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Abstract
This paper describes PBSM (Partition Based Spatial–Merge), a new
algorithm for performing spatial join operation. This algorithm is
especially effective when neither of the inputs to the join have an
index on the joining attribute. Such a situation could arise if both
inputs to the join are intermediate results in a complex query, or in
a parallel environment where the inputs must be dynamically redis-
tributed. The PBSM algorithm partitions the inputs into manage-
able chunks, and joins them using a computational geometry based
plane–sweeping technique. This paper also presents a performance
study comparing the the traditional indexed nested loops join algo-
rithm, a spatial join algorithm based on joining spatial indices, and
the PBSM algorithm. These comparisons are based on complete im-
plementations of these algorithms in Paradise, a database system for
handling GIS applications. Using real data sets, the performance
study examines the behavior of these spatial join algorithms in a va-
riety of situations, including the cases when both, one, or none of
the inputs to the join have an suitable index. The study also exam-
ines the effect of clustering the join inputs on the performance of
these join algorithms. The performance comparisons demonstrates
the feasibility, and applicability of the PBSM join algorithm.

1 Introduction
With the increasing popularity of automated processes in
fields like Earth Sciences, Cartography, Remote Sensing,
Land Information Systems etc., and the rapid increase in the
availability of data from a wide variety of sources like satel-
lite images, mapping agencies, simulation outputs etc., the
last decade has witnessed an increase in the demands for sys-
tems that can store, manage, and manipulate spatial data. In-
creasingly, a database system has been employed to meet
these requirements. Examples of commercial database sys-
tems that have been used for these applications are ARC/INFO
[Arc95], Intergraph’s MGE [Cor95], and Illustra [Ube94]).
Data stored in thesespatial database systems includes sim-
ple geometric types like points, lines, polygons, and surfaces,
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and more complex types like swiss–cheese–polygons (which
are polygons with holes) that are derived from the simpler
geometric types. A spatial database system must support
queries on these spatial objects efficiently. Spatial database
users frequently need to combine two spatial inputs based on
some spatial relationship between the objects in the two in-
puts. For example,map overlap, which requires combining
two maps to produce a third, is an important operation in a
spatial database [Bur86, MGR91]. This operation of combin-
ing two inputs based on their spatial relationship is called a
spatial join. Spatial joins, just like their counterparts in a re-
lational system, are an expensive operation. Consequently,
efficient spatial join algorithms are a critical component of
any spatial database system.

Since the representation of a spatial object can be very
large (for example, a spatial object representing a swiss–
cheese–polygon might require thousands of points to repre-
sent the exact geometric shape), spatial operations, including
the spatial join, typically operate in two steps [Ore90]:

� Filter Step: In this step, an approximation of each spatial
object, such as its minimum bounding rectangle, is used to
eliminate tuples that cannot be part of the result. This step
producescandidates that are a superset of the actual result.
These candidates are usually represented as a pair of object
identifiers.

� Refinement Step: In this step, each candidate is examined
(which usually requires fetching a pair of objects from disk)
to check if it is part of the result. This check generally
requires running a CPU–intensive computational geometry
algorithm.

Numerous algorithms have been proposed to execute the
filter step of a spatial join. Many of the earlier algorithms are
based on transforming an approximation of a spatial object
into another domain (e.g. a 1–dimensional domain), and
performing the filter step in the new domain [OM88, Ore86,
BHF93]. The drawback of this approach is that in the new
domain some spatial proximity information is lost, making
the algorithms complex and less efficient. Most of the newer
algorithms are based on using spatial indices for performing
the filter step of the spatial join [BKS93, G¨un93, HS95], and
require a spatial index on both the join inputs. Thesetree
join algorithms can be described as synchronized depth–first
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searches of both indices, with the two depth–first searches
being guided by hints from each other.

While spatial indices might exist on both the inputs during
the join of two base relations, there are many situations where
neither join input will have a spatial index built on it. Such
a situation could arise if the inputs to the join are interme-
diate results in a complex query, or in a parallel environment
where the inputs have been dynamically redistributed. A spa-
tial DBMS must evaluate these joins efficiently. One solution
to this problem is to build a spatial index on both inputs and
then use a tree join algorithm [LR95]. Another solution to
this problem comes from the VLSI domain where one needs
to compute the pairwise intersection between two potentially
large sets of rectangles that don’t fit entirely in main mem-
ory [GS87]. However, the VLSI algorithms are generally not
very efficient with respect to the number of disk I/Os.

This paper makes two contributions. First, it presents a
new spatial join algorithm, called the Partition Based Spatial–
Merge (PBSM) Join, that does not require indices on either of
its inputs. The algorithm partitions the inputs into “manage-
able” chunks and joins the chunks using a computational ge-
ometry algorithm that can be considered as the spatial equiv-
alent of sort–merge. The algorithm incorporates a complete
solution to the spatial join problem as it performs both the fil-
ter and the refinement step.

Second, it includes the results of a comprehensive perfor-
mance study of three spatial join algorithms: a simple in-
dexed nested loops based join algorithm, an R–tree based join
algorithm, and the PBSM algorithm. The performance study
is based on actual implementations of the three algorithms in
Paradise [DKL+94], which is an experimental GIS database
system. Using real data from the TIGER [Tig] and the Se-
quoia [SFGM93] data sets, the study examines the behavior
of the algorithms in a variety of situations, including the cases
when none, one, or both the inputs to the join have a suitable
index. The study also investigates the effect of clustering the
join inputs. Many of the tree–based join algorithms that have
been considered in earlier performance studies, use multiple
inserts to build an index [HS95, LR94]. It is a well known
fact that bulk loading an index is much more efficient than
performing multiple inserts to construct it. For example, us-
ing a buffer pool size of 16MB, Paradise takes 109.9 seconds
to bulk load 122K objects into an 6.5MB R*-tree index, and
864.5 seconds to build the same index using multiple inserts!
Hence, in this study, for both the indexed nested loops and
the R–tree based join algorithms, whenever required, indices
are built using the Paradise bulk loading mechanism.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the related work in this area. Section 3
describes the PBSM algorithm. The performance study com-
paring various spatial join algorithms is presented in Section
4. Finally, Section 5 contains our conclusions and some fu-
ture plans.

2 Related Work

As mentioned in the introduction, spatial join algorithms op-
erate in two steps: a filter step and a refinement step. Most
of the spatial join algorithms that have been proposed previ-
ously only solve the filter step. In this section, we summa-
rize relevant work in this area. Throughout this section, we
use the term spatial join to refer to the filter step of the spatial
join.

In [Ore86, OM88], Orenstein proposes an approach based
on approximate geometry, wherein the universe of the spatial
data is regularly decomposed by superimposing a grid on it.
Each element of the grid is called a pixel, and spatial objects
are approximated by pixels that overlap them. Each pixel,
which is described by its spatial location, is transformed into
a 1–dimensional domain by applying a mapping called the
z–order. The transformed values, which are called z–values,
are then used in a spatial join algorithm that merges two se-
quences of z–values. The z–values, being 1–dimensional
values, can be stored in traditional indexing structures like
a B–tree [OM84]. The performance of the spatial join algo-
rithm using z–values was found to be sensitive to the choice
of the grid [Ore89]. Choosing a fine grid increases the ef-
ficiency of the filtering technique, but it also increases the
space requirement since a larger number of z–values are re-
quired to approximate an object.

In the relational domain, [Val87] proposed the use of join
indices to improve the performance of the relational join
operator. Drawing an analogy from this, Rotem [Rot91]
proposed a spatial join index that partially precomputes the
results of a spatial join. The algorithm for building the
spatial join index requires grid files for indexing the spatial
data, and uses these grid files to compute the spatial join
index. Grid files [NHS84] and kd–trees [Ben75, Ben79] have
also been employed for evaluating multi–attribute joins in
the relational domain [KHT89, HNKT90, BHF93]. These
methods can also be used for evaluating the filter step by
storing the bounding box of the spatial objects as points in
a higher dimension [BHF93].

Recently, spatial index structures like R–trees [Gut84],
R+–trees [CFR87], R*–trees [BKSS90], and PMR quad trees
[NS86] have been used to speed up the evaluation of the spa-
tial join. Using analytical models, G¨unther compares join al-
gorithms that use generalization trees (which is a class of tree
structures that includes the R-tree, R*-tree and R+tree) with
the nested loops join and join indices [G¨un93]. This study
concludes that for low join selectivities, join indices usually
provide the best join performance, but for higher join selec-
tivities generalization trees are more efficient. The proposed
join algorithm using the generalization trees, is similar to the
join algorithm on R–trees proposed by Brinkhoff, Kriegel
and Seeger [BKS93]. This algorithm can be used only if an
R–tree index exists on both the join inputs, and can be de-
scribed as a synchronized depth–first search of both indices,
with the two depth–first searches being guided by hints from
each other. Similar tree joins have been proposed for other
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Require Use of an Index Operate without an Index
Transform the � Z–values [OM84], � Join Indices [Rot91]
approximation into � Grid Files [HNKT90, BHF93] � Z–values [Ore86, OM88]
another dimension � kd–trees [KHT89, HNKT90]
Use the approximation � Synchronized Tree � External VLSI algo [GS87]
directly in the Traversal [BKS93, G¨un93, HS95] � PBSM
two dimensional space � Build 1 or 2 indices before joining [LR94, LR95] � Spatial Hash Join [LR96]

Table 1: Classification of Various Spatial Join Algorithms

data structures. In [HS95], Hoel and Samet propose a tree
join algorithm for the PMR quad tree, and compare the ef-
ficiency of variants of the PMR quad tree with variants of the
R–tree [HS95].

When one of the inputs to the spatial join does not have a
spatial index, Lo and Ravishankar [LR94] propose building
a seeded tree index on that input. A seeded tree is a R–tree
that is allowed to be height unbalanced. The algorithm for
constructing the seeded tree uses the existing index on one
of the two inputs as a starting point, and tries to minimize the
number of random I/Os incurred during the tree construction.
The two indices are then joined using the tree join algorithm
described in [BKS93]. In [LR95], Lo and Ravishankar
extend this work to handle the case when neither of the
inputs have an index. In this approach, spatial sampling
techniques are used for constructing seeded trees on both
inputs, and the seeded trees are joined using the tree join
algorithm of [BKS93].

The problem of finding pairwise intersection between two
sets of rectangles has been extensively studied in the VLSI
domain [MC80], and numerous solutions exist for the case
when both the input set of rectangles fit in memory [PS88].
In [GS87], Güting and Shilling examine the rectangle inter-
section problem when the inputs are too large to fit in mem-
ory, and analyze the time and space complexity of two algo-
rithms that are based on external computational geometry al-
gorithms. However, these algorithms are not very efficient
with respect to the number of disk I/Os, and in some cases
require logarithmic number of passes over the input.

Concurrent with our work on PBSM, Lo and Ravishankar
have proposed a spatial hash join algorithm [LR96] that is, in
many aspects, similar to PBSM. The spatial hash algorithm
first partitions both the inputs, and then joins each of the par-
titions. Upper levels of a seeded tree are used for the partition
function, and a filtering technique is employed during the par-
titioning phase. A performance study, based on counting the
number of disk I/Os, is also presented in [LR96]. [LR96] ig-
nores the very expensive refinement step.

To summarize, we can classify all these algorithms as
shown in Table 1.

3 Partition Based Spatial–Merge Join

This section describes a new algorithm, called the Partition
Based Spatial–Merge (PBSM) join, for evaluating a spatial

join. For the sake of concreteness, letR andS denote
the two inputs to the join. We assume that the inputs are a
sequence of tuples, and that each tuple has a spatial attribute
that is used in the join condition. We also assume that the
system has a unique identifier for each tuple. This unique
identifier is referred to as theOID of the tuple.

The PBSM algorithm operates in the following two steps.

� Filter Step: The spatial attribute involved in the join may
be a complex spatial feature like a polygon, a polyline, or
a swiss–cheese polygon. In this step, the PBSM algorithm
makes use of an approximation of the spatial feature to
get a “rough estimate” of the characteristics of the spatial
attribute. The minimum bounding rectangle (MBR), is used
as an approximation in this step. The filter step uses
partitioning to partition large inputs into smaller chunks. A
computational geometry plane–sweeping technique is used
to join the chunks. The result of the filter step is a set of
OID pairs such that one OID of the pair refers to a tuple
from the inputR and the other OID refers to a tuple from
the inputS. Furthermore, for each pair, theMBR of the
spatial join attribute of theR tuple overlaps with theMBR

of the spatial join attribute of theS tuple.

� Refinement step: Since two non overlapping spatial fea-
tures can have overlappingMBRs, and since the filter
step “joins” the inputs based on theMBR of the joining
attributes, the filter step generally will produce a superset
of the join result. In therefinement step, theR andS tuples
represented by theOID pair produced by the previous step
are fetched from disk, and their join attributes are examined
to determine if the join predicate is actually satisfied.

The next section describes thefilter step in detail, and the
section following that describes therefinement step.

3.1 Filter Step
The filter step of the PBSM algorithm, begins by reading the
tuples from the inputR. For each tuple of the inputR, the
MBR of the joining attribute and the OID of the tuple, which
is collectively called akey–pointer element, are appended
to a temporary relation on disk. Let us denote this relation
by Rkp. Similarly, the inputS is read and a relationSkp

is produced. The goal of the filter step is to “pair” tuples
from R andS such that theMBRs of their join attributes
overlap.Rkp andSkp have theMBRs for the join attributes
of both the inputsR andS. The problem then simplifies to
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finding all MBRs in Rkp that intersect with someMBR

in Skp. Rectangle intersection (theMBRs are rectangles)
has been extensively studied in the computational geometry
field [PS88]. Given two sets of rectangles, such thatboth
the sets fit entirely in main memory, efficient computational
geometry algorithms, based onplane–sweeping techniques,
exist for reporting all pairs of intersecting rectangles between
the two sets. Now, if bothRkp andSkp fit in memory, then a
plane–sweeping algorithm can be used to find all pairs ofRkp

andSkp key–pointer elements that have overlappingMBRs.
For such “matching” key–pointer elements pairs, theOID
information is extracted, and the OID pair is added to the
output of this step.

If Rkp andSkp are too large to fit entirely in memory, then
each is divided intoP (non–disjoint) partitionsRkp

1
, Rkp

2
,

... Rkp

P andSkp
1

, Skp
2

, ... Skp

P respectively. These partitions
are formed in a way such that for each key–pointer element
in a partitionRkp

i , all the key–pointer elements ofSkp that
have an overlappingMBR are present in the corresponding
S
kp
i partition. Furthermore, the size of the partitions are such

that for each i (1 <= i <= P ) Rkp
i andSkp

i canboth fit
simultaneously in memory.

To form these partitions, a spatial partitioning function is
used. The spatial partitioning function works as follows:

� From the catalog information for the joining attribute of
inputR, the algorithm estimates theuniverse of the input.
The universe for a particular spatial join attribute is the
rectangle that is the minimum cover of the join attribute of
all the tuples in the input.

� The universe is then decomposed into aP subparts (P is
the number of partitions). As an example, consider Figure 1
where the number of partitions is 4.

� Finally, the spatial partitioning function (see Section 3.4 for
more details) is applied to theMBR of a key–pointer ele-
ment. The partitioning function determines all the subparts
of the universe with which theMBR overlaps, and inserts
the key–pointer element into each partition corresponding
to these subparts. Thus, if aMBR overlaps with multiple
subparts of the universe, then it is inserted into multiple par-
titions. For example, the key–pointer element for the object
shown in Figure 1, will be inserted into partitions 0 and 2.

UniversePolygon AttributeMBR

Partition 0 Partition 1

Partition 2 Partition 3

Figure 1: The Spatial Partitioning Function.

After both the inputsR andS have been partitioned, the
algorithm joins the partitions using a computational geome-

try based plane–sweeping technique [PS88]. This technique,
which was also used in [BKS93] for joining the entries of
two R*–tree nodes, can be thought of as the spatial equiv-
alent of the sort–merge algorithm. The details of the algo-
rithm for merging the partitionsRkp

i andSkp
i are as follows.

LetMBR:xl represent the lower x-coordinate of a MBR and
letMBR:xu represent the upper x-coordinate. First, the in-
putsRkp

i andSkp
i , which are a sequence of key–pointer ele-

ments, are sorted on the lower x values of theMBR, namely
MBR:xl. Then, theMBRs from the first key–pointer ele-
ments ofRkp

i andSkp
i are examined, and theMBR which

has a smallerMBR:xl value is selected. Letr denote this
MBR, and let us assume thatr belongs to the inputRkp

i . Us-
ing ther:xu value, the key–pointer elements of the inputS

kp
i

are scanned until a key–pointer element whoseMBR has a
MBR:xl value greater thanr:xu is reached. Effectively, all
the elements ofSkp

i that overlap withr along the x–axis are
scanned. Each of these elements ofS

kp

i , is then checked for
overlap withr along the y–axis1. If an overlap exists, then
the OID pair corresponding to the OIDs in the key–pointer
elements is added to the result (the result of the filter step
is a set of OID pairs). After this,r is marked as processed
and is removed from consideration for the inputR

kp
i . The

algorithm continues by picking from the unprocessed part of
the inputsRkp

i andSkp
i , the element that has the smallest

MBR:xl value. The smallest element is then “joined” with
elements in the other input. This continues until one of the
two inputs has been fully processed.

3.2 Refinement Step: Checking the Candidate OID
pairs for Exact Match

After joining each pair of partitions, the result is a relation
whose tuples have the form< OIDR; OIDS >, such that
theMBR of the joining attribute of theR tuple correspond-
ing toOIDR overlaps with theMBR of the joining attribute
of theS tuple corresponding toOIDS . Since the partitioning
in the filter step might insert a tuple into multiple partitions,
there could be duplicates in this relation. The refinement step
eliminates these duplicates, and examines the actualR andS
tuples to determine if the attributes actually satisfy the join
condition. To avoid random seeks in fetching theR andS
tuples, a strategy similar to that used in [Val87] is employed.
First, the OID pairs are sorted usingOIDR as the primary
sort key andOIDS as the secondary sort key. Duplicates en-
tries are eliminated during this sort. Next, as manyR tuples
as can fit in memory are read from disk along with the corre-
sponding array of< OIDR; OIDS > pairs. TheOIDR part
of this array is “swizzled” to point to theR tuples in memory,
and then the array is sorted onOIDS (this makes the accesses
to S sequential). TheS tuples are then read sequentially into
memory, and the join attributes of theR and theS tuple are
checked to determine whether they satisfy the join condition.

1This check for overlap can be speeded up by organizing theMBRs of
S
kp
i

that overlap withr along the x–axis in an interval–tree [PS88].
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3.3 Determining the Number of Partitions
The number of partitions for the PBSM algorithm can be
estimated as follow. LetjjRjj represent the cardinality of
the inputR, andjjSjj represent the cardinality of the input
S. Also, letM represent the size of the main memory in
bytes, and letSizekey�ptr denote the size of a key–pointer
element (which is a< MBR;OID > pair) in bytes. Since,
the plane–sweep algorithm used in merging the partitions
requiresboth the partitions,Rkp

i andSkp
i , to fit entirely in

memory, the number of partitionP is computed as :

P = d
(jjRjj+ jjSjj) � Sizekey�ptr

M
e (1)

3.4 Choosing a Spatial Partitioning Function
We now explore some of the alternatives that exist in select-
ing a spatial partitioning function. The spatial partitioning
function described in Section 3.1 decomposes the universe
into P subparts (whereP is the number of partitions deter-
mined by Equation 1). However, in the presence of a non–
uniform distribution, this partitioning function could produce
partitions that have large differences in their sizes. As an ex-
ample, consider Figure 2 where the number of partitions is 4.
Here, most of the tuples are in the top left corner, and the spa-
tial partitioning function will map all these tuples to partition
0. Partitions 2 and 3, on the other hand will have very few
tuples.

Universe

Partition 0 Partition 1

Partition 2 Partition 3

Figure 2: Spatial Partitioning Skew

To remedy this situation, the partitioning function used
in PBSM decomposes the universe regularly intoNT tiles,
whereNT is greater than or equal toP . Starting from the
upper left corner, the tiles are numbered from 0 toNT � 1.
Each tile is mapped to a partition using a scheme like round
robin or hashing. For example, consider Figure 3 where the
universe is divided into 12 tiles, the number of partitions is 3,
and tiles are mapped to partitions using a round robin scheme.
Thus tiles 0, 3, 6, and 9 are mapped to partition 0, tiles 1, 4,
7 and 10 are mapped to partition 1, and tiles 2, 5, 8 and 11
are mapped to partition 2. To apply the spatial partitioning
function to aMBR, all the tiles which overlap with theMBR
are determined, and, for each tile, the key–pointer element
corresponding to theMBR is inserted into the corresponding
partition. Thus, if aMBR overlaps with tiles from multiple
partitions, then its key–pointer element will be inserted into
all those partitions. Consequently, the key–pointer element
for the object shown in Figure 3, will be inserted to partitions
0, 1 and 2.

UniversePolygon AttributeMBR

Tile 4/Part 1 Tile 5/Part 2 Tile 6/Part 0 Tile 7/Part 1

Tile 8/Part 2 Tile 9/Part 0 Tile 10/Part 1 Tile 11/Part 2

Tile 1/Part1 Tile 2/Part2 Tile 3/Part 0Tile 0/Part 0

Figure 3: Spatial Partitioning Function using Tiles.

The spatial partitioning function just described is the spa-
tial analog of virtual processor round robin partitioning for
handling skews in parallel relational joins [DNSS92]. A sim-
ilar partitioning function has been independently proposed
for redundancy–baseddeclustering of spatial objects in a par-
allel spatial database [TY95], but in that proposal the number
of tiles always equals the number of partitions.

The design space for choosing the spatial partitioning func-
tion has two axes: the number of tiles used in the partitioning
function, and the tile–to–partition mapping scheme. Decom-
posing the universe into small tiles produces many small con-
tainers, which are easier to pack into partitions to produce a
more uniform partition distribution. However, spatial objects
that span tiles from multiple partitions have to be replicated
in all the partitions, thereby increasing the replication over-
head. For the tile–to–partition mapping scheme, one could
use either round robin or hashing on the tile number.

To explore these alternatives, we have chosen two data
sets. The first data set is derived from the TIGER/Line
files [Tig], and represents roads in the state of Wisconsin.
This data set is 62.4MB in size, and contains 456,613 tuples.
The second data set contains the polygon data from the Se-
quoia benchmark [SFGM93]. This data set contains 58,115
polygons and is 21.9MB in size.

First, we explore the design space of the spatial partition-
ing function using the Tiger data. Figure 4 shows the effect
of increasing the number of tiles, and choosing different tile–
to–partition mappingschemes. The graph uses the coefficient
of variation2 of the distribution of the tuples in each partition
as its metric. A perfect spatial partitioning function would
be one that assigns equal number of tuples to each partition,
and, consequently, would have a coefficient of variation of 0
for the distribution of the tuples in each partition. From Fig-
ure 4, the following observations can be made. First, using a
large number of tiles and hashing on the tile number gives a
good partitioning function. Second, all the partitioning func-
tions improve as the number of tiles is increased. This is
because with a larger number of tiles, “dense” regions get
subdivided into more tiles, and these tiles can be mapped to
different partitions. Third, for a given number of tiles, the
partitioning function yields a more uniform distribution for

2The coefficient of variation is defined as the standard deviation divided
by the mean.
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Figure 4: Spatial Partitioning Func-
tion Alternatives: Tiger Road Data

Figure 5: Replication Overhead:
Tiger Road Data (16 Partitions).

Figure 6: Replication Overhead: Se-
quoia Polygon Data(16 Partitions).

a smaller number of partitions (compare the graphs for hash-
ing with 4 and 16 partitions). This, once again, is because the
distribution of tiles that cover “dense” regions is better with
a smaller number of partitions. For example, when the uni-
verse is decomposed into 25 tiles, 13 tiles cover 81.5% of the
data. These 13 tiles can be spread across 4 partitions more
uniformly than over 16 partitions, and, as a result, the coeffi-
cient of variation for 4 partitions is lower than that for 8 par-
titions.

Figure 5 measures the replication overhead—the increase
in the number of tuples created due to replication during
partitioning—for various number of tiles. The Figure shows
that, for the Tiger data set, the replication overhead is very
modest even for a very large number of tiles (increasing the
number of tuples by 4.8% for 4000 tiles). The figure also
shows some spikes in the curve for round robin. This is be-
cause with round robin, when the number of tiles is an in-
tegral multiple of the number of partitions, it is possible for
an entire column to get mapped to a single partition. This is
equivalent to having fewer number of tiles (each column now
behaves like a single tile), Consequently, fewer tuples have
to be replicated. However, at these points, the partitions pro-
duced by the partitioning function are less balanced (observe
the jumps in Figure 4 for round robin with 16 nodes).

For the Sequoia data, we found that the effect of increasing
the number of tiles on the tile–to–partition mapping scheme
is very similar to the effect on the Tiger Data. However, the
replication overhead, which is shown in Figure 6, is much
higher.

3.5 Handling Partition Skew

Similar to the partition skew problem for Grace Join, it is
possible for the PBSM algorithm to end up with partition
pairs that do not fit entirely in memory (for example, if
most of the data is concentrated in a very small cluster).
One possible way to handle this would be to dynamically
repartition the overflown partition pair. Another alternative
is to increase the number of partitions (limited toM ) and
using schemes similar to those used by the Adaptive Hash

join algorithm [ZG90]. However, the current implementation
of PBSM does not incorporate any of these techniques.

4 Performance Evaluation

In this section, we compare the PBSM join algorithm with
two other spatial join algorithms. The first algorithm is based
on the traditional indexed nested loops algorithm and the
other is based on the R–tree join algorithm [BKS93]. These
algorithms use spatial indices, and were chosen because most
spatial databases support some form of spatial indexing (for
example, R–trees in Illustra [Ube94]). Such systems can eas-
ily use these index based join algorithms. This study, is not a
meant to be a comprehensive performance study of all possi-
ble spatial join algorithms (refer to Table 1 for a classification
of spatial join algorithms). However, the algorithms that we
study are alternatives that can be used in a spatial database
system that does not transform approximations of spatial ob-
jects into another domain (e.g. a 1–dimensional domain). To
the best of our knowledge, most commercial spatial database
systems do not transform the approximations of spatial ob-
jects into another domain (for example, ARC/INFO [Arc95],
and Illustra [Ube94]).

The remainder of this section is organized as follows. First
the index nested loops and the R–tree based join algorithms
are described. This is followed by a description of the method-
ology used in the study, and, finally, the results of the study
are presented.

4.1 Indexed Nested Loops Join

Let R andS denote the two relations that are being joined,
and assume thatR has fewer tuples thanS. If neither join in-
put has an index on the joining attribute, the indexed nested
loops join algorithm first builds an index on the smaller input
R. The index is built using a bulk loading mechanism that
reads the extentR and extracts thekey–pointer information
(< MBR;OID >) for each tuple. The key–pointer infor-
mation is then spatially sorted based on theMBR. Spatial
sorting is accomplished by transforming the center point of
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Data # of Total R*–tree
Type Objects Size Size
Road 456,613 62.4 MB 24.0 MB
Hydrography 122,149 25.2 MB 6.5 MB
Rail 16,844 2.4 MB 1.0 MB

Table 2: Wisconsin TIGER Data

theMBR into a Hilbert value, and using this value for order-
ing the key–pointer information. This sorting brings together
key–pointerswhose joining attributes are spatially close. The
spatial index, which in our case is a R*–tree, is then built in
a bottom up fashion [DKL+94]. After building the index on
the join attribute ofR, a scan is started onS. Each tuple of
S is used to probe the index onR. The result of the probe is
a set of (possibly empty)OIDs ofR. The tuples ofR corre-
sponding to theseOIDs are then fetched (from disk, if nec-
essary) and checked with theS tuple to determine if the join
condition is satisfied. Fetching eachR tuple from disk will
generally incur a random disk I/O.

4.2 R–tree Based Join Algorithm

For this algorithm, we first use bulk loading to build an R*–
tree index on the joining attribute of the two input relations.
The two indices are then joined using the R–tree join algo-
rithm proposed in [BKS93]. The R–tree join algorithm per-
forms a synchronous depth–first traversal of the two trees.
The traversal starts with the roots of the two R–trees, and
moves down the levels of the two trees in tandem until the
leaf nodes are reached. At each step, two nodes, one from
each tree, are joined. Joining two nodes requires finding
all bounding boxes in the first node that intersect with some
bounding box in the other node. The child pointers corre-
sponding to such matching boundingboxes are then traversed
(resulting in a depth–first traversal).

The R–tree join algorithm of [BKS93] only performs the
filter step of the spatial join, and produces a set of candidate
OID pairs corresponding to the objects whose MBRs inter-
sect. The objects corresponding to these OIDs then have to
be fetched and checked to determine if the join predicate is
actually satisfied. For this, we use the same technique that
was used in the PBSM join algorithm (refer to Section 3.2).

4.3 Methodology
For the performance comparison, we implemented each of
these algorithms, namely, indexed nested loops join, R–tree
based join and the PBSM join in Paradise[DKL+94]. Par-
adise is a database system that handles GIS type of appli-
cations. Paradise supports storing, browsing, and querying
of geographic data sets. It uses an extended–relational data
model and supports an extension of SQL as its query lan-
guage. Paradise uses SHORE [CDF+94] as its storage man-
ager for persistent objects.

The machine used for the study was a Sun SPARC–10/51
with 64 MBytes of memory, running SunOS Release 4.1.3.
One Seagate 2GByte disk (3.5” SCSI, model # ST 12400N)

Data # of Total R*–tree
Type Objects Size Size
Polygons 58,115 21.9 MB 3.0 MB
Islands 21,007 6.2 MB 1.1 MB

Table 3: Sequoia Data.

was used as a raw device to hold the database. The log for
the system was kept on a second 2GByte Seagate disk.

For the performance study, the PBSM algorithm used 1024
tiles for the spatial partitioning function. We explored the
effect of the number of tiles on the execution time of PBSM,
but found that changing the number of tiles had a very small
effect on the overall execution time (less than 5%). The full
length version of this paper [PD] presents this result.

The performance study was carried out in two parts. The
first part examined the performance of the three algorithms
when neither join input had a pre–existing index, and the
second part examined the performance of these algorithms
when indices existed on one or both join inputs.

Both parts of the study used three collections of data sets.
The first collection was derived from the TIGER/Line files
[Tig] for the State of Wisconsin. The TIGER data is devel-
oped and distributed by the U.S. Bureau of the Census, and
contains detailed geographic and cartographic information
for the United States. From the TIGER files, three data sets
were extracted (see Table 2). The first data set, calledRoad,
represents the roads, the second data set, calledHydrogra-
phy, represents basic hydrography features which includes
rivers, canals, streams, etc., and the third data set,Rail, rep-
resents the railroads. Besides containing a polyline attribute
that describes the spatial feature, each tuple in this collection
also contains attributes that describes the name, the classi-
fication, and the address ranges of the spatial feature. The
average number of points in the spatial feature of the Road,
Hydrography, and the Rail tuple is 8, 19 and 7 respectively.
Two queries were run against this collection. The first query
joined the Road data set with the Hydrography data, produc-
ing as its result all the intersecting Road and Hydrography
features. The result relation consists of 34,166 tuples (about
13.1MB). The second query performed a join between the
Road and the Rail data, and produced a 1.4MB result rela-
tion that had 4,678 tuples. This query was used to examine
the performance of the algorithms when the size of the input
relations differ significantly.

To study the effect of clustering on the join inputs, the
second collection was formed by spatially sorting the objects
in the first collection.

For the third collection, the islands and polygon data sets
from the Sequoia 2000 Storage Benchmark [SFGM93] were
used. The polygon data set represents regions of homoge-
neous landuse characteristics in the State of California and
Nevada, while the island data set represents holes in the poly-
gon data (example, a lake in a park). The average number of
points in a polygon tuple is 46, and the average number of
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Figure 7: TIGER Data: Join Road
with Hydrography

Figure 8: TIGER Data: Join Road
with Rail

Figure 9: Clustered TIGER Data: Join
Road with Hydrography

points in an islands tuple is 35. The query used in this exper-
iment joined the polygons and islands, producing, as a result,
those islands that are contained in one or more of the poly-
gons. This result contained 25,260 tuples and was 30.8MB
in size. The characteristics of this data are shown in Table 3.

4.4 Joins When None of the Indices Pre–exist

This section presents the results of the performance evalua-
tion when neither join input has a pre–existing index. In this
case, the Indexed Nested Loops algorithm builds an index on
the smaller inputs and probes it, whereas the R–tree based al-
gorithm builds both the indices and joins it using the tree join
algorithm.

Comparison Using the TIGER Data

In the first experiment, the Road data set was joined with the
Hydrography data set. Figure 7 shows the execution times
of the three spatial join algorithms as a function of the buffer
pool size. For this query, the PBSM algorithm is 80–100%
faster than the R–tree based join algorithm, and 93–400%
faster than the Indexed Nested Loops algorithm. The Indexed
Nested Loops builds an index on Hydrography and probes
it with the tuples of the Road data set. After probing the
index with a tuple, the Indexed Nested Loops Join fetches the
matching Hydrography tuple, and examines it to determine if
the join predicate is actually satisfied. For smaller buffer pool
sizes, fetching the matching Hydrography tuple generally
requires a disk I/O. However, as the size of the buffer pool
increases, larger portions of the Hydrography data reside
in the buffer pool, and, as a result, the performance of the
Indexed Nested Loops Join improves significantly.

Next, the performance of the algorithms was compared by
joining the Road data with the Rail data (Figure 8). Since the
size of the Rail data is only 2.4MB, and the index on it is only
1.0MB, the index and the data usually fit in the buffer pool
(the Rail data pages compete with the Road data pages for
buffer pool frames). As a result, the Indexed Nested Loops
performs better than the R–tree based join algorithm. The
cost of the R–tree based join algorithm is dominated by the

cost of building the index on the larger Road data, and the
algorithm spends about 85% of its total time building this
index.

Effect of Clustering

Next, to investigate the effect of clustering, we ran the query
that joins Roads with Hydrography on the clustered TIGER
data (clustering had a similar effect on the join of Road with
Rail, and these results can be found in [PD]). The results of
this experiment are shown in Figure 9. For this experiment,
PBSM is about 40% faster than the R–tree based join algo-
rithm, and 60–80% faster than Indexed Nested Loops.

By comparing Figures 9 and 7, one can observe that if
the inputs to the join are clustered, the performance of all
the join algorithms improve. To understand this behavior,
consider Figures 10 through 12, which contain detailed cost
breakdowns for both the clustered and the non–clustered
scenarios. For the R–tree based join algorithm, the total
join cost includes the cost of building both indices, the cost
of joining the indices, and the cost of fetching the Road
and Hydrography tuples from the disk and examining them
to determine if the join predicate is actually satisfied (the
refinement step). For the Indexed Nested Loops join, the total
cost consists of building the index on Hydrography, and then
probing it repeatedly with tuples from the Road data set. For
the PBSM algorithm, the total join cost includes the cost of
forming the two partitions, the cost of merging the partitions,
and the cost of the refinement step.

First, consider the individual costs of the R–tree based join
algorithm (Figure 10).

� Index Building Costs: The indices for this join are built
using bulk loading (refer to Section 4.1 for a more detailed
description of bulk loading). Bulk loading an index has
three costs: the cost of extracting the key–pointers from
the input, sorting the key–pointers, and building the index
using the sorted key–pointers. When an input is clustered,
sorting the key–pointers can be avoided, thereby, reducing
the cost of building the index.
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Figure 10: R–tree
Based Algorithm, TIGER Data: Join
Road with Hyd. Clustered and non–
clustered (NC) scenario.

Figure 11: Indexed Nested Loops Al-
gorithm, TIGER Data: Join Road with
Hyd. Clustered and non–clustered
(NC) scenario.

Figure 12: PBSM Algorithm, TIGER
Data: Join Road with Hyd. Clustered
and non–clustered (NC) scenario.

� Tree Joining Cost: Since bulk loading sorts the keys in the
non–clustered scenario, the trees that are built in both the
clustered and the non–clustered scenarios are exactly the
same. Consequently, the algorithm for joining the two trees
performs exactly the same steps in both the cases, and, as a
result, clustering has no effect on the time for joining the
indices.

� Refinement Step Cost: In the refinement step, tuples ofR
are scanned once, and the tuples ofS are scanned multiple
times. The refinement step (refer to Section 3.2) reads a
bunch ofR tuples that are physically clustered on the disk,
and then reads theS tuples that “spatially match” theseR
tuples. When the physical order of the tuples on disk is
the same as the spatial order, the fetches to theS tuples
scan only a small portion of the relation. Consequently, the
refinement costs improve with spatial clustering.

Thus, mainly due to large reduction in the index building
costs, the R–tree based join benefits significantly from having
the input relations clustered on the join attribute.

Now, consider the Indexed Nested Loops Join (Figure 11).
Clustering has a similar effect on the index building cost, as
sorting the keys can be avoided. Further, for small buffer
pool sizes the index on Hydrography cannot fit entirely in
memory, and the index probe cost is significantly reduced
when the data is clustered. This effect is similar to the
behavior of the indexed nested loops join in the relational
domain where sorting the relation that is used to probe the
index improves the performance of the join.

Besides a reduction in the refinement cost, clustering re-
duces the partitioning costs of the PBSM algorithm (Fig-
ure 12). The difference in the partitioning costs is more pro-
nounced for smaller buffer pool sizes. This behavior is due
to the way partitions are written out to disk. The PBSM algo-
rithm does not manage any of the partition buffers; it simply
writes tuples to appropriate partition files, and relies on the
SHORE storage manager to flush pages of the partition files

to disk. The spatial partitioning function decomposes the uni-
verse into tiles (refer to Section 3.4) and maps the tiles to par-
titions. When the input is clustered, consecutive tuples are
more likely to be in the same tile, and, as a result, get mapped
to the same partition. Consequently, this phase incurs at most
one disk seek for each tile. When the data is not clustered, the
partitions fill up in a random order, and, as a result, writing
the partitions now involve many disk seeks over the partition
files.

An interesting point to note from Figures 10 and 12, is that
the PBSM and the R–tree based join algorithm have the same
elapsed time for performing the refinement step. For PBSM,
the refinement cost constitutes about 45% of the overall join
cost, and for the R–tree based algorithm, the refinement cost
is about 23% of the overall join cost. For performing the
refinement step, which in this case requires examining two
polylines for intersection, a plane–sweeping algorithm was
used. Without this, the cost of the refinement step increases
by 62%.

Comparison Using the Sequoia Data

Next, the performance of the algorithms was compared using
the Sequoia data set. Figure 13 shows the result of this
comparison. For this data set, PBSM is 13–27% faster than
the R–tree based join and 17–114% faster than the Indexed
Nested Loops join.

For the Sequoia data set, we observed that the cost of the
refinement step is a dominating factor for both the PBSM and
the R–tree based join, contributing about 79% to the overall
PBSM join cost, and 68% to the overall R–tree based join
cost. (The detailed cost break for this data set appears in
the full length version of this paper [PD]). The refinement
step for this query involves checking if an island polygon is
contained in a landuse polygon. This check for containment
is currently implemented in Paradise using a naive O(n2)
algorithm (n is the number of points in a polygon). There are
a number of techniques for reducing the cost of this part of
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Figure 13: Sequoia Data Set.
Figure 14: Comparison of the Join Al-
gorithms with indices, TIGER Data (Join
Road with Hydrography).

Figure 15: Comparison of the Join Al-
gorithms with indices, TIGER Data (Join
Road with Rail).

the join [BKSS94] (by an order of magnitude in many cases).
These techniques rely on using as a filter in the refinement
step, extra information that is precomputed and stored along
with each spatial feature. As an example, each polygon could
store its minimum bounding rectangle (MBR), and a maximal
enclosed rectangle (MER)—which is a rectangle that is fully
contained in the polygon. Then, during the refinement step
to determine if polygon p1 is contained in polygon p2, the
MBR of p1 could be examined for containment in the MER
of p2. If this containment holds, p1 is guaranteed to lie within
p2, and we can skip further processing. If these techniques
were implemented, the relative performance of the PBSM
algorithm would improve.

Summary of the No Pre–existing Index Case

In summary, overall the PBSM algorithm has better perfor-
mance than the R–tree and the Indexed Nested Loops based
algorithms. When the sizes of the two inputs differ signif-
icantly, the Indexed Nested Loops performs better than the
R–tree based algorithm. Finally, the performance of all the
algorithms improve if the join inputs are clustered.

4.5 Joins in the Presence of Pre–existing Indices

In this section, we investigate the performance of the spatial
join algorithms when one or both the inputs to the join already
has an index. In this experiment, when one index exists, the
Index Nested Loops probes that index, whereas the R–tree
based join algorithm builds an index on the other input and
proceeds to “join” the indices. When both indices exist, the
Index Nested Loops probes the smaller index, while the R–
tree based join skips building any indices.

The results of this experiment are shown in Figures 14
and 15. When indices pre–exist on both the inputs, the
R–tree based algorithm has the best performance. Since
building an index on the smaller input is not very expensive,
the R–tree based algorithm also has the best performance
when an index exists only on the larger input (in the graphs,

compare PBSM, Rtree–1–LargeIdx and INL–1–LargeIdx).
When an index exists only on the larger input, the Indexed
Nested Loops encounters many buffer misses while probing
the index. Even if we chose to build an index on the smaller
input and probe it, the index probing cost itself is still greater
than the R–tree join cost (compare Rtree–1–LargeIdx and
INL–1–SmallIdx).

In the last case, when an index exists only on the smaller
input, the PBSM join performs better than the R–tree and
the Indexed Nested Loops based joins (in the Figures 14
and 15 compare PBSM with Rtree–1–SmallIdx and INL–1–
SmallIdx). For small bufferpool sizes, when joining Hydrog-
raphy with Roads (Figure 14), the R–tree based algorithm
(labeled as Rtree–1–SmallIdx) performs better than Indexed
Nested Loops (labeled as INL–1–SmallIdx). However, as the
buffer pool size increases with respect to the index size, the
performance of Indexed Nested Loops improves rapidly, out-
performing the R–tree based join for large buffer pool sizes
in Figure 14, and for all buffer pool sizes in Figure 15.

The performance of the algorithms using the clustered
TIGER data qualitatively matched with the results for the
non–clustered case, while the performance of the different
algorithms using the Sequoia data qualitatively matched the
results shown in Figure 14. These numbers are omitted from
this paper.

In summary, if an index exists on the larger input, or if both
inputs have a pre–existing index, then the R–tree based join
algorithm has the best performance, and if an index exists
only on the smaller input, then the PBSM algorithm has the
better performance.

4.6 CPU Costs

We now examine the CPU and the I/O costs involved in
the spatial join algorithms. Table 4, shows the I/O costs
incurred when joining the Road and the Hydrography data
from the TIGER data set. Note that, except for the first
component in each join algorithm, every component starts
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Algo- Component 24MB Buffer Pool 8MB Buffer Pool 2MB Buffer Pool
rithm of the Total I/O I/O Con– Total I/O I/O Con– Total I/O I/O Con–

Algorithm Cost Cost tribution Cost Cost tribution Cost Cost tribution
Partition Road 155.6 35.4 22.7% 153.1 38.0 24.8% 208.2 83.4 40.0%
Partition Hyd 42.5 15.5 36.5% 46.2 14.3 30.9% 75.6 29.8 39.4 %

PBSM Merge Partitions 114.6 16.3 14.2% 94.9 19.0 20.0% 93.4 20.4 21.8%
Refinement 226.3 62.8 27.8% 297.4 99.7 33.5% 341.9 147.1 43.0%
TOTAL 539.0 130.0 24.1% 591.6 171.0 28.9% 719.1 280.7 39.0%
Build Hyd. Index 125.0 11.4 9.1% 154.0 27.4 17.8% 163.1 31.2 19.1%
Build Road Index 649.5 118.8 18.3% 679.6 110.3 16.2% 711.6 134.1 18.8%

R-Tree Join Indices 74.0 32.3 43.6% 91.7 44.5 48.5% 99.4 50.0 50.3%
Join Refinement 220.5 64.1 29.1% 296.4 93.9 31.7% 341.7 136.4 39.9%

TOTAL 1069.0 226.6 21.2% 1221.7 276.1 22.6% 1315.8 351.7 26.7%
Build Hyd. Index 119.7 12.4 10.4% 150.9 28.9 19.2% 162.0 35.8 22.1%

NL-Idx Probe Index 925.0 120.7 13.0% 1137.3 341.8 30.0% 3568.5 2369.1 66.4%
TOTAL 1044.7 133.1 12.7% 1288.2 370.7 28.8% 3730.5 2404.9 64.5%

Table 4: Detailed Cost breakdown, TIGER Data. Join Roads with Hydrography(All times are in seconds)

out with some dirty pages left behind in the buffer pool by
the previous component. The Table shows that, for all the
algorithms, the CPU costs dominate the I/O costs (by a large
amount in most cases). The reason for this is two folds. First,
performing spatial operations like probing an R*-tree index,
joining partitions using a plane–sweep algorithm, and spatial
sorting during bulk loading an index, are computationally
intensive. Second, the SHORE storage manages works hard
at minimizing the I/O costs. Whenever a dirty page has to be
flushed to the disk, the storage manager forms a sorted list of
all the dirty pages in the buffer pool, and tries to find pages
that are consecutive on the disk. These pages are then written
to the disk.

CPU costs were found to be a dominating factor for the
spatial joins on the clustered TIGER and the Sequoia data
sets too [PD]. Once again, due to space constraints we have
omitted these graphs from this paper.

5 Conclusions and Future Work
This paper describes Partition Based Spatial–Merge (PBSM)
Join, a new algorithm for performing spatial join. This algo-
rithm does not require any indices on the joining attribute of
the two inputs. Such a situation could arise if both the inputs
to the join are intermediate results in a complex query, or in
a parallel environment where the inputs have been dynami-
cally redistributed. The algorithm uses an efficient compu-
tational geometry based plane–sweeping technique for per-
forming the join. If the inputs to the algorithm are too large
to fit in memory, then a spatial partitioning function is used
to partition the inputs into chunks that can fit in memory.

This paper also contains the results of a comprehensive
performance study that is based on actual implementation of
three spatial join algorithms in Paradise, a database system
for handling GIS applications. The three algorithms are: the
traditional indexed nested loops algorithm, a previously pro-
posed algorithm that uses spatial indices on both the inputs
to evaluate the join, and the PBSM algorithm. The perfor-

mance comparison, using real data sets, show that the PBSM
algorithm is more efficient when neither of the inputs to the
join have a spatial index. When an index exists only on the
smaller input, the PBSM algorithm still performs better than
the other algorithms. The R–tree based algorithm has better
performance, when an index exists on the larger input, or if
both inputs have a pre–existing index.

As part of our future work, we plan on investigating the
use of parallelism to evaluate spatial joins. Since, PBSM,
just like hash based relational joins, uses partitioning to break
large inputs into smaller parts, we expect that the PBSM algo-
rithm will parallelize efficiently. Parallelizing PBSM, would
require a strategy for declustering spatial objects. The spa-
tial partitioning function that is used by PBSM for partition-
ing large inputs, can also be used for declustering spatial
data. We are currently examining these issues in the broader
context of extending Paradise [DKL+94] to run on shared–
nothing architectures [Sto86]. Parallel spatial databases are
emerging as an attractive solution for storing and manipu-
lating large volumes of spatial data [DLPY93], and some
techniques for declustering spatial data have recently been
proposed [TY95]. However, unless the spatial data is uni-
formly distributed, these techniques can result in unbalanced
partitions. We feel that our spatial partitioning function us-
ing tiling, which is the spatial equivalent of virtual processor
partitioning in a parallel relational system [DNSS92], would
probably adapt better to different data distributions. We are
also evaluating various tradeoffs in declustering spatial data.
Since the spatial partitioning function might map an input ob-
ject to multiple outputs, one could either replicate such ob-
jects entirely, or replicate just the spatial approximation (like
the minimum bounding rectangle). If the object is not repli-
cated in its entirety (as in [TY95]), then remote fetches might
be required, whereas if the object is fully replicated, remote
fetches can be avoided at the expense of an increase in the
amount of storage. The tradeoff for many of these would
probably depend on the characteristics of the input data and
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the queries on them.
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