Both parts of the study used three collections of data sets.

For this algorithm, we first use bulk loading to build an R*— The first collection was derived from the TIGER/Line files
tree index on the joining attribute of the two input relations. [Tig] for the State of Wisconsin. The TIGER data is devel-
The two indices are then joined using the R—tree join algo- oPed and distributed by the U.S. Bureau of the Census, and
rithm proposed in [BKS93]. The R-tree join algorithm per- contains detailed geographic and cartographic information
forms a synchronous depth—first traversal of the two trees. for the United States. From the TIGER files, three data sets
The traversal starts with the roots of the two R—trees, and Were extracted (see Table 2). The first data set, célt],
moves down the levels of the two trees in tandem until the represents the roads, the second data set, ddyeldogr a-
leaf nodes are reached. At each step, two nodes, one fronPhy, represents basic hydrography features which includes
each tree, are joined. Joining two nodes requires finding fvers, canals, streams, etc., and the third dateRsst, rep-
all bounding boxes in the first node that intersect with some resents the railroads. Besides containing a polyline attribute
bounding box in the other node. The child pointers corre- that describes the spatial feature, each tuple in this collection
sponding to such matching bounding boxes are then traversed®/so contains attributes that describes the name, the classi-
(resulting in a depth—first traversal). fication, and the address ranges of the spatial feature. The
The R—tree join algorithm of [BKS93] only performs the average number of points in the spatial feature of the Road,
filter step of the spatial join, and produces a set of candidate Hydrography, and the Rail tuple is 8, 19 and 7 respectively.
OID pairs corresponding to the objects whose MBRs inter- TWO queries were run against this collection. The first query
sect. The objects corresponding to these OIDs then have tdoined the Road data set with the Hydrography data, produc-
be fetched and checked to determine if the join predicate ising as its result all the intersecting Road and Hydrography
actually satisfied. For this, we use the same technique thatféatures. The result relation consists of 34,166 tuples (about

was used in the PBSM join algorithm (refer to Section 3.2). 13.1MB). The second query performed a join between the
Road and the Rail data, and produced a 1.4MB result rela-

4.3 Methodology tion that had 4,678 tuples. This query was used to examine
For the performance comparison, we implemented each ofthe performance of the algorithms when the size of the input
these algorithms, namely, indexed nested loops join, R—treerelations differ significantly.
based join and the PBSM join in Paradise[Dka4]. Par- To study the effect of clustering on the join inputs, the
adise is a database system that handles GIS type of applisecond collection was formed by spatially sorting the objects
cations. Paradise supports storing, browsing, and queryingin the first collection.
of geographic data sets. It uses an extended-relational data For the third collection, the islands and polygon data sets
model and supports an extension of SQL as its query lan- from the Sequoia 2000 Storage Benchmark [SFGM93] were
guage. Paradise uses SHORE [C#] as its storage man-  used. The polygon data set represents regions of homoge-
ager for persistent objects. neous landuse characteristics in the State of California and
The machine used for the study was a Sun SPARC-10/51Nevada, while the island data set represents holes in the poly-
with 64 MBytes of memory, running SunOS Release 4.1.3. gon data (example, a lake in a park). The average number of
One Seagate 2GByte disk (3.5” SCSI, model # ST 12400N) points in a polygon tuple is 46, and the average number of
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Figure 7. TIGER Data: Join Road Figure 8: TIGER Data: Join Road Figure 9: Clustered TIGER Data: Join
with Hydrography with Rail Road with Hydrography

points in an islands tuple is 35. The query used in this exper- cost of building the index on the larger Road data, and the
iment joined the polygons and islands, producing, as a result,algorithm spends about 85% of its total time building this
those islands that are contained in one or more of the poly-index.

gons. This result contained 25,260 tuples and was 30.8MB

in size. The characteristics of this data are shown in Table 3. Effect of Clustering

Next, to investigate the effect of clustering, we ran the query
that joins Roads with Hydrography on the clustered TIGER
This section presents the results of the performance evaluagata (clustering had a similar effect on the join of Road with
tion when neither join input has a pre—existing index. In this Rail, and these results can be found in [PD]). The results of
case, the Indexed Nested Loops algorithm builds an index onthis experiment are shown in Figure 9. For this experiment,
the smaller inputs and probes it, whereas the R—tree based alps\M is about 40% faster than the R—tree based join algo-
gorithm builds both the indices and joins it using the tree join ithm, and 60—-80% faster than Indexed Nested Loops.
algorithm. By comparing Figures 9 and 7, one can observe that if
) ) the inputs to the join are clustered, the performance of all
Comparison Using the TIGER Data the join algorithms improve. To understand this behavior,
In the first experiment, the Road data set was joined with the consider Figures 10 through 12, which contain detailed cost
Hydrography data set. Figure 7 shows the execution timespreakdowns for both the clustered and the non—clustered
of the three spatial join algorithms as a function of the buffer scenarios. For the R—tree based join algorithm, the total
pool size. For this query, the PBSM algorithm is 80-100% join cost includes the cost of building both indices, the cost
faster than the R-tree based join algorithm, and 93-400%of joining the indices, and the cost of fetching the Road
faster than the Indexed Nested Loops algorithm. The Indexedand Hydrography tuples from the disk and examining them
Nested Loops builds an index on Hydrography and probesto determine if the join predicate is actually satisfied (the
it with the tuples of the Road data set. After probing the refinementstep). For the Indexed Nested Loops join, the total
index with a tuple, the Indexed Nested Loops Join fetches the cost consists of building the index on Hydrography, and then
matching Hydrography tuple, and examines it to determine if probing it repeatedly with tuples from the Road data set. For
the join predicate is actually satisfied. For smaller buffer pool the PBSM algorithm, the total join cost includes the cost of
sizes, fetching the matching Hydrography tuple generally forming the two partitions, the cost of merging the partitions,
requires a disk 1/0. However, as the size of the buffer pool and the cost of the refinement step.

increases, larger portions of the Hydrography data reside First, consider the individual costs of the R-tree based join
in the buffer pool, and, as a result, the performance of the gigorithm (Figure 10).

Indexed Nested Loops Join improves significantly.

Next, the performance of the algorithms was compared by e Index Building Costs. The indices for this join are built
joining the Road data with the Rail data (Figure 8). Sincethe using bulk loading (refer to Section 4.1 for a more detailed
size of the Rail data is only 2.4MB, and the indexonitisonly  description of bulk loading). Bulk loading an index has
1.0MB, the index and the data usually fit in the buffer pool three costs: the cost of extracting the key—pointers from
(the Rail data pages compete with the Road data pages for the input, sorting the key—pointers, and building the index
buffer pool frames). As a result, the Indexed Nested Loops using the sorted key—pointers. When an input is clustered,
performs better than the R—tree based join algorithm. The sorting the key—pointers can be avoided, thereby, reducing
cost of the R—tree based join algorithm is dominated by the the cost of building the index.

4.4 JoinsWhen None of the I ndices Pre—exist
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Figure 12: PBSM Algorithm, TIGER
Data: Join Road with Hyd. Clustered
and non—clustered (NC) scenario.

Based Algorithm, TIGER Data: Join  gorithm, TIGER Data: Join Road with
Road with Hyd. Clustered and non—- Hyd. Clustered and non-clustered
clustered (NC) scenario. (NC) scenario.

e TreeJoining Cost: Since bulk loading sorts the keys inthe to disk. The spatial partitioning function decomposes the uni-
non—clustered scenario, the trees that are built in both theverse into tiles (refer to Section 3.4) and maps the tiles to par-
clustered and the non—clustered scenarios are exactly thditions. When the input is clustered, consecutive tuples are
same. Consequently, the algorithm for joining the two trees more likely to be in the same tile, and, as a result, get mapped
performs exactly the same steps in both the cases, and, as to the same partition. Consequently, this phase incurs at most
result, clustering has no effect on the time for joining the one disk seek for eachtile. When the data is not clustered, the
indices. partitions fill up in a random order, and, as a result, writing

« Refinement Step Cost: Inthe refinement step, tuples Bf the partitions now involve many disk seeks over the partition

are scanned once, and the tuple§'afre scanned multiple f'leAS'. N i intto note f Fi 10and 12. is that
times. The refinement step (refer to Section 3.2) reads a n interesting point to note from Figures 1uan 1Stha

bunch ofR tuples that are physically clustered on the disk, the PBSM and the R—tree based join algorithm have the same

and then reads the tuples that “spatially match” these elapsed time for performing the refinement step. For PBSM,
tuples. When the physical order of the tuples on disk is the refinement cost constitutes about 45% of the overall join

the same as the spatial order, the fetches taStheples cost, and for the R—tree based algorithm, the refinement cost
X 1 X - 0 - . .
scan only a small portion of the relation. Consequently, the is about 23% of the overall join cost. For performing the

refinement costs improve with spatial clustering. reﬂngment st'ep, wh|c.h in this case requires examining two
polylines for intersection, a plane—sweeping algorithm was

Thus, mainly due to large reduction in the index building used. Without this, the cost of the refinement step increases
costs, the R—tree based join benefits significantly from having by 62%.
the input relations clustered on the join attribute. _ _ _

Now, consider the Indexed Nested Loops Join (Figure 11). Comparison Using the Sequoia Data
Clustering has a similar effect on the index building cost, as Next, the performance of the algorithms was compared using
sorting the keys can be avoided. Further, for small buffer the Sequoia data set. Figure 13 shows the result of this
pool sizes the index on Hydrography cannot fit entirely in comparison. For this data set, PBSM is 13—27% faster than
memory, and the index probe cost is significantly reduced the R—tree based join and 17-114% faster than the Indexed
when the data is clustered. This effect is similar to the Nested Loops join.
behavior of the indexed nested loops join in the relational  For the Sequoia data set, we observed that the cost of the
domain where sorting the relation that is used to probe the refinement step is a dominating factor for both the PBSM and
index improves the performance of the join. the R—tree based join, contributing about 79% to the overall

Besides a reduction in the refinement cost, clustering re- PBSM join cost, and 68% to the overall R—tree based join
duces the partitioning costs of the PBSM algorithm (Fig- cost. (The detailed cost break for this data set appears in
ure 12). The difference in the partitioning costs is more pro- the full length version of this paper [PD]). The refinement
nounced for smaller buffer pool sizes. This behavior is due step for this query involves checking if an island polygon is
to the way partitions are written out to disk. The PBSM algo- contained in a landuse polygon. This check for containment
rithm does not manage any of the partition buffers; it simply is currently implemented in Paradise using a naiveXp(
writes tuples to appropriate partition files, and relies on the algorithm @ is the number of points in a polygon). There are
SHORE storage manager to flush pages of the partition filesa number of techniques for reducing the cost of this part of
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Figure 14: Comparison of the Join Al- Figure 15: Comparison of the Join Al-
Figure 13: Sequoia Data Set.  gorithms with indices, TIGER Data (Join gorithms with indices, TIGER Data (Join
Road with Hydrography). Road with Rail).

the join [BKSS94] (by an order of magnitude in many cases). compare PBSM, Rtree—1-Largeldx and INL-1-Largeldx).

These techniques rely on using as a filter in the refinementWhen an index exists only on the larger input, the Indexed
step, extra information that is precomputed and stored alongNested Loops encounters many buffer misses while probing
with each spatial feature. As an example, each polygon couldthe index. Even if we chose to build an index on the smaller
store its minimum bounding rectangle (MBR), and amaximal input and probe it, the index probing cost itself is still greater

enclosed rectangle (MER)—which is a rectangle that is fully than the R—tree join cost (compare Rtree—1-Largeldx and
contained in the polygon. Then, during the refinement step INL-1-Smallldx).

to determine if polygon pl is contained in polygon p2, the  In the last case, when an index exists only on the smaller
MBR of p1 could be examined for containment in the MER input, the PBSM join performs better than the R-tree and
of p2. If this containment holds, p1is guaranteedto lie within the Indexed Nested Loops based joins (in the Figures 14
p2, and we can skip further processing. If these techniquesand 15 compare PBSM with Rtree—1-Smallldx and INL-1—
were implemented, the relative performance of the PBSM Smallldx). For small buffer pool sizes, when joining Hydrog-

algorithm would improve. raphy with Roads (Figure 14), the R—tree based algorithm
o (labeled as Rtree—1-Smallldx) performs better than Indexed
Summary of the No Pre-existing Index Case Nested Loops (labeled as INL-1-Smallldx). However, as the

In summary, overall the PBSM algorithm has better perfor- buffer pool size increases with respect to the index size, the
mance than the R—tree and the Indexed Nested Loops base@erformance of Indexed Nested Loops improves rapidly, out-
algorithms. When the sizes of the two inputs differ signif- performing the R—tree based join for large buffer pool sizes
icantly, the Indexed Nested Loops performs better than the in Figure 14, and for all buffer pool sizes in Figure 15.

R-tree based algorithm. Finally, the performance of all the The performance of the algorithms using the clustered

algorithms improve if the join inputs are clustered. TIGER data qualitatively matched with the results for the
non—clustered case, while the performance of the different
45 Joinsin the Presence of Pre-existing Indices algorithms using the Sequoia data qualitatively matched the

In this section, we investigate the performance of the spatial results shown in Figure 14. These numbers are omitted from
join algorithms when one or both the inputs to the join already this paper.
has an index. In this experiment, when one index exists, the Insummary, if anindex exists on the larger input, or if both
Index Nested Loops probes that index, whereas the R—treeinputs have a pre—existing index, then the R—tree based join
based join algorithm builds an index on the other input and algorithm has the best performance, and if an index exists
proceeds to “join” the indices. When both indices exist, the only on the smaller input, then the PBSM algorithm has the
Index Nested Loops probes the smaller index, while the R— better performance.
tree based join skips building any indices.

The results of this experiment are shown in Figures 14 46 CPU Costs
and 15. When indices pre—exist on both the inputs, the We now examine the CPU and the I/O costs involved in
R-tree based algorithm has the best performance. Sincehe spatial join algorithms. Table 4, shows the I/O costs
building an index on the smaller input is not very expensive, incurred when joining the Road and the Hydrography data
the R—tree based algorithm also has the best performancdrom the TIGER data set. Note that, except for the first
when an index exists only on the larger input (in the graphs, component in each join algorithm, every component starts
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Algo- Component 24M B Buffer Pool 8M B Buffer Pool 2M B Buffer Pool

rithm of the Total I/0 1/0Con- | Total 1/0 1/0Con-| Total /0 1/0O Con—-
Algorithm Cost Cost tribution Cost Cost tribution Cost Cost tribution
Partition Road 155.6 354 22.7% 1531  38.0 24.8% 208.2 83.4 40.09
Partition Hyd 425 155 36.59¢ 46.2 143 30.99% 75.6 29.8 39.49

PBSM | Merge Partitions | 114.6 16.3 14.29% 94.9 19.0 20.0%9 934 204 21.89
Refinement 226.3 628 27.8% 2974  99.7 33.5% 341.9 147.1 43.0%
TOTAL 539.0 130.0 24.1% 591.6 171.0 28.9% 719.1  280.7 39.0%
Build Hyd. Index | 125.0 114 9.19%9 1540 274 17.8% 163.1 31.2 19.1%
Build Road Index| 649.5 118.8 18.3% 679.6 110.3 16.2% 711.6 134.1 18.8%

R-Tree | Join Indices 740 323 43.69% 91.7 445 48.5% 99.4 50.0 50.39

Join Refinement 2205 64.1 29.1% 296.4 939 31.7% 3417 136.4 39.9%
TOTAL 1069.0 226.6 21.2% | 1221.7 276.1 22.6% | 13158 351.7 26.7%
Build Hyd. Index | 119.7 124 10.4% 1509  28.9 19.2% 162.0 35.8 22.1%

NL-ldx | Probe Index 925.0 120.7 13.0% 1137.3 341.8 30.0% 3568.5 2369.1 66.49
TOTAL 1044.7 133.1 12.7% | 1288.2 370.7 28.8% | 3730.5 2404.9 64.5% ﬂ)

Table 4: Detailed Cost breakdown, TIGER Data. Join Roads with Hydrography(All times are in seconds)

out with some dirty pages left behind in the buffer pool by mance comparison, using real data sets, show that the PBSM
the previous component. The Table shows that, for all the algorithm is more efficient when neither of the inputs to the
algorithms, the CPU costs dominate the I/O costs (by a largejoin have a spatial index. When an index exists only on the
amountin most cases). The reason for this is two folds. First, smaller input, the PBSM algorithm still performs better than
performing spatial operations like probing an R*-tree index, the other algorithms. The R—tree based algorithm has better
joining partitions using a plane—sweep algorithm, and spatial performance, when an index exists on the larger input, or if
sorting during bulk loading an index, are computationally both inputs have a pre—existing index.
intensive. Second, the SHORE storage manages works hard ] o
at minimizing the 1/0 costs. Whenever a dirty page hastobe ~ AS part of our future work, we plan on investigating the
flushed to the disk, the storage manager forms a sorted list ofYS€ Of parallelism to evaluate spatial joins. Since, PBSM,
all the dirty pages in the buffer pool, and tries to find pages just I|I.<e hash based relational joins, uses partitioning to break
that are consecutive on the disk. These pages are then writte/2/9€ inputs into smaller parts, we expect that the PBSM algo-
to the disk. rithm will parallelize efficiently. Parallelizing PBSM, would
CPU costs were found to be a dominating factor for the équire a strategy for declustering spatial objects. The spa-
spatial joins on the clustered TIGER and the Sequoia dataF'al partitioning function that is used by PBSM for partition-

sets too [PD]. Once again, due to space constraints we haved arge inputs, can also be used for declustering spatial
omitted these graphs from this paper. data. We are currently examining these issues in the broader

context of extending Paradise [DK194] to run on shared-
. nothing architectures [Sto86]. Parallel spatial databases are
5 Conclusionsand Future Work emerging as an attractive solution for storing and manipu-
This paper describes Partition Based Spatial-Merge (PBSM)lating large volumes of spatial data [DLPY93], and some
Join, a new algorithm for performing spatial join. This algo- technigues for declustering spatial data have recently been
rithm does not require any indices on the joining attribute of proposed [TY95]. However, unless the spatial data is uni-
the two inputs. Such a situation could arise if both the inputs formly distributed, these techniques can result in unbalanced
to the join are intermediate results in a complex query, or in partitions. We feel that our spatial partitioning function us-
a parallel environment where the inputs have been dynami-ing tiling, which is the spatial equivalent of virtual processor
cally redistributed. The algorithm uses an efficient compu- partitioning in a parallel relational system [DNSS92], would
tational geometry based plane—sweeping technique for per-probably adapt better to different data distributions. We are
forming the join. If the inputs to the algorithm are too large also evaluating various tradeoffs in declustering spatial data.
to fit in memory, then a spatial partitioning function is used Since the spatial partitioning function might map an input ob-
to partition the inputs into chunks that can fit in memory. ject to multiple outputs, one could either replicate such ob-
This paper also contains the results of a comprehensivejects entirely, or replicate just the spatial approximation (like
performance study that is based on actual implementation ofthe minimum bounding rectangle). If the object is not repli-
three spatial join algorithms in Paradise, a database systentated inits entirety (as in [TY95]), then remote fetches might
for handling GIS applications. The three algorithms are: the be required, whereas if the object is fully replicated, remote
traditional indexed nested loops algorithm, a previously pro- fetches can be avoided at the expense of an increase in the
posed algorithm that uses spatial indices on both the inputsamount of storage. The tradeoff for many of these would
to evaluate the join, and the PBSM algorithm. The perfor- probably depend on the characteristics of the input data and
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