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ABSTRACT

This paper describes the design of the Gamma database machine and the techniques employed in its imple-
mentation. Gamma is a relational database machine currently operating on an Intel iPSC/2 hypercube with 32 pro-
cessors and 32 disk drives. Gamma employs three key technical ideas which enable the architecture to be scaled to
100s of processors. First, all relations are horizontally partitioned across multiple disk drives enabling relations to
be scanned in parallel. Second, novel parallel algorithms based on hashing are used to implement the complex rela-
tional operators such as join and aggregate functions. Third, dataflow scheduling techniques are used to coordinate
multioperator queries. By using these techniques it is possible to control the execution of very complex queries with
minimal coordination - a necessity for configurations involving a very large number of processors.

In addition to describing the design of the Gamma software, a thorough performance evaluation of the iPSC/2
hypercube version of Gamma is also presented. In addition to measuring the effect of relation size and indices on
the response time for selection, join, aggregation, and update queries, we also analyze the performance of Gamma
relative to the number of processors employed when the sizes of the input relations are kept constant (speedup) and
when the sizes of the input relations are increased proportionally to the number of processors (scaleup). The
speedup results obtained for both selection and join queries are linear; thus, doubling the number of processors
halves the response time for a query. The scaleup results obtained are also quite encouraging. They reveal that a
nearly constant response time can be maintained for both selection and join queries as the workload is increased by
adding a proportional number of processors and disks.
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1. Introduction

For the last 5 years, the Gamma database machine project has focused on issues associated with the design

and implementation of highly parallel database machines. In a number of ways, the design of Gamma is based on

what we learned from our earlier database machine DIRECT [DEWI79]. While DIRECT demonstrated that paral-

lelism could be successfully applied to processing database operations, it had a number of serious design

deficiencies that made scaling of the architecture to 100s of processors impossible; primarily the use of shared

memory and centralized control for the execution of its parallel algorithms [BITT83].

As a solution to the problems encountered with DIRECT, Gamma employs what appear today to be relatively

straightforward solutions. Architecturally, Gamma is based on a shared-nothing [STON86] architecture consisting

of a number of processors interconnected by a communications network such as a hypercube or a ring, with disks

directly connected to the individual processors. It is generally accepted that such architectures can be scaled to

incorporate 1000s of processors. In fact, Teradata database machines [TERA85] incorporating a shared-nothing

architecture with over 200 processors are already in use. The second key idea employed by Gamma is the use of

hash-based parallel algorithms. Unlike the algorithms employed by DIRECT, these algorithms require no central-

ized control and can thus, like the hardware architecture, be scaled almost indefinitely. Finally, to make the best of

the limited I/O bandwidth provided by the current generation of disk drives, Gamma employs the concept of hor-

izontal partitioning [RIES78] (also termed declustering [LIVN87]) to distribute the tuples of a relation among

multiple disk drives. This design enables large relations to be processed by multiple processors concurrently

without incurring any communications overhead.

After the design of the Gamma software was completed in the fall of 1984, work began on the first prototype

which was operational by the fall of 1985. This version of Gamma was implemented on top of an existing multi-

computer consisting of 20 VAX 11/750 processors [DEWI84b]. In the period of 1986-1988, the prototype was

enhanced through the addition of a number of new operators (e.g. aggregate and update operators), new parallel join

methods (Hybrid, Grace, and Sort-Merge [SCHN89a]), and a complete concurrency control mechanism. In addi-

tion, we also conducted a number of performance studies of the system during this period [DEWI86, DEWI88,

GHAN89, GHAN90]. In the spring of 1989, Gamma was ported to a 32 processor Intel iPSC/2 hypercube and the

VAX-based prototype was retired.

Gamma is similar to a number of other active parallel database machine efforts. In addition to Teradata

[TERA85], Bubba [COPE88] and Tandem [TAND88] also utilize a shared-nothing architecture and employ the

concept of horizontal partitioning. While Teradata and Tandem also rely on hashing to decentralize the execution of

their parallel algorithms, both systems tend to rely on relatively conventional join algorithms such as sort-merge for
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processing the fragments of the relation at each site. Gamma, XPRS [STON88], and Volcano [GRAE89] each util-

ize parallel versions of the Hybrid join algorithm [DEWI84a].

The remainder of this paper is organized as follows. In Section 2 we describe the hardware used by each of

the Gamma prototypes and our experiences with each. Section 3 discusses the organization of the Gamma software

and describes how multioperator queries are controlled. The parallel algorithms employed by Gamma are described

in Section 4 and the techniques we employ for transaction and failure management are contained in Section 5. Sec-

tion 6 contains a performance study of the 32 processor Intel hypercube prototype. Our conclusions and future

research directions are described in Section 7.

2. Hardware Architecture of Gamma

2.1. Overview

Gamma is based on the concept of a shared-nothing architecture [STON86] in which processors do not share

disk drives or random access memory and can only communicate with one another by sending messages through an

interconnection network. Mass storage in such an architecture is generally distributed among the processors by con-

necting one or more disk drives to each processor as shown in Figure 1. There are a number of reasons why the

shared-nothing approach has become the architecture of choice. First, there is nothing to prevent the architecture

from scaling to 1000s of processors unlike shared-memory machines for which scaling beyond 30-40 processors

may be impossible. Second, as demonstrated in [DEWI88, COPE88, TAND88], by associating a small number of

... N21P PP
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disks with each processor and distributing the tuples of each relation across the disk drives, it is possible to achieve

very high aggregate I/O bandwidths without using custom disk controllers [KIM86, PATT88]. Furthermore, by

employing off-the-shelf mass storage technology one can employ the latest technology in small 3 1/2" disk drives

with embedded disk controllers. Another advantage of the shared nothing approach is that there is no longer any

need to "roll your own" hardware. Recently, both Intel and Ncube have added mass storage to their hypercube-

based multiprocessor products.

2.2. Gamma Version 1.0

The initial version of Gamma consisted of 17 VAX 11/750 processors, each with two megabytes of memory.

An 80 megabit/second token ring [PROT85] was used to connect the processors to each other and to another VAX

running Unix. This processor acted as the host machine for Gamma. Attached to eight of the processors were 333

megabyte Fujitsu disk drives that were used for storing the database. The diskless processors were used along with

the processors with disks to execute join and aggregate function operators in order to explore whether diskless pro-

cessors could be exploited effectively.

We encountered a number of problems with this prototype. First, the token ring had a maximum network

packet size of 2K bytes. In the first version of the prototype the size of a disk page was set to 2K bytes in order to

be able to transfer an "intact" disk page from one processor to another without a copy. This required, for example,

that each disk page also contain space for the protocol header used by the interprocessor communication software.

While this initially appeared to be a good idea, we quickly realized that the benefits of a larger disk page size more

than offset the cost of having to copy tuples from a disk page into a network packet.

The second problem we encountered was that the network interface and the Unibus on the 11/750 were both

bottlenecks [GERB87, DEWI88]. While the bandwidth of the token ring itself was 80 megabits/second, the Unibus

on the 11/750 (to which the network interface was attached) has a bandwidth of only 4 megabits/second. When pro-

cessing a join query without a selection predicate on either of the input relations, the Unibus became a bottleneck

because the transfer rate of pages from the disk was higher than the speed of the Unibus [DEWI88]. The network

interface was a bottleneck because it could only buffer two incoming packets at a time. Until one packet was

transferred into the VAX’s memory, other incoming packets were rejected and had to be retransmitted by the com-

munications protocol. While we eventually constructed an interface to the token ring that plugged directly into the

backplane of the VAX, by the time the board was operational the VAX’s were obsolete and we elected not to spend

additional funds to upgrade the entire system.

The other serious problem we encountered with this prototype was having only 2 megabytes of memory on

each processor. This was especially a problem since the operating system used by Gamma does not provide virtual
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memory. The problem was exacerbated by the fact that space for join hash tables, stack space for processes, and the

buffer pool were managed separately in order to avoid flushing hot pages from the buffer pool. While there are

advantages to having these spaces managed separately by the software, in a configuration where memory is already

tight, balancing the sizes of these three pools of memory proved difficult.

2.3. Gamma Version 2.0

In the fall of 1988, we replaced the VAX-based prototype with a 32 processor iPSC/2 hypercube from Intel.

Each processor is configured with a 386 CPU, 8 megabytes of memory, and a 330-megabyte MAXTOR 4380 (5

1/4") disk drive. Each disk drive has an embedded SCSI controller which provides a 45 Kbyte RAM buffer that acts

as a disk cache on read operations.

The nodes in the hypercube are interconnected to form a hypercube using custom VLSI routing modules.

Each module supports eight1 full-duplex, serial, reliable communication channels operating at 2.8

megabytes/second. Small messages (<= 100 bytes) are sent as datagrams. For large messages, the hardware builds

a communications circuit between the two nodes over which the entire message is transmitted without any software

overhead or copying. After the message has been completely transmitted, the circuit is released. The length of a

message is limited only by the size of the physical memory on each processor. Table 1 summarizes the transmission

times from one Gamma process to another (on two different hypercube nodes) for a variety of message sizes.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Packet Size (in bytes) Transmission Timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

50 0.74 ms.
500 1.46 ms.

1000 1.57 ms.
4000 2.69 ms.
8000 4.64 ms.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c

c
c
c
c
c
c
c

Table 1

The conversion of the Gamma software to the hypercube began in early December 1988. Because most users

of the Intel hypercube tend to run a single process at a time while crunching numerical data, the operating system

provided by Intel supports only a limited number of heavy weight processes. Thus, we began the conversion pro-

cess by porting Gamma’s operating system, NOSE (see Section 3.5). In order to simplify the conversion, we

elected to run NOSE as a thread package inside a single NX/2 process in order to avoid having to port NOSE to run

on the bare hardware directly.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 On configurations with a mix of compute and I/O nodes, one of the 8 channels is dedicated for communication to the I/O subsystem.
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Once NOSE was running, we began converting the Gamma software. This process took 4-6 man months but

lasted about 6 months as, in the process of the conversion, we discovered that the interface between the SCSI disk

controller and memory was not able to transfer disk blocks larger than 1024 bytes (the pitfall of being a beta test

site). For the most part the conversion of the Gamma software was almost trivial as, by porting NOSE first, the

differences between the two systems in initiating disk and message transfers were completely hidden from the

Gamma software. In porting the code to the 386, we did discover a number of hidden bugs in the VAX version of

the code as the VAX does not trap when a null pointer is dereferenced. The biggest problem we encountered was

that nodes on the VAX multicomputer were numbered beginning with 1 while the hypercube uses 0 as the logical

address of the first node. While we thought that making the necessary changes would be tedious but straightfor-

ward, we were about half way through the port before we realized that we would have to find and change every

"for" loop in the system in which the loop index was also used as the address of the machine to which a message

was to be set. While this sounds silly now, it took us several weeks to find all the places that had to be changed. In

retrospect, we should have made NOSE mask the differences between the two addressing schemes.

From a database system perspective, however, there are a number of areas in which Intel could improve the

design of the iPSC/2. First, a light-weight process mechanism should be provided as an alternative to NX/2. While

this would have almost certainly increased the time required to do the port, in the long run we could have avoided

maintaining NOSE. A much more serious problem with the current version of the system is that the disk controller

does not perform DMA transfers directly into memory. Rather, as a block is read from the disk, the disk controller

does a DMA transfer into a 4K byte FIFO. When the FIFO is half full, the CPU is interrupted and the contents of

the FIFO are copied into the appropriate location in memory.2 While a block instruction is used for the copy opera-

tion, we have measured that about 10% of the available CPU cycles are being wasted doing the copy operation. In

addition, the CPU is interrupted 13 times during the transfer of one 8 Kbyte block partially because a SCSI disk

controller is used and partially because of the FIFO between the disk controller and memory.

3. Software Architecture of Gamma

In this section, we present an overview of Gamma’s software architecture and describe the techniques that

Gamma employs for executing queries in a dataflow fashion. We begin by describing the alternative storage struc-

tures provided by the Gamma software. Next, the overall system architecture is described from the top down. After

describing the overall process structure, we illustrate the operation of the system by describing the interaction of the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 Intel was forced to use such a design because the I/O system was added after the system had been completed and the only way of doing

I/O was by using a empty socket on the board which did not have DMA access to memory.
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processes during the execution of several different queries. A detailed presentation of the techniques used to control

the execution of complex queries is presented in Section 3.4. This is followed by an example which illustrates the

execution of a multioperator query. Finally, we briefly describe WiSS, the storage system used to provide low level

database services, and NOSE, the underlying operating system.

3.1. Gamma Storage Organizations

Relations in Gamma are horizontally partitioned [RIES78] across all disk drives in the system. The key

idea behind horizontally partitioning each relation is to enable the database software to exploit all the I/O bandwidth

provided by the hardware. By declustering3 the tuples of a relation, the task of parallelizing a selection/scan opera-

tor becomes trivial as all that is required is to start a copy of the operator on each processor.

The query language of Gamma provides the user with three alternative declustering strategies: round robin,

hashed, and range partitioned. With the first strategy, tuples are distributed in a round-robin fashion among the disk

drives. This is the default strategy and is used for all relations created as the result of a query. If the hashed parti-

tioning strategy is selected, a randomizing function is applied to the key attribute of each tuple (as specified in the

partition command for the relation) to select a storage unit. In the third strategy the user specifies a range of key

values for each site. For example, with a 4 disk system, the command partition employee on emp_id (100, 300,

1000) would result in the distribution of tuples shown in Table 2. The partitioning information for each relation is

stored in the database catalog. For range and hash-partitioned relations, the name of the partitioning attribute is also

kept and, in the case of range-partitioned relations, the range of values of the partitioning attribute for each site

(termed a range table).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Distribution Condition Processor #iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
emp_id ≤ 100 1
100 < emp_id ≤ 300 2
300 < emp_id ≤ 1000 3
emp_id > 1000 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c

c
c
c
c
c
c

An Example Range Table
Table 2

Once a relation has been partitioned, Gamma provides the normal collection of relational database system access

methods including both clustered and non-clustered indices. When the user requests that an index be created on a

relation, the system automatically creates an index on each fragment of the relation. Unlike VSAM [WAGN73] and

the Tandem file system [ENSC85], Gamma does not require the clustered index for a relation to be constructed on
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 Declustering is another term for horizontal partitioning that was coined by the Bubba project [LIVN87].
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the partitioning attribute.

As a query is being optimized, the partitioning information for each source relation in the query is incor-

porated into the query plan produced by the query optimizer. In the case of hash and range-partitioned relations,

this partitioning information is used by the query scheduler (discussed below) to restrict the number of processors

involved in the execution of selection queries on the partitioning attribute. For example, if relation X is hash parti-

tioned on attribute y, it is possible to direct selection operations with predicates of the form "X.y = Constant" to a

single site; avoiding the participation of any other sites in the execution of the query. In the case of range-

partitioned relations, the query scheduler can restrict the execution of the query to only those processors whose

ranges overlap the range of the selection predicate (which may be either an equality or range predicate).

In retrospect, we made a serious mistake in choosing to decluster all relations across all nodes with disks. A

much better approach, as proposed in [COPE88], is to use the "heat" of a relation to determine the degree to which

the relation is declustered. Unfortunately, to add such a capability to the Gamma software at this point in time

would require a fairly major effort - one we are not likely to undertake.

3.2. Gamma Process Structure

The overall structure of the various processes that form the Gamma software is shown in Figure 2. The role

of each process is described briefly below. The operation of the distributed deadlock detection and recovery

mechanism are presented in Sections 5.1 and 5.2. At system initialization time, a UNIX daemon process for the

Catalog Manager (CM) is initiated along with a set of Scheduler Processes, a set of Operator Processes, the

Deadlock Detection Process, and the Recovery Process.

Catalog Manager
The function of the Catalog Manager is to act as a central repository of all conceptual and internal schema
information for each database. The schema information is loaded into memory when a database is first
opened. Since multiple users may have the same database open at once and since each user may reside on
a machine other than the one on which the Catalog Manager is executing, the Catalog Manager is responsi-
ble for insuring consistency among the copies cached by each user.

Query Manager
One query manager process is associated with each active Gamma user. The query manager is responsible
for caching schema information locally, providing an interface for ad-hoc queries using gdl (our variant of
Quel [STON76]), query parsing, optimization, and compilation.

Scheduler Processes
While executing, each multisite query is controlled by a scheduler process. This process is responsible for
activating the Operator Processes used to execute the nodes of a compiled query tree. Scheduler processes
can be run on any processor, insuring that no processor becomes a bottleneck. In practice, however,
scheduler processes consume almost no resources and it is possible to run a large number of them on a sin-
gle processor. A centralized dispatching process is used to assign scheduler processes to queries. Those
queries that the optimizer can detect to be single-site queries are sent directly to the appropriate node for
execution, by-passing the scheduling process.
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Figure 2

Operator Process
For each operator in a query tree, at least one Operator Process is employed at each processor participating
in the execution of the operator. These operators are primed at system initialization time in order to avoid
the overhead of starting processes at query execution time (additional processes can be forked as needed).
The structure of an operator process and the mapping of relational operators to operator processes is dis-
cussed in more detail below. When a scheduler wishes to start a new operator on a node, it sends a request
to a special communications port known as the "new task" port. When a request is received on this port, an
idle operator process is assigned to the request and the communications port of this operator process is
returned to the requesting scheduler process.

3.3. An Overview of Query Execution

Ad-hoc and Embedded Query Interfaces
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Two interfaces to Gamma are available: an ad-hoc query language and an embedded query language inter-

face in which queries can be embedded in a C program. When a user invokes the ad-hoc query interface, a Query

Manager (QM) process is started which immediately connects itself to the CM process through the UNIX Internet

socket mechanism. When the compiled query interface is used, the preprocessor translates each embedded query

into a compiled query plan which is invoked at run-time by the program. A mechanism for passing parameters from

the C program to the compiled query plans at run time is also provided.

Query Execution

Gamma uses traditional relational techniques for query parsing, optimization [SELI79, JARK84], and code

generation. The optimization process is somewhat simplified as Gamma only employs hash-based algorithms for

joins and other complex operations. Queries are compiled into a left-deep tree of operators. At execution time,

each operator is executed by one or more operator processes at each participating site.

In designing the optimizer for the VAX version of Gamma, the set of possible query plans considered by the

optimizer was restricted to only left-deep trees because we felt that there was not enough memory to support right-

deep or bushy plans. By using a combination of left-deep query trees and hash-based join algorithms, we were able

to insure that no more than two join operations were ever active simultaneously and hence were able to maximize

the amount of physical memory which could be allocated to each join operator. Since this memory limitation was

really only an artifact of the VAX prototype, we have recently begun to examine the performance implications of

right deep and bushy query plans [SCHN89b].

As discussed in Section 3.1, in the process of optimizing a query, the query optimizer recognizes that certain

queries can be directed to only a subset of the nodes in the system. In the case of a single site query, the query is

sent directly by the QM to the appropriate processor for execution. In the case of a multiple site query, the optim-

izer establishes a connection to an idle scheduler process through a centralized dispatcher process. The dispatcher

process, by controlling the number of active schedulers, implements a simple load control mechanism. Once it has

established a connection with a scheduler process, the QM sends the compiled query to the scheduler process and

waits for the query to complete execution. The scheduler process, in turn, activates operator processes at each query

processor selected to execute the operator. Finally, the QM reads the results of the query and returns them through

the ad-hoc query interface to the user or through the embedded query interface to the program from which the query

was initiated.
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3.4. Operator and Process Structure

The algorithms for all the relational operators are written as if they were to be run on a single processor. As

shown in Figure 3, the input to an Operator Process is a stream of tuples and the output is a stream of tuples that is

demultiplexed through a structure we term a split table. Once the process begins execution, it continuously reads

tuples from its input stream, operates on each tuple, and uses a split table to route the resulting tuple to the process

indicated in the split table.4 When the process detects the end of its input stream, it first closes the output streams

and then sends a control message to its scheduler process indicating that it has completed execution. Closing the

output streams has the side effect of sending "end of stream" messages to each of the destination processes.

SPLIT

TABLE

STREAM OF TUPLES

CONTROL PACKET

OF TUPLES

PROCESS

EXECUTING

OPERATOR

OUTGOING STREAMS

Figure 3

The split table defines a mapping of values to a set of destination processes. Gamma uses three different

types of split tables depending on the type of operation being performed [DEWI86]. As an example of one form of

split table, consider the use of the split table shown in Figure 4 in conjunction with the execution of a join operation

using 4 processors. Each process producing tuples for the join will apply a hash function to the join attribute of each

output tuple to produce a value between 0 and 3. This value is then used as an index into the split table to obtain the

address of the destination process that should receive the tuple.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 Tuples are actually sent as 8K byte batches, except for the last batch.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Value Destination Processiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

0 (Processor #3, Port #5)
1 (Processor #2, Port #13)
2 (Processor #7, Port #6)
3 (Processor #9, Port #15)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

An Example Split Table
Figure 4

An Example

As an example of how queries are executed, consider the query shown in Figure 5. In Figure 6, the processes

used to execute the query are shown along with the flow of data between the various processes for a Gamma

configuration consisting of two processors with disks and two processors without disks. Since the two input rela-

tions A and B are partitioned across the disks attached to processors P1 and P2, selection and scan operators are ini-

tiated on both processors P1 and P2. The split tables for both the select and scan operators each contain two entries

since two processors are being used for the join operation. The split tables for each selection and scan are identical -

routing tuples whose join attribute values hash to 0 (dashed lines) to P3 and those which hash to 1 (solid lines) to P4.

The join operator executes in two phases. During the first phase, termed the Building phase, tuples from the inner

relation (A in this example) are inserted into a memory-resident hash table by hashing on the join attribute value.

After the first phase has completed, the probing phase of the join is initiated in which tuples from the outer relation

are used to probe the hash table for matching tuples.5 Since the result relation is partitioned across two disks, the

split table for each join operator contains two entries and tuples of C are distributed in a round-robin fashion among

P1 and P2.

C

BA

SCANSELECT

JOIN

Figure 5

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5 This is actually a description of the simple hash join algorithm. The operation of the hybrid hash join algorithm is contained in Section 4.
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P1 P2

P4P3

B.1A.1C.1

STORE SCANSELECT

TABLE
HASH

PROBEBUILD
JOINJOIN

TABLE
HASH

PROBEBUILD
JOINJOIN

C.2B.2A.2

SELECT SCAN STORE

Figure 6

One of the main problems with the DIRECT prototype was that every data page processed required at least

one control message to a centralized scheduler. In Gamma this bottleneck is completely avoided. In fact, the

number of control messages required to execute a query is approximately equal to three times the number of opera-

tors in the query times the number of processors used to execute each operator. As an example, consider Figure 7

which depicts the flow of control messages6 from a scheduler process to the processes on processors P1 and P3 in

Figure 6 (an identical set of messages would flow from the scheduler to P2 and P4). The scheduler begins by initiat-

ing the building phase of the join and the selection operator on relation A. When both these operators have com-

pleted, the scheduler next initiates the store operator, the probing phase of the join, and the scan of relation B.

When each of these operators has completed, a result message is returned to the user.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6 The "Initiate" message is sent to a "new operator" port on each processor. A dispatching processes accepts incoming messages on this

port and assigns the operator to a process. The process which is assigned, replies to the scheduler with an "ID" message which indicates the
private port number of the operator process. Future communications to the operator by the scheduler use this private port number.
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DONE (#14)

DONE (#13)

DONE (#12)INITIATE (#10)

INITIATE (#9)

INITIATE (#7)

DONE (#6)

DONE (#5)

INITIATE (#3)

INITIATE (#1)

SCHEDULER

JOINJOIN

BUILD PROBE

HASH

TABLE

SELECT

SCAN

STORE

P1

P1 P1

P3

ID(#11)

ID(#8) ID(#4)

ID(#2)

Figure 7

3.5. Operating and Storage System

Gamma is built on top of an operating system designed specifically for supporting database management sys-

tems. NOSE provides multiple, lightweight processes with shared memory. A non-preemptive scheduling policy is

used to help prevent convoys [BLAS79] from occurring. NOSE provides communications between NOSE

processes using the reliable message passing hardware of the Intel iPSC/2 hypercube. File services in NOSE are

based on the Wisconsin Storage System (WiSS) [CHOU85]. Critical sections of WiSS are protected using the

semaphore mechanism provided by NOSE.

The file services provided by WiSS include structured sequential files, byte-stream files as in UNIX, B+

indices, long data items, a sort utility, and a scan mechanism. A sequential file is a sequence of records. Records

may vary in length (up to one page in length), and may be inserted and deleted at arbitrary locations within a

sequential file. Optionally, each file may have one or more associated indices which map key values to the record

identifiers of the records in the file that contain a matching value. One indexed attribute may be designated as a clus-

tering attribute for the file. The scan mechanism is similar to that provided by System R’s RSS [ASTR76] except

that the predicates are compiled by the query optimizer into 386 machine language to maximize performance.
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4. Query Processing Algorithms

4.1. Selection Operator

Since all relations are declustered over multiple disk drives, parallelizing the selection operation involves

simply initiating a selection operator on the set of relevant nodes with disks. When the predicate in the selection

clause is on the partitioning attribute of the relation and the relation is hash or range partitioned, the scheduler can

direct the selection operator to a subset of the nodes. If either the relation is round-robin partitioned or the selection

predicate is not on the partitioning attribute, a selection operator must be initiated on all nodes over which the rela-

tion is declustered. To enhance performance, Gamma employs a one page read-ahead mechanism when scanning

the pages of a file sequentially or through a clustered index. This mechanism enables the processing of one page to

be overlapped with the I/O for the subsequent page.

4.2. Join Operator

The multiprocessor join algorithms provided by Gamma are based on concept of partitioning the two relations

to be joined into disjoint subsets called buckets [GOOD81, KITS83, BRAT84]. by applying a hash function to the

join attribute of each tuple. The partitioned buckets represent disjoint subsets of the original relations and have the

important characteristic that all tuples with the same join attribute value are in the same bucket. We have imple-

mented parallel versions of four join algorithms on the Gamma prototype: sort-merge, Grace [KITS83], Simple

[DEWI84], and Hybrid [DEWI84]. While all four algorithms employ this concept of hash-based partitioning, the

actual join computation depends on the algorithm. The parallel hybrid join algorithm is described in the following

section. Additional information on all four parallel algorithms and their relative performance can be found in

[SCHN89a]. Since this study found that the Hybrid hash join almost always provides the best performance, it is

now the default algorithm in Gamma and is described in more detail in the following section. Since these hash-

based join algorithms cannot be used to execute non-equijoin operations, such operations are not currently sup-

ported. To remedy this situation, we are in the process of designing a parallel non-equijoin algorithm for Gamma.

Hybrid Hash-Join

A centralized Hybrid hash-join algorithm [DEWI84] operates in three phases. In the first phase, the algo-

rithm uses a hash function to partition the inner (smaller) relation, R, into N buckets. The tuples of the first bucket

are used to build an in-memory hash table while the remaining N-1 buckets are stored in temporary files. A good

hash function produces just enough buckets to ensure that each bucket of tuples will be small enough to fit entirely

in main memory. During the second phase, relation S is partitioned using the hash function from step 1. Again, the

last N-1 buckets are stored in temporary files while the tuples in the first bucket are used to immediately probe the
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in-memory hash table built during the first phase. During the third phase, the algorithm joins the remaining N-1

buckets from relation R with their respective buckets from relation S. The join is thus broken up into a series of

smaller joins; each of which hopefully can be computed without experiencing join overflow. The size of the smaller

relation determines the number of buckets; this calculation is independent of the size of the larger relation.

Our parallel version of the Hybrid hash join algorithm is similar to the centralized algorithm described above.

A partitioning split table first separates the joining relations into N logical buckets. The number of buckets is

chosen such that the tuples corresponding to each logical bucket will fit in the aggregate memory of the joining pro-

cessors. The N-1 buckets intended for temporary storage on disk are each partitioned across all available disk sites.

Likewise, a joining split table will be used to route tuples to their respective joining processor (these processors do

not necessarily have attached disks), thus parallelizing the joining phase. Furthermore, the partitioning of the inner

relation, R, into buckets is overlapped with the insertion of tuples from the first bucket of R into memory-resident

hash tables at each of the join nodes. In addition, the partitioning of the outer relation, S, into buckets is overlapped

with the joining of the first bucket of S with the first bucket of R. This requires that the partitioning split table for R

and S be enhanced with the joining split table as tuples in the first bucket must be sent to those processors being

used to effect the join. Of course, when the remaining N-1 buckets are joined, only the joining split table will be

needed. Figure 8 depicts relation R being partitioned into N buckets across k disk sites where the first bucket is to

be joined on m processors (m may be less than, equal to, or greater than k).

4.3. Aggregate Operations

Gamma implements scalar aggregates by having each processor compute its piece of the result in parallel.

The partial results are then sent to a single process which combines these partial results into the final answer.

Aggregate functions are computed in two steps. First, each processor computes a piece of the result by calculating a

value for each of the partitions. Next, the processors redistribute the partial results by hashing on the "group by"

attribute. The result of this step is to collect the partial results for each partition at a single site so that the final result

for each partition can be computed.

4.4. Update Operators

For the most part, the update operators (replace, delete, and append) are implemented using standard tech-

niques. The only exception occurs when a replace operator modifies the partitioning attribute of a tuple. In this

case, rather than writing the modified tuple back into the local fragment of the relation, the modified tuple is passed

through a split table to determine which site should contain the tuple.

5. Transaction and Failure Management

In this section we describe the mechanisms that Gamma uses for transaction and failure management. While

the locking mechanisms are fully operational, the recovery system is currently being implemented. We expect to

begin the implementation of the failure management mechanism in early 1990.
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5.1. Concurrency Control in Gamma

Concurrency control in Gamma is based on two-phase locking [GRAY78]. Currently, two lock granularities,

file, and page, and five lock modes, S, X, IS, IX, and SIX are provided. Each site in Gamma has its own local lock

manager and deadlock detector. The lock manager maintains a lock table and a transaction wait-for-graph. The

cost of setting a lock varies from approximately 100 instructions, if there is no conflict, to 250 instructions if the

lock request conflicts with the granted group. In this case, the wait-for-graph must be checked for deadlock and the

transaction that requested the lock must be suspended via a semaphore mechanism.

In order to detect multisite deadlocks, Gamma uses a centralized deadlock detection algorithm. Periodically,

the centralized deadlock detector sends a message to each node in the configuration, requesting the local transaction

wait-for-graph of that node. Initially, the period for running the centralized deadlock detector is set at one second.

Each time the deadlock detector fails to find a global deadlock, this interval is doubled and each time a deadlock is

found the current value of the interval is halved. The upper bound of the interval is limited to 60 seconds and the

lower bound is 1 second. After collecting the wait-for-graph from each site, the centralized deadlock detector

creates a global transaction wait-for-graph. Whenever a cycle is detected in the global wait-for-graph, the central-

ized deadlock manager chooses to abort the transaction holding the fewest number of locks.

5.2. Recovery Architecture and Log Manager

The algorithms currently being implemented for coordinating transaction commit, abort, and rollback operate

as follows. When an operator process updates a record, it also generates a log record which records the change of

the database state. Associated with every log record is a log sequence number (LSN) which is composed of a node

number and a local sequence number. The node number is statically determined at the system configuration time

whereas the local sequence number, termed current LSN, is a monotonically increasing value.

Log records are sent by the query processors to one or more Log Managers (each running on a separate pro-

cessor) which merges the log records it receives to form a single log stream. If M is the number of log processors

being used, query processor i will direct its log records to the (i mod M) log processor [AGRA85]. Because this

algorithm selects the log processor statically and a query processor always sends its log records to the same log pro-

cessor, the recovery process at a query processing node can easily determine where to request the log records for

processing a transaction abort.

When a page of log records is filled, it is written to disk. The Log Manager maintains a table, called the

Flushed Log Table, which contains, for each node, the LSN of the last log record from that node that has been

flushed to disk. These values are returned to the nodes either upon request or when they can be piggybacked on
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another message. Query processing nodes save this information in a local variable, termed the Flushed LSN.

The buffer managers at the query processing nodes observe the WAL protocol [GRAY78]. When a dirty page

needs to be forced to disk, the buffer manager first compares the page’s LSN with the local value of Flushed LSN.

If the page LSN of a page is smaller or equal to the Flushed LSN, that page can be safely written to disk. Other-

wise, either a different dirty page must be selected, or a message must be sent to the Log Manager to flush the

corresponding log record(s) of the dirty page. Only after the Log Manager acknowledges that the log record has

been written to the log disk will the dirty data page be written back to disk. In order to reduce the time spent wait-

ing for a reply from the Log Manager, the buffer manager always keeps T (a pre-selected threshold) clean and

unfixed buffer pages available. When buffer manager notices that the number of clean, unfixed buffer pages has fal-

len below T, a process, termed local log manager, is activated. This process sends a message to the Log Manager

to flush one or more log records so that the number of clean and unfixed pages plus the number of dirty pages that

can be safely written to to disk is greater than T.

The scheduler process for a query is responsible for sending commit or abort records to the appropriate Log

Managers. If a transaction completes successfully, a commit record for the transaction is generated by its scheduler

and sent to each relevant Log Manager which employs a group commit protocol. On the other hand, if a transaction

is aborted by either the system or the user, its scheduler will send an abort message to all query processors that parti-

cipated in its execution. The recovery process at each of the participating nodes responds by requesting the log

records generated by the node from its Log Manager (the LSN of each log record contains the originating node

number). As the log records are received, the recovery process undoes the log records in reverse chronological

order using the ARIES undo algorithm [MOHA89]. The ARIES algorithms are also used as the basis for check-

pointing and restart recovery.

5.3. Failure Management

To help insure availability of the system in the event of processor and/or disk failures, Gamma employs a

new availability technique termed chained declustering [HSIA90]. Like Tandem’s mirrored disk mechanism

[BORR81] and Teradata’s interleaved declustering mechanism [TERA85, COPE89], chained declustering employs

both a primary and backup copy of each relation. All three systems can sustain the failure of a single processor or

disk without suffering any loss in data availability. In [HSIA90], we show that chained declustering provides a

higher degree of availability than interleaved declustering and, in the event of a processor or disk failure, does a

better job of distributing the workload of the broken node. The mirrored disk mechanism, while providing the

highest level of availability, does a very poor job of distributing the load of a failed processor.
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Data Placement with Chained Declustering

With chained declustering, nodes (a processor with one or more disks) are divided into disjoint groups called

relation-clusters and tuples of each relation are declustered among the drives that form one of the relation clusters.

Two physical copies of each relation, termed the primary copy and the backup copy, are maintained. As an exam-

ple, consider Figure 9 where M, the number of disks in the relation cluster, is equal to 8. The tuples in the primary

copy of relation R are declustered using one of Gamma’s three partitioning strategies with tuples in the i-th primary

fragment (designated Ri) stored on the {i mod M}-th disk drive. The backup copy is declustered using the same

partitioning strategy but the i-th backup fragment (designated ri) is stored on {(i + 1) mod M}-th disk. We term this

data replication method chained declustering because the disks are linked together, by the fragments of a relation,

like a chain.

Node 0 1 2 3 4 5 6 7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Primary Copy R0 R1 R2 R3 R4 R5 R6 R7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Backup Copy r7 r0 r1 r2 r3 r4 r5 r6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c

Chained Declustering (Relation Cluster Size = 8)
Figure 9

The difference between the chained and interleaved declustering mechanisms [TERA85, COPE89] is illus-

trated by Figure 10. In Figure 10, the fragments from the primary copy of R are declustered across all 8 disk drives

by hashing on a "key" attribute. With the interleaved declustering mechanism the set of disks are divided into units

of size N called clusters. As illustrated by Figure 10, where N=4, each backup fragment is subdivided into N-1 sub-

fragments and each subfragment is placed on a different disk within the same cluster other than the disk containing

the primary fragment.

cluster 0 cluster 1
Node 0 1 2 3 4 5 6 7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Primary Copy R0 R1 R2 R3 R4 R5 R6 R7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Backup Copy r0.0 r0.1 r0.2 r4.0 r4.1 r4.2

r1.2 r1.0 r1.1 r5.2 r5.0 r5.1
r2.1 r2.2 r2.0 r6.1 r6.2 r6.0
r3.0 r3.1 r3.2 r7.0 r7.1 r7.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Interleaved Declustering (Cluster Size = 4)
Figure 10

Since interleaved and chained declustering can both sustain the failure of a single disk or processor, what then

is the difference between the two mechanisms? In the case of a single node (processor or disk) failure both the

chained and interleaved declustering strategies are able to uniformly distribute the workload of the cluster among
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the remaining operational nodes. For example, with a cluster size of 8, when a processor or disk fails, the load on

each remaining node will increase by 1/7th. One might conclude then that the cluster size should be made as large

as possible; until, of course, the overhead of the parallelism starts to overshadow the benefits obtained. While this is

true for chained declustering, the availability of the interleaved strategy is inversely proportional to the cluster size.

since the failure of any two processors or disk will render data unavailable. Thus, doubling the cluster size in order

to halve (approximately) the increase in the load on the remaining nodes when a failure occurs has the (quite nega-

tive) side effect of doubling the probability that data will actually be unavailable. For this reason, Teradata recom-

mends a cluster size of 4 or 8 processors.

Figure 11 illustrates how the workload is balanced in the event of a node failure (node 1 in this example) with

the chained declustering mechanism. During the normal mode of operation, read requests are directed to the frag-

ments of the primary copy and write operations update both copies. When a failure occurs, pieces of both the pri-

mary and backup fragments are used for read operations. For example, with the failure of node 1, primary fragment

R1 can no longer be accessed and thus its backup fragment r1 on node 2 must be used for processing queries that

would normally have been directed to R1. However, instead of requiring node 2 to process all accesses to both R2

and r1, chained declustering offloads 6/7-ths of the accesses to R2 by redirecting them to r2 at node 3. In turn, 5/7-

ths of access to R3 at node 3 are sent to R4 instead. This dynamic reassignment of the workload results in an

increase of 1/7-th in the workload of each remaining node in the cluster. Since the relation cluster size can be

increased without penalty, it is possible to make this load increase as small as is desired.

Node 0 1 2 3 4 5 6 7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Fragment Utilization with Chained Declustering
After the Failure of Node 1 (Relation Cluster Size = 8)

Figure 11

What makes this scheme even more attractive is that the reassignment of active fragments incurs neither disk

I/O nor data movement. Only some of the bound values and pointers/indices in a memory resident control table

must be changed and these modifications can be done very quickly and efficiently.

The example shown in Figure 11 provides a very simplified view of how the chained declustering mechanism

actually balances the workload in the event of a node failure. In reality, queries cannot simply access an arbitrary

fraction of a data fragment, especially given the variety of partitioning and index mechanisms provided by the

Gamma software. In [HSIA90], we describe how all combinations of query types, access methods, and partitioning
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mechanisms can be handled.

6. Performance Studies

6.1. Introduction and Experiment Overview

To evaluate the performance of the hypercube version of Gamma three different metrics were used. First, the

set of Wisconsin [BITT83] benchmark queries were run on a 30 processor configuration using three different sizes

of relations: 100,000, 1 million, and 10 million tuples. While absolute performance is one measure of a database

system, speedup and scaleup are also useful metrics for multiprocessor database machines [ENGL89]. Speedup is

an interesting metric because it indicates whether additional processors and disks results in a corresponding

decrease in the response time for a query. For a subset of the Wisconsin benchmark queries, we conducted speedup

experiments by varying the number of processors from 1 to 30 while the size of the test relations was fixed at 1 mil-

lion tuples. For the same set of queries, we also conducted scaleup experiments by varying the number of proces-

sors from 5 to 30 while the size of the test relations was increased from 1 to 6 million tuples, respectively. Scaleup

is a valuable metric as it indicates whether a constant response time can be maintained as the workload is increased

by adding a proportional number of processors and disks. [ENGL89] describes a similar set of tests on Release 2 of

Tandem’s NonStop SQL system.

The benchmark relations used for the experiments were based on the standard Wisconsin Benchmark relations

[BITT83]. Each relation consists of tuples that are 208 bytes wide. We constructed 100,000, 1 million, and 10 mil-

lion tuple versions of the benchmark relations. Two copies of each relation were created and loaded. Except where

noted otherwise, tuples were declustered by hash partitioning on the Unique1 attribute. In all cases, the results

presented represent the average response time of a number of equivalent queries. Gamma was configured to use a

disk page size of 8K bytes and a buffer pool of 2 megabytes.

The results of all queries were stored in the database. We avoided returning data to the host in order to avoid

having the speed of the communications link between the host and the database machine or the host processor itself

affect the results. By storing the result relations in the database, the impact of these factors was minimized - at the

expense of incurring the cost of declustering and storing the result relations.

6.2. Selection Queries

Performance Relative to Relation Size

The first set of selection tests were designed to determine how Gamma would respond as the size of the

source relations was increased while the machine configuration was kept at 30 processors with disks. Ideally, the
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response time of a query should grow as a linear function of the size of input and result relations. For these tests six

different selection queries were run on three sets of relations containing, respectively, 100,000, 1 million, and 10

million tuples. The first two queries have a selectivity factor of 1% and 10% and do not employ any indices. The

third and fourth queries have the same selectivity factors but use a clustered index to locate the qualifying tuples.

The fifth query has a selectivity factor of 1% and employs a non-clustered index to locate the desired tuples. There

is no 10% selection through a non-clustered index query as the Gamma query optimizer chooses to use a sequential

scan for this query. The last query uses a clustered index to retrieve a single tuple. Except for the last query, the

predicate of each query specifies a range of values and, thus, since the input relations were declustered by hashing,

the query must be sent to all the nodes.

The results from these tests are tabulated in Table 3. For the most part, the execution time for each query

scales as a fairly linear function of the size of the input and output relations. There are, however, several cases

where the scaling is not perfectly linear. Consider, first the 1% non-indexed selection. While the increase in

response time as the size of the input relation is increased from 1 to 10 million tuples is almost perfectly linear (8.16

secs. to 81.15 secs.), the increase from 100,000 tuples to 1 million tuples (0.45 sec. to 8.16 sec) is actually sub-

linear. The 10% selection using a clustered index is another example where increasing the size of the input relation

by a factor of ten results in more than a ten-fold increase in the response time for the query. This query takes 5.02

seconds on the 1 million tuple relation and 61.86 seconds on the 10 million tuple relation. To understand why this

happens one must consider the impact of seek time on the execution time of the query. Since two copies of each

relation were loaded, when two one million tuple relations are declustered over 30 disk drives, the fragments occupy

approximately 53 cylinders (out of 1224) on each disk drive. Two ten million tuple relations fill about 530 cylinders

on each drive. As each page of the result relation is written to disk, the disk heads must be moved from their current

position over the input relation to a free block on the disk. Thus, with the 10 million tuple relation, the cost of writ-

ing each output page is much higher.

As expected, the use of a clustered B-tree index always provides a significant improvement in performance.

One observation to be made from Table 3 is the relative consistency of the execution time of the selection queries

through a clustered index. Notice that the execution time for a 10% selection on the 1 million tuple relation is

almost identical to the execution time of the 1% selection on the 10 million tuple relation. In both cases, 100,000

tuples are retrieved and stored, resulting in identical I/O and CPU costs.

The final row of Table 3 presents the time required to select a single tuple using a clustered index and return it

to the host. Since the selection predicate is on the partitioning attribute, the query is directed to a single node, avoid-

ing the overhead of starting the query on all 30 processors. The response for this query increases significantly as the



23

Table 3 - Selection Queries
30 Processors With Disks

(All Execution Times in Seconds)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples in Source Relation

Query Description 100,000 1,000,000 10,000,000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1% nonindexed selection 0.45 8.16 81.15

10% nonindexed selection 0.82 10.82 135.61

1% selection using clustered index 0.35 0.82 5.12

10% selection using clustered index 0.77 5.02 61.86

1% selection using non-clustered index 0.60 8.77 113.37

single tuple select using clustered index 0.08 0.08 0.14
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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relation size is increased from 1 million to 10 million tuples because the height of the B-tree increases from two to

three levels.

Speedup Experiments

In this section we examine how the response time for both the nonindexed and indexed selection queries on

the 1 million tuple relation7 is affected by the number of processors used to execute the query. Ideally, one would

like to see a linear improvement in performance as the number of processors is increased from 1 to 30. Increasing

the number of processors increases both the aggregate CPU power and I/O bandwidth available, while reducing the

number of tuples that must be processed by each processor.

In Figure 12, the average response times for the non-indexed 1% and 10% selection queries on the one million

tuple relation are presented. As expected, the response time for each query decreases as the number of nodes is

increased. The response time is higher for the 10% selection due to the cost of declustering and storing the result

relation. While one could always store result tuples locally, by partitioning all result relations in a round-robin (or

hashed) fashion one can ensure that the fragments of every result relation each contain approximately the same

number of tuples. The speedup curves corresponding to Figure 12 are presented in Figure 13. In Figure 14, the

average response time is presented as a function of the number of processors for the following three queries: a 1%

selection through a clustered index, a 10% selection through a clustered index, and a 1% selection through a non-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 The 1 million tuple relation was used for these experiments because the 10 million tuple relation would not fit on 1 disk drive.
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clustered index, all accessing the 1 million tuple relation. The corresponding speedup curves are presented in Figure

15.

Of the speedup curves presented in Figures 13 and 14, three queries are superlinear, one is slightly sublinear,

and one is significantly sublinear. Consider first the 10% selection via a relation scan, the 1% selection through a

non-clustered index, and the 10% selection through a clustered index. As discussed above, the source of the super-

linear speedups exhibited by these queries is due to significant differences in the time the various configurations

spend seeking. With one processor, the 1 million tuple relation occupies approximately 66% of the disk. When the

same relation is declustered over 30 disk drives, it occupies about 2% of each disk. In the case of the 1% non-

clustered index selection, each tuple selected requires a random seek. With one processor, the range of the each

random seek is approximately 800 cylinders while with 30 processors the range of the seek is limited to about 27

cylinders. Since the seek time is proportional to the square root of the distance traveled by the disk head

[GRAY88], reducing the size of the relation fragment on each disk significantly reduces the amount of time that the

query spends seeking.

A similar effect also happens with the 10% clustered index selection. In this case, once the index has been

used to locate the tuples satisfying the query, each input page will produce one output page and at some point the

buffer pool will be filled with dirty output pages. In order to write an output page, the disk head must be moved
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from its position over the input relation to the position on the disk where the output pages are to be placed. The

relative cost of this seek decreases proportionally as the number of processors increases, resulting in a superlinear

speedup for the query. The 10% non-indexed selection shown in Figure 13 is also superlinear for similar reasons.

The reason that this query is not affected to the same degree is that, without an index, the seek time is a smaller frac-

tion of the overall execution time of the query.

The 1% selection through a clustered index exhibits sublinear speedups because the cost of initiating a select

and store operator on each processor (a total of 0.24 seconds for 30 processors) becomes a significant fraction of the

total execution as the number of processors is increased.

Scaleup Experiments

In the final set of selection experiments the number of processors was varied from 5 to 30 while the size of the

input relations was increased from 1 million to 6 million tuples, respectively. As shown in Figure 16, the response

time for each of the five selection queries remains almost constant. The slight increase in response time is due to the

overhead of initiating a selection and store operator at each site. Since a single process is used to initiate the execu-

tion of a query, as the number of processors employed is increased, the load on this process is increased proportion-

ally. Switching to a tree-based, query initiation scheme [GERB87] would distribute this overhead among all the

processors.
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6.3. Join Queries

Like the selection queries in the previous section, we conducted three sets of join experiments. First, for two

different join queries, we varied the size of the input relations while the configuration of processors was kept con-

stant. Next, for one join query a series of speedup and scaleup experiments were conducted. For each of these tests,

two different partitionings of the input relations were used. In the first case, the input relations were declustered by

hashing on the join attribute. In the second case, the input relations were declustered using a different attribute. The

hybrid join algorithm was used for all queries.

Performance Relative to Relation Size

The first join query [BITT83], joinABprime, is a simple join of two relations: A and Bprime. The A relation

contains either 100,000, 1 million, or 10 million tuples. The Bprime relation contains, respectively, 10,000,

100,000, or 1 million tuples. The result relation has the same number of tuples as the Bprime relation.8 The second

query, joinAselB, is composed of one join and one selection. A and B have the same number of tuples and the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8 For each join operation, the result relation contains all the fields of both input relations and thus the result tuples are 416 bytes wide.
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selection on B reduces the size of B to the size of the Bprime relation in the corresponding joinABprime query. The

result relation for this query has the same number of tuples as in the corresponding joinABprime query. As an

example, if A has 10 million tuples, then joinABprime joins A with a Bprime relation that contains 1 million tuples,

while in joinAselB the selection on B restricts B from 10 million tuples to 1 million tuples and then joins the result

with A.

The first variation of the join queries tested involved no indices and used a non-partitioning attribute for both

the join and selection attributes. Thus, before the join can be performed, the two input relations must be redistri-

buted by hashing on the join attribute value of each tuple. The results from these tests are contained in the first 2

rows of Table 4. The second variation of the join queries also did not employ any indices but, in this case, the rela-

tions were hash partitioned on the joining attribute; enabling the redistribution phase of the join to be skipped. The

results for these tests are contained in last 2 rows of Table 4.

The results in Table 4 indicate that the execution time of each join query increases in a fairly linear fashion as

the size of the input relations are increased. Gamma does not exhibit linearity for the 10 million tuple queries

because the size of the inner relation (208 megabytes) is twice as large as the total available space for hash tables.

Hence, the Hybrid join algorithm needs two buckets to process these queries. While the tuples in the first bucket

can be placed directly into memory-resident hash tables, the second bucket must be written to disk (see Section 4.2).

As expected, the version of each query in which the partitioning attribute was used as the join attribute ran

faster. From these results one can estimate a lower bound on the aggregate rate at which data can be redistributed

by the Intel iPSC/2 hypercube. Consider the version of the joinABprime query in which a million tuple relation is

Table 4 - Join Queries
30 Processors With Disks

(All Execution Times in Seconds)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples in Relation A

Query Description 100,000 1,000,000 10,000,000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JoinABprime with non-partitioning attributes 3.52 28.69 438.90
of A and B used as join attributes

JoinAselB with non-partitioning attributes 2.69 25.13 373.98
of A and B used as join attributes

JoinABprime with partitioning attributes 3.34 25.95 426.25
of A and B used as join attributes

JoinAselB with partitioning attributes 2.74 23.77 362.89
of A and B used as join attributes

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
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joined with a 100,000 tuple relation. This query requires 28.69 seconds when the join is not on the partitioning attri-

bute. During the execution of this query, 1.1 million 208 byte tuples must be redistributed by hashing on the join

attribute, yielding an aggregate total transfer rate of 7.9 megabytes/second during the processing of this query. This

should not be construed, however, as an accurate estimate of the maximum obtainable interprocessor communica-

tions bandwidth as the CPUs may be the limiting factor (the disks are not likely to be the limiting factor as from

Table 3 one can estimate that the aggregate bandwidth of the 30 disks to be about 25 megabytes/second).

Speedup Experiments

For the join speedup experiments, we used the joinABprime query with a 1 million tuple A relation and a

100,000 tuple Bprime relation. The number of processors was varied from five to thirty. Since with fewer than five

processors two or more buckets are needed, including the execution time for one processor (which needs 5 buckets)

would have made the response times for five or more processors appear artificially fast; resulting in superlinear

speedup curves.

The resulting response times are plotted in Figure 17 and the corresponding speedup curves are presented in

Figure 18. From the shape of these graphs it is obvious that the execution time for the query is significantly reduced

as additional processors are employed. Several factors prevent the system from achieving perfectly linear speedups.
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First, the cost of starting four operator tasks (two scans, one join, and one store) on each processor increases as a

function of the number of processors used. Second, the effect of short-circuiting local messages diminishes as the

number of processors is increased. For example, consider a five processor configuration and the non-partitioning

attribute version of the JoinABprime query. As each processor repartitions tuples by hashing on the join attribute,

1/5th of the input tuples it processes are destined for itself and will be short-circuited by the communications

software. In addition, as the query produces tuples of the result relation (which is partitioned in a round-robin

manner), they too will be short circuited. As the number of processors is increased, the number of short-circuited

packets decreases to the point where, with 30 processors, only 1/30th of the packets will be short-circuited. Because

these intra-node packets are less expensive than their corresponding inter-node packets, smaller configurations will

benefit more from short-circuiting. In the case of a partitioning-attribute joins, all input tuples will short-circuit the

network along with a fraction of the output tuples.

Scaleup Experiments

The JoinABprime query was also used for the join scaleup experiments. For these tests, the number of pro-

cessors was varied from 5 to 30 while the size of the A relation was varied from 1 million to 6 million tuples in

increments of 1 million tuples and the size of Bprime relation was varied from 100,000 to 600,000 tuples in incre-

ments of 100,000. For each configuration, only one join bucket was needed. The results of these tests are presented

in Figure 19. Three factors contribute to the slight increase in response times. First, the task of initiating 4

processes at each site is performed by a single processor. Second, as the number of processors increases, the effects

of short-circuiting messages during the execution of these queries diminishes - especially in the case when the join

attribute is not the partitioning attribute. Finally, the response time may be being limited by the speed of the com-

munications network.
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6.4. Aggregate Queries

Our aggregate tests included a mix of scalar aggregate and aggregate function queries run on the 30 processor

configuration. The first query computes the minimum of a non-indexed attribute. The next two queries compute,

respectively, the sum and minimum of an attribute after partitioning the relation into 20 subsets. Three sizes of

input relations were used: 100,000, 1 million, and 10 million tuples. The results from these tests are contained in

Table 5. Since the scalar aggregates and aggregate function operators are executed using algorithms that are similar

to those used by the selection and join operators, respectively, no speedup or scaleup experiments were conducted.
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Table 5 - Aggregate Queries
30 Processors with Disks

(All Execution Times in Seconds)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples in Source Relation

Query Description 100,000 1,000,000 10,000,000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Scalar aggregate 1.10 10.36 106.42

Min aggregate function (20 Partitions) 2.03 12.48 120.03

Sum aggregate function (20 Partitions) 2.03 12.39 120.22
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

6.5. Update Queries

The next set of tests included a mix of append, delete, and modify queries on three different sizes of relations:

100,000, 1 million, and 10 million tuples. The results of these tests are presented in Table 6. Since Gamma’s

recovery mechanism is not yet operational, these results should be viewed accordingly.

The first query appends a single tuple to a relation on which no indices exist. The second appends a tuple to a

relation on which one index exists. The third query deletes a single tuple from a relation, using a clustered B-tree

index to locate the tuple to be deleted. In the first query no indices exist and hence no indices need to be updated,

whereas in the second and third queries, one index needs to be updated.

The fourth through sixth queries test the cost of modifying a tuple in three different ways. In all three tests, a

non-clustered index exists on the unique2 attribute, and, in addition, a clustered index exists on the Unique1 attri-

bute. In the first case, the modified attribute is the partitioning attribute, thus requiring that the modified tuple be

relocated. Furthermore, since the tuple is relocated, the secondary index must also be updated. The second modify

query modifies a non-partitioning, nonindexed attribute. The third modify query modifies an attribute on which a

non-clustered index has been constructed, using the index to locate the tuple to be modified.
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Table 6 - Update Queries
30 Processors With Disks

(All Execution Times in Seconds)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples in Source Relation

100,000 1,000,000 10,000,000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Append 1 Tuple (No indices exist) 0.07 0.08 0.10

Append 1 Tuple (One index exists) 0.18 0.21 0.22

Delete 1 tuple 0.34 0.28 0.49

Modify 1 tuple (#1) 0.72 0.73 0.93

Modify 1 tuple (#2) 0.18 0.20 0.24

Modify 1 tuple (#3) 0.33 0.38 0.52
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

7. Conclusions and Future Research Directions

In this paper we have described the design and implementation of the Gamma database machine. Gamma

employs a shared-nothing architecture in which each processor has one or more disks and the processors can com-

municate with each other only by sending messages via an interconnection network. While a previous version of

the Gamma software ran on a collection of VAX 11/750s interconnected via a 80 mbit/second token ring, currently

the system runs on an Intel iPSC/2 hypercube with 32 processors and 32 disk drives.

Gamma employs three key ideas which enable the architecture to be scaled to 100s of processors. First, all

relations are horizontally partitioned across multiple disk drives which are attached to separate processors; enabling

relations to be scanned in parallel without any specialized hardware. In addition, in order to enable the database

design to be tuned to the needs of the application, three alternative partitioning strategies are provided. The second

major contribution of the Gamma software is its extensive use of hash-based parallel algorithms for processing com-

plex relational operators such as joins and aggregate functions. Finally, the system employs unique dataflow

scheduling techniques to coordinate the execution of multioperator queries. These techniques make it possible to

control the execution of very complex queries with minimal coordination - a necessity for configurations involving a

large number of processors

In addition to describing the design of the Gamma software, we have also presented a thorough performance

evaluation of the iPSC/2 hypercube version of Gamma. Three sets of experiments were performed. First, with a

constant machine configuration of 30 processors, the response for the standard set of Wisconsin benchmark queries

was measured for 3 different sizes of relations. For a subset of these queries we also measured the performance of
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the system relative to the number of processors employeed when the sizes of the input relations are kept constant

(speedup) and when the sizes of the input relations are increased proportionally to the number of processors

(scaleup). The speedup results obtained for both selection and join queries are almost perfectly linear; thus dou-

bling the number of processors halves the response time for a query. The scaleup results obtained are also quite

encouraging. They reveal that a constant response time can be maintained for both selection and join queries as the

workload is increased by adding a proportional number of processors and disks.

We currently have a number of new projects underway. First, we plan on implementing the chained declus-

tering mechanism and evaluating its effectiveness. With respect to processing queries, we have designed

[SCHN89b] and are currently evaluating alternative strategies for processing queries involving multiple join opera-

tions. For example, consider a query involving 10 joins on a machine with 100 processors. Is it better to use all

100 processors for each join (allocating 1/10 of the memory on each processor to each join), or to use 10 processors

for each join (in which case each join operator will have full use of the memory at each processor)? Finally, we are

studying several new partitioning mechanisms that combine the best features of the hash and range partitioning stra-

tegies.
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