
Nested Loops Revisited

David J. DeWitt� Je�rey F. Naughton�y Joseph Burger�

Abstract

The research community has considered hash-based par-

allel join algorithms the algorithms of choice for almost a

decade. However, almost none of the commercial parallel

database systems use hashing-based join algorithms, us-

ing instead nested-loops with index or sort-merge. While

the research literature abounds with comparisons be-

tween the various hash-based and sort-merge join algo-

rithms, to our knowledge there is no published compar-

ison between the parallel hash-based algorithms and a

parallel nested loops algorithm with index. In this pa-

per we present a comparison of four variants of paral-

lel index nested loops algorithms with the parallel hy-

brid hash algorithm. The conclusions of our experiments

both with an analytic model and with an implementa-

tion in the Gamma parallel database system are that (1)

overall, parallel hybrid hash is the method of choice, but

(2) there are cases where nested-loops with index wins

big enough that systems could pro�t from implementing

both algorithms. Furthermore, our experiments show

that among the nested loop algorithms, one of them,

subset nested loops with sorting, clearly dominates.

1 Introduction

The research community has long considered hash-based

joins to be the method of choice for performing joins

in multiprocessor database systems. One line of rea-

soning behind this goes roughly like this: it has long

been known that in uniprocessor systems, sort-merge

beats nested loops with index almost always [BE77];

also, hybrid-hash beats sort-merge just about every-

where in both the uniprocessor and multiprocessor

case [DKO+84, SD89]; so, transitively, one can expect

�Department of Computer Sciences, University of Wisconsin-
Madison. This research was supported by donations from DEC,
IBM (through an IBM Research Initiation Grant), NCR, and
Tandem.

yWork supported in part by NSF grant IRI-9157357.

hybrid hash to out-perform nested-loops with index.

Furthermore, the hybrid hash and sort merge algorithms

can be used to execute any join in a query, not just joins

in which at least one of the two relations being joined is

a base relation.

However, in the multiprocessor case, an interesting

asymmetry arises in the nested-loops with index algo-

rithm: only one of the operand relations in a two-relation

join needs to be partitioned over the network. This sug-

gests that parallel nested loops with index may be able

to exploit this asymmetry in a parallel environment to

provide higher performance than parallel hybrid hash,

which partitions both relations in the case that neither

relation has been declustered on its joining attribute.

It was our goal in this research to explore the perfor-

mance of the parallel nested-loops with index join algo-

rithm, to determine:

1. Are there signi�cant di�erences between variants of

parallel index nested loops?

2. Are there cases where parallel nested loops with in-

dex provides better performance than parallel hy-

brid hash?

3. If there are such cases, how signi�cant is the per-

formance di�erence in these cases?

4. When parallel hybrid-hash does perform better

than parallel nested loops with index, how signif-

icant is the di�erence?

The answers to these questions help to determine which

of these join algorithms needs to be included in a parallel

database system. This is of more than academic interest;

we are aware of at least two commercial parallel DBMSs

that employ parallel nested loops with index.

We used a two-pronged approach in order to answer

these questions. First, we built a simple analytic model

predicting the performance of the parallel hybrid hash

join and four versions of parallel index nested loops.

This analytic model was useful in quickly exploring the



relative performance of the algorithms for a wide range

of hardware and join operand parameters. However, in

our opinion an analytic model alone can never provide

the detailed insight and con�dence that is engendered by

an actual implementation. Accordingly, we also imple-

mented the algorithms on the Gamma parallel database

system [DGS+90].

The results from our analytic model and from our

implementation both demonstrate that parallel nested

loops with index can perform much better than parallel

hybrid hash if (1) one of the relations is small, and (2)

either the other relation has a clustered index on the

join attribute, or the other relation has an index on the

join attribute and �ts entirely in memory. In all other

cases, hybrid hash is signi�cantly better than the par-

allel nested loops algorithms. Furthermore, the results

show that one version of the parallel index nested loops

algorithms, subset nested loops with sorting, clearly dom-

inates the others.

In related work, DeWitt and Gerber investigated

the performance of four parallel hashing join algo-

rithms [DG85], while Schneider and DeWitt compared

several parallel hashing algorithms with parallel sort-

merge [SD89]. Kitsuregawa [KTMo83] proposed an al-

gorithm based on hashing for redistribution followed

by sort-merge, intended to take advantage of special-

purpose sorting hardware. None of these papers com-

pared the hashing join algorithms with nested loop

with index algorithms. Valduriez and Gardarin [VG84]

compared parallel join and semijoin algorithms based

on hashing, sort-merge, and nested loops, but did

not consider nested-loops with index. The Tandem

group [EGKS90] state that their NonStop SQL system

uses a variant of parallel nested loops with index algo-

rithm if the appropriate indices exist and one of the re-

lations is small, and hashing followed by sort-merge oth-

erwise, but did not compare the two algorithms. Wolf

et al. [WDYT90, WDY90] consider the performance of

parallel hashing and sort-merge algorithms in the pres-

ence of skew, but do not consider parallel nested loop

algorithms.

In early work, Blasgen and Eswaran [BE77] compared

sort-merge with nested-loops with index on uniproces-

sors, and concluded that sort merge almost always wins

unless there is an appropriate clustered index on one of

the join operands. Recently, Shekita and Carey [SC90]

compared a number of uniprocessor join algorithms, in-

cluding pointer based join algorithms, nested-loops with

index, sort-merge, and hybrid hash. In the portion of

that work relevant to this paper, they found that in-

dex nested loops works well if one of the relations is

small. Valduriez [Val87] proposed the use of an auxil-

iary data structure called a join index in join process-

ing, and showed that in many cases a join algorithm

using a join index can out-perform hybrid hashing. Al-

though they both use the term \index," the join index

algorithm di�ers signi�cantly from the nested loops with

index algorithms. A join index essentially precomputes

the join by storing pairs of tuple id's, one pair of tuple

id's for each tuple that would appear in the join result.

The indices used in nested-loop with index are just the

usual B-tree indexes built by current relational DBMS.

Omiecinski and Lin [OL89] consider the use of join in-

dices in a parallel environment.

The remainder of the paper is organized as follows.

We describe the hybrid-hash algorithm and four vari-

ants of nested loops with index in Section 2. Section 3

describes our analytic model while Section 4 describes

results derived from the model. Section 5 describes our

implementation and experiments in Gamma. Our con-

clusions are contained in Section 6.

2 Algorithms

Throughout this paper we will adopt the convention that

the two relations being joined are R and S, and that

the join condition is R:A = S:B. Furthermore, we will

assume that there is an index on the attribute S:B. Then

the uniprocessor nested loops with index join algorithm

is just the following [BE77]:

for each tuple r in R do

lookup the value r.A in the index on s.B;

for each S tuple s returned by the lookup

output answer tuple (r,s);

endFor;

endFor;

We now consider how to implement a version of this

algorithm in a shared-nothing parallel database sys-

tem [Sto86]. When mapping this algorithm to a shared-

nothing parallel system, one must �rst specify how the

relations R and S are stored in the system. We will as-

sume that both R and S are declustered throughout the

processors of the system on attributes other than R:A

and S:B. That is, there is no a priori relationship be-

tween the value an R tuple r has in its A attribute and

where that tuple r is stored in the system. Similarly, the

location of an S tuple s is independent of the value that

appears in s:B.

This immediately creates the problem of how to en-

sure that every R tuple r \meets" with every S tuple

s such that r:A = s:B. We considered two mechanisms

to guarantee this, replication and mapping; each is dealt

with in a subsection below.



2.1 Replicating Parallel Nested Loops

The most obvious solution is to broadcast every R tuple

to every site in the multiprocessor. After broadcasting

R, every site in the multiprocessor joins R with its local

fragment of S, using indexed nested loops to perform

the local join. In high-level pseudocode, the algorithm

is the following:

each processor p broadcasts its local R

fragment to all other processors;

each processor p joins all of R with its local

S fragment, using indexed nested loops;

We call this algorithm \replicating nested loops with

index," and will abbreviate this to RNL. RNL is simi-

lar to the distributed database join algorithm known as

fragment-replicate, originally proposed in [ESW78], with

the \fragment" phase a no-op since this algorithmbegins

with S fragmented about the sites of the system. RNL

is also the algorithm used by Tandem if the appropriate

index exists, one of the relations is small, and the join

is on a key for the small relation [EGKS90]. Recently

Stamos and Young have proposed an improvement on

the full fragment-replicate algorithm [SY89] that par-

tially replicates and redistributes both input relations.

While this algorithm improves on the network cost of

a full fragment-replicate, it is not appropriate for use

in RNL because it must redistribute portions of both R

and S, which eliminates the possibility of using a pre-

constructed index on S:B.

2.2 Subsetting Parallel Nested Loops

The replicate nested loops algorithm has the disadvan-

tage that many R tuples are shipped to sites at which

there are no matching S tuples. In fact, in the case where

every R tuple joins with at most one S tuple (as in a for-

eign key-key join), on a k processor system only 1=k of

the R tuples sent to a site will actually �nd a match-

ing S tuple. The subsetting parallel nested loops algo-

rithm seeks to avoid this wasted e�ort, by determining

for each R tuple r the subset of sites at which matching

S tuples might reside. We will abbreviate \subsetting

nested loops with index" by SNL.

The di�culty is that since we cannot assume any as-

sociation between the S:B attribute values and the par-

titioning attribute of S, there is no information in the

system catalogs that can determine to which subset of

sites a given R tuple should be sent. Our solution is to

build an additional relation, which we will call MapS,

that maps from S join attribute values to S partition-

ing attribute values. In more detail, suppose that S is

range or hash partitioned [DGS+90] on attribute S:P 0,

where P 0 6= B. Furthermore, let P be a key for S that

contains P 0. Then the relation MapS has the schema

MapS(P;B), with the semantics that there is a tuple m

in MapS with m:P = v1 and m:B = v2 if and only if

there is a tuple s in S with s:P = v1 and s:B = v2.

The intention is that in a MapS tuple (m:B;m:P ), the

attribute of m:P is a surrogate for an S tuple. Since

MapS has one tuple for every S tuple, in general MapS

could be too large to replicate at all sites. For this rea-

son MapS is declustered by hashing throughout the sys-

tem on the attribute MapS:B. The concept of such a

mapping relation from attributes to surrogates was in-

troduced by Copeland and Khosha�an [CK85] in their

decomposition storage model. In the remainder of this

paper, for simplicity we will assume that P 0 is itself a

key for S, so we can use P = P 0.

Note that MapS is not a join index [Val87]. A join

index contains an entry for every pair of tuples (r; s)

such that r is from R and s is from S and r and s

join. MapS merely pairs S join attribute values with S

partitioning attribute values, independent of R.

Given this MapS relation, to �nd out to which subset

of sites a given R tuple r should be mapped is a two-step

process:

1. Send r to the site that containsMapS tuples m with

m:B = r:A. Note that this is possible by consulting

the system catalogs, since MapS is hash or range

partitioned on m:B.

2. For each tuple m with m:B = r:A, send r to the

site containing S tuples with S:P = m:P . Note

that this too is possible to accomplish by consulting

the system catalogs, since S is partitioned on the

attribute S:P .

After R has been redistributed in this fashion, SNL pro-

ceeds like RNL after the broadcast: each site p uses

nested-loops with index to join the subset of R mapped

to p with the subset of S that is stored at p.

2.3 The Sorting Variants

We also investigated the e�ect of sorting the R tuples

before joining them with S (in RNL and SNL) and also

before looking up MapS tuples (in SNL.) We denote the

resulting algorithms RNL-S and SNL-S. Sorting the

outer relation is a well-known optimization for nested

loops with index algorithms. If the S relation fragment

at a site has a clustered index on the join attribute, by

sorting the R tuples before joining them with S we can

insure that the data and index pages of S are read only

one in the join process. Similarly, if MapS is clustered

on MapS:B, then by sorting incoming R tuples we can

avoid re-reading data and index pages of MapS.

In the SNL-S algorithm, we sort the R tuples twice:

�rst at each mapping site, second at each joining site.



The reason for this is as follows. Consider what hap-

pens at some processor p during the actual join of R

with S (e.g., when p is receiving tuples from the map-

ping phase of the algorithm and joining them with S.)

In general, processor p will see a stream of incoming

R tuples from all other processors in the system. This

stream will be \chunked" into a sequence of messages;

while the tuples within each message will be sorted (if

they were sorted at the mapping processor that sent that

message to p), there is no guarantee that the tuples in

the combined stream of the messages will be in sorted

order, since there is no guarantee about the relationship

between the tuples in a message from one processor and

the tuples in a message from another. An optimization

of this technique is discussed in Subsection 4.2.

2.4 Hybrid Hash

The hybrid hash join algorithm has been described in de-

tail elsewhere in the literature [DKO+84, DG85, SD89];

here we give a top-level overview of the important as-

pects of parallel hash join algorithms. In the following

we will denote hybrid hash by HH.

A basic parallel hash join of R and S with the join

condition R:A = S:B begins by redistributing both R

and S. If the hash function chosen for the redistribution

is h(X), then a tuple r in R is sent to the processor

determined by h(r:A); similarly, a tuple s in S is sent

to the processor determined by h(s:B). Let the subset

of R mapped to processor pi be denoted Ri, and the

subset of S mapped to pi be denoted Si. Then after

redistributing R and S, each processor pi joins the local

fragments Ri and Si. These local joins are performed

by another use of hashing: some hash function h0(X) is

chosen and used to build an in-memory hash table of R

tuples on the attribute R:A; then this in-memory hash

table is probed for each S tuple s based on the value in

the attribute s:B.

HH di�ers from this basic hash algorithm in that it

attempts to keep R tuples in memory after the redis-

tribution stage, so that these tuples don't have to be

re-read from disk in the join phase. In more detail, if

some fraction f of R can be retained in memory, then

only (1�f) of R is written to disk at the joining proces-

sor. Equally importantly, only (1 � f) of S needs to be

written to disk at the joining processor, since tuples of

S that join with the memory-resident portion of R are

joined \on the 
y" then discarded.

2.5 Other Alternatives

The parallel nested loop algorithms and the hybrid hash

algorithm can both be viewed as consisting of two some-

what orthogonal subtasks:

1. How to redistributed the relations.

Parallel hybrid hash uses hash partitioning to re-

distribute both input relations, while the parallel

nested-loops algorithms redistribute only one of the

relations (either replicating the relation or subset-

ting it.)

2. How to do the local joins after redistribution.

Parallel hybrid hash uses hybrid hash to do the local

joins, while parallel nested loops with index uses the

nested loops with index algorithm.

From this perspective, it is clear that there are two other

classes of algorithms to consider: hashing-redistribution

of both relations followed by indexed nested loops within

sites, and replicating/mapping one of the relations fol-

lowed by hybrid hash within the sites. We did not ex-

plore these algorithms because they are unlikely to per-

form well.

Hash-based redistribution followed by indexed nested

loops is unlikely to perform as well as parallel hybrid

hash because the cost of creating a clustered index

(which must be done at query evaluation time) after

redistribution will be higher than the cost of building

a hash table. Broadcast/mapping redistribution of one

of the relations followed by hybrid hashing is unlikely

to perform as well as the parallel nested loop with index

algorithms because it ignores a pre-existing index on the

join attribute, hence must completely process both rela-

tions in the local joins at each site after redistribution.

3 An Analytic Model

In this section we develop an analytic model intended

to predict the performance of the join algorithms. The

purpose of this model is not so much to predict abso-

lute performance as it is to allow us to identify the im-

portant trends and characteristics in the relative perfor-

mances of the algorithms. We consider each algorithm in

turn. In each case, we separate the cost of the algorithm

into I/O, CPU, and network. In each case, we omit the

cost of writing the answer relation, since this cost is the

same for all algorithms. However, we do include the cost

for reading the input relation(s), since this cost di�ers

between the algorithms. Furthermore, we assume that

messages each contain one page. We also make the sim-

plifying assumption that the running time of the parallel

algorithm can be calculated by computing the time re-

quired for a single site in isolation to complete all of

the tasks required by the algorithm. The model takes

as input the following parameters describing the input

relations:

jRj number of pages in R



kRk number of tuples in R

jSj number of pages in S

kSk number of tuples in S

Furthermore, except where explicitly noted otherwise we

assume that the join is foreign key-key, meaning that

each R tuple joins with exactly one S tuple. We assume

that each R tuple r joins with a randomly chosen tuple

of S; this means that it is possible that two R tuples

join with the same S tuple.

The following parameters describe the hardware con-

�guration:

procs number of processors

mem number of memory pages

io time for an I/O (read or write)

msg time to send/receive a message

hash time to compute hash function

insert time to insert in hash table

probe time to probe hash table

3.1 Hybrid Hash

A critical parameter to the performance of parallel hy-

brid hash is the percentage of R that �ts in memory,

since this percentage of R and S can be processed with-

out ever writing the tuples to disk after repartitioning.

In the model below we refer to this fraction of R as

\part0frac," for \partition zero fraction."

HHio = // read local R partition

(jRj=procs) � io +
// write over
ow R

(jRj=procs) � (1� part0frac) � io +
// read local S partition

(jSj=procs) � io +
// write over
ow S

(jSj=procs) � (1� part0frac) � io

The network cost of hybrid hash is given by

HHnet = // send R

(jRj=procs) �msg+

receive R

(jRj=procs) �msg+

// send S

(jSj=procs) �msg+

// receive S

(jSj=procs) �msg

Finally, the CPU cost of hybrid hash is given by

HHCPU = // �nd destination

(jRj=procs) � hash +
// insert in hash table

(jRj=procs) � insert +
// lookup in hash table

(jSj=procs) � probe

This is intended to cover the CPU costs that are not cov-

ered by the expressions for the IO and network times.

The CPU cost is probably the least accurate in this

model; fortunately for the accuracy of the model, it is

also by far the smallest component of the total cost of

the algorithm.

3.2 Replicating Nested Loops (RNL)

Coming up with an expression for the running time of

the nested loop with index algorithms is slightly more

complex than was the case for hybrid hash because the

total number of I/O's is not determined by the algorithm

(as is the case for hybrid hash) but is determined by the

combination of the algorithm, the bu�er pool size, and

the bu�er replacement policy. For the replicating nested

loops with index algorithm we assume that the bu�er

pool pages are allocated with the following decreasing

priority:

� Index pages of S;

� Data pages of S;

� Data pages of R.

The motivation for this policy is that (1) if S and/or

S index pages cannot be memory resident for the dura-

tion of the algorithm, they could be read multiple times,

whereas if an R page does not �t in memory it need only

be spooled to disk (when it arrives at the join site) and

re-read once (when the tuples on the page are actually

joined with S); (2) the index on S is in general smaller

than S, so keeping the index in memory \costs" fewer

bu�er pages than keeping S in memory. The priority

of S index pages over S data pages also roughly ap-

proximates the behavior of the algorithm under an LRU

bu�er management policy, since the index pages can be

expected to be hotter than the S data pages.

With this in mind we can now specify the cost of

the replicating nested loops algorithm. The following

formula uses the quantities indexReads, SReads, and

RReads. These quantities will be de�ned after the for-

mula.

RNLIO = initRReads + indexReads+

SReads + RJoinReads) � io

InitRReads is just jRj=procs, for the read of the original

fragments of R. (Recall that since RNL replicates all of

R everywhere, every processor must process all of R.)

To calculate the number of index page reads, we as-

sume that initially there are no index pages in the bu�er



pool. Then at any given time during the execution of the

algorithm, the probability that a given R tuple \hits" in

the bu�er pool is given by the ratio of the number of in-

dex pages in memory to the total number of index pages.

If an R tuple \misses" in the bu�er pool, and there are

still available bu�er frames, then the number of resident

index pages is incremented.

The calculation for the number of S page reads is iden-

tical except that instead of all memory being initially

available to S, only the memory left over after �tting the

S index into memory (if any) is available to S. Finally,

the number of RJoinReads is calculated as follows: �rst

de�ne the number of R over
ow pages to be jRj minus

the number of bu�er pool pages available after �tting

both S and the index on S in memory. Then there is

one read and one write for each R over
ow page; there

are no join reads for R pages that are not over
ow pages,

since these pages remain in the bu�er pool throughout

the join.

The network cost of the replicating nested loops algo-

rithm is easy to calculate:

RNLnet = // broadcast R fragment

jRj �msg+

// receive all of R

jRj �msg

Again, each processor must send and receive jRj mes-

sages (rather than jRj=procs) because RNL fully repli-

cates R. That is, we are assuming that for a site to

broadcast jRj=procs pages requires sending a total of

jRj=procs � procs = jRj pages.
Finally, the CPU cost of replicating nested loops is

given by

RNLCPU = // cost for index probes

kRk �CPUIndex

As in the case of hybrid hash, this is the CPU cost unac-

counted for in the IO and network costs. Also as in the

model for hybrid hash, the CPU cost is a small fraction

of the total cost.

3.3 Replicating Nested Loops with Sort-

ing (RNL-S)

If the index on the join attribute in S is a clustered in-

dex, RNL can be sped up by sorting R before joining it

with S. In this case the total number of S reads is just

the number of S pages that contain at least one tuple

that joins with some R tuple. We calculate this quan-

tity, numSReads, by assuming that the tuples that join

with the R tuples are randomly distributed throughout

the S pages. From this viewpoint, this is just a classical

\balls in bins" problem from elementary probability the-

ory. The number of S index reads, numSIndexReads, are

computed in an analogous way. The number of R reads

after the initial scan of R is just one read for the join

(assuming that the sort leaves R on disk; Subsection 4.2

discusses an optimization of SNL-S that avoids much of

the I/O cost of this sort) plus the required number of

reads and writes to sort R. In our analytic model we as-

sume that R can be sorted in two passes (given modern

memory sizes, even a 100GByte relation can be sorted

in two passes [STG+90]). This means that the I/O cost

for replicating nested loops with sorting is given by

RNL-Sio = // scan initial R fragment

(jRj=procs) � io +
// two-pass sort of R

4 � jRj � io +
// R reads for actual join

jRj � io +
// S reads

numSReads � io +
// S index reads

numSIndexReads � io

The network cost is identical to the network cost of the

replicate nested loops without sorting. The CPU cost

for the replicate nested loops is just that of the repli-

cate nested loops, plus additional CPU for the sort.

In our analytical model, we used the formula from

in [DKO+84]:

kRk � (log kRk � keyswap +move)

3.4 Subsetting Nested Loops (SNL)

Recall that in SNL, instead of broadcasting R to all pro-

cessors, each R tuple r is �rst sent to an intermediate

processor for a lookup on the MapS relation, then for-

warded to all processors that have S tuples that join

with r. For this reason, in the subsetting nested loops

algorithmwe need to specify the number of S tuples that

join with a given R tuple. In the model, we assume that

this number is a constant, the fanout. Furthermore, we

assume in the model that if an R tuple joins with k tu-

ples of S, those k tuples of S are located on k distinct

processors.

As with RNL, the number of reads for the SNL de-

pends upon the interaction between the algorithm and

the bu�er pool. At the top level, the total I/O time is

given by the expression

SNLio =(initRReads + mapSReads + RMapReads +

indexReads + SReads + RJoinReads) � io

where initRReads, indexReads, SReads, and RJoin-

Reads have the same meaning as in RNL, mapSReads

are the number of IOs for SMap pages, and RMapReads

is the number of IOs during the mapping of R tuples to

�nal destination processors.



To calculate all of these read quantities we again need

to decide upon the priority for bu�er pool pages. If we

assume that the mapping and joining phases of the al-

gorithm are sequential (the join of R and S does not

begin until all sites have �nished mapping R tuples to

�nal destination sites) then there is no contention be-

tween MapS pages and S index pages. In the model we

assume that MapS is stored like a B-tree index (with

< S:B; S:P > entries instead of < s:B; rec. id > pairs

in the leaf pages), and that all but the leaf pages of

the index are memory resident. The MapSReads are

calculated exactly as the S index reads were calculated

in RNL. (That is, by assuming that a map lookup hits

the bu�er pool with probability given by the ratio of

the current number of MapS pages in the bu�er pool

to the total size of MapS.) The RMapReads are cal-

culated by �rst de�ning the R over
ow pages to be

jRj=procs�(memory�MapSPagesResident), and charg-

ing one read and one write for each R over
ow page.

The quantities initRReads, indexReads, SReads, and

RJoinReads are all calculated exactly as in RNL, except

that now the number of R tuples per processor is (kRk�
fanout)=procs instead of kRk, and the number ofR pages

per processor is (jRj � fanout)=procs instead of jRj.
The network cost of the subsetting nested loops is

given by the expression

SNLnet = // distribute R for mapping

((jRj � fanout)=procs) �msg+

// receive R for mapping

((jRj � fanout)=procs) �msg+

// distribute R for joining

((jRj � fanout)=procs) �msg+

// receive R for joining

((jRj � fanout)=procs) �msg

Finally, the CPU cost of subsetting nested loops is given

by

SNLCPU = // cost for index probes

2 � (kRk=procs) �CPUIndex

where the factor of two arises because there is one index

lookup for the MapS lookup, and another for the index

lookup in the actual join.

3.5 Subsetting Nested Loops with Sort-

ing (SNL-S)

As with the RNL, in the presence of a clustered index

on S:B the number of IOs can be dramatically reduced

by sorting R before joining. The same technique can be

used to reduce the number of IOs in the mapping phase

if MapS is clustered on MapS:B. In this subsection we

consider this case.

The IO cost for SNL-S is given by

SNL-Sio = // scan initial R fragment

(jRj=procs) � io +
// two-pass sort of R at map site

4 � (jRj=procs) � io +
// R reads for mapping

(jRj=procs) � io +
// MapS reads

numSMapReads � io +
// two-pass sort of R at join site

4 � ((jRj � fanout)=procs) � io +
// R reads for join

((jRj � fanout)=procs) � io +
// S index reads

numSIndexReads � io +
// S reads for join

numSReads � io

Here numSMapReads is calculated in an analogous fash-

ion to the way numSIndexReads is calculated in the

replicating nested loops with sorting algorithm; the

quantities numSIndexReads and numSPageReads are

calculated in exactly the same way as in the replicat-

ing nested loops with sorting algorithm, only now the

number of R tuples per processor is kRk � fanout=procs
instead of kRk.
The network cost is identical to that of SNL. Finally,

the CPU cost for the sort at a mapping processor is

(kRk=procs) � (log (kRk=procs) � keyswap +move)

while the CPU cost for the sort at a join processor is

(kRk=procs) � fanout �
(log ((kRk=procs) � fanout) � keyswap +move)

4 Analytic Model Experiments

In this section we present results from experiments with

the analytical model. In all cases, we �xed kSk at 30K

pages, each of 50 tuples, for 1.5M tuples. We also �xed

the number of R tuples per page at 50, and varied the

number of pages in R. Also except where noted other-

wise, we assumed that the fanout (average number of

S tuples that each R tuple joins with) was one. The

hardware parameters we used were:

comp 0.010 // msec to compare keys

keyswap 0.030 // msec to swap a pair of keys

hash 0.010 // msec to hash a key

tuplemove 0.053 // msec to move a tuple in mem

swap 0.150 // msec to swap two tuples

io 30.000 // msec to do sequential IO

msg 6.000 // msec to send a message

These costs approximate costs that we have measured

in Gamma. Except where noted otherwise, we have as-

sumed a 30 processor system.



4.1 Memory Size

Memory size is a critical parameter to the performance

of all of the algorithms. In this section, we compare the

algorithms at three memory sizes:

1. Small. Here none of R, S, the index on S, or MapS

�t in memory.

2. Medium. Here the indexes on S and MapS �t en-

tirely in memory, but neither R nor S themselves

�t in memory.

3. Large. Here all of R, S, the index on S, and MapS

�t in memory.

In each case, the basic experiment is to �x the size of S

and vary the size of R, plotting the performance of the

algorithms as a function of the size of R.

Figure 1 shows the analytic model performance for all

�ve algorithms in the small memory case (50 memory

pages per processor). The graph illustrates that when

memory is scarce, of the �ve algorithms only HH and

SNL-S are reasonable alternatives. Both the RNL and

SNL have terrible performance since they do multiple

I/Os per R tuple. RNL-S also has poor performance,

primarily due to the cost of writing and reading all of

R at every processor and the cost of broadcasting R to

every processor in the system.

0 10000 20000 30000

0

500

1000

1500

time

(sec)

R pages

(S pages 30000, memory 50, numprocs 30.)

SNL-S

RNL

RNL-SSNL

HH

Figure 1: Analytic model performance of all algorithms,

small memory case.

Table 1 gives the rough breakdown on the running

times of the algorithms into CPU, IO, and network costs.

The numbers in that table are the ranges (minimum to

maximum) of the fractions over all data points in the

graphs in Figure 1. In all cases the model predicts that

CPU costs are a small fraction of total cost, although

the sorting versions of the algorithms have considerably

higher CPU costs than their non-sorting counterparts.

Algorithm frac. CPU frac. network frac. IO

RNL < 0:01 < 0:01 > 0:99

RNL-S 0:02� 0:20 0:01� 0:07 0:75� 0:96

SNL < 0:01 < 0:01 > 0:99

SNL-S 0:01� 0:14 0:00� 0:06 0:80� 0:99

HH < 0:01 0:12� 0:29 0:71� 0:87

Table 1: Breakdown of execution times, small memory

case.

The network costs are a signi�cantly higher fraction of

HH than of the other algorithms; this is partially because

HH must redistribute both R and S, and partially be-

cause the other costs of HH (CPU and IO) are low when

compared with those costs for the other algorithms.

Figure 2 shows the performance of the best algorithms

from Figure 1 in the interesting region of the comparison

(where HH and SNL-S are roughly comparable.) Fig-

ure 2 makes a point that is consistent throughout our

experiments: SNL-S only beats HH over a small portion

of the total problem space, but in this region, SNL-S can

be much faster than HH.

The \knee" in the graph of HH occurs when R no

longer �ts entirely in memory. From this point on, every

additionalR page causes 1:0+(jSj=jRj) I/Os for over
ow
handling. As jRj grows this quantity shrinks, and the

slope of the curve for HH diminishes. The curve for

SNL-S in Figure 2 begins with a steep slope, because

for very small R relations, the number of tuples in R is

less than the number of pages in S, and essentially every

additional R tuple results in an additional I/O on an S

page. When the number of R tuples is approximately

equal to the number of pages in S, additional R tuples

do not cause any additional S I/Os, so the only increase

in I/O time is due to the additional fractional I/O for

reading the tuples on the new R pages. At this point

the slope in the curve for SNL-S diminishes.

Figure 3 shows the performance of all the algorithms

in the medium memory con�guration (here, 200 pages

per processor.) RNL and SNL perform better here, while

the e�ect of more memory on RNL-S and SNL-S is less

pronounced. This is because RNL and SNL are more

directly impacted by the fraction of SMap and the index

on S:B that �ts in memory.

Figure 4 shows SNL-S and HH on the medium mem-

ory case. This graph shows that SNL-S is not able to

e�ectively make use of the additional memory, whereas

HH is able to use the memory to avoid having to spool

over
ow tuples to disk, hence here HH beats SNL-S by

a wider margin.

Figure 5 gives the analytic model performance for all

algorithms when the memory is large (2150 pages per



0 5000 10000

0

50

100

150

time

(sec)

R pages

(S pages 30000, memory 50, numprocs 30.)

SNL-S

HH

Figure 2: Analytic model performance of SNL-S and

HH, small memory case.

0 10000 20000 30000

0

500

1000

time

(sec)

R pages

(S pages 30000, memory 200, numprocs 30.)

SNL-S

RNL
RNL-S SNL

HH

Figure 3: Analytic model performance of all algorithms,

medium memory case.

processor). Here note that the sorting variants of the

nested loops algorithms actually perform worse than the

non-sorting variants. This is because the memory is now

large enough to hold S, the index on S, and SMap in

memory, so the non-sorting variants of the algorithms

just fault these relations and indices into memory then

do no more I/O, hence every page is read at most once,

just as in the sorting variants of the algorithms. In this

case the sorting overhead is wasted.

Figure 6 focuses on the SNL-S, SNL, and HH algo-

rithms in the large memory case. Again, while the nested

loops algorithms only beat HH for small instances of R,

they can be much faster.

0 5000 10000

0

50

100

150

time

(sec)

R pages

(S pages 30000, memory 200, numprocs 30.)

SNL-S

HH

Figure 4: Analytic model performance of SNL-S and

HH, medium memory case.

0 10000 20000 30000

0

500

1000

time

(sec)

R pages

(S pages 30000, memory 2150, numprocs 30.)

SNL-S

RNLRNL-S

SNL
HH

Figure 5: Analytic model performance of all algorithms,

large memory case.

4.2 An Optimization for SNL-S

The sorting variants of the algorithms as described in

Section 2 can be improved with the following sorting

optimization: instead of a two-pass sort that begins and

ends with the relation on disk, the R tuples can be sorted

into runs as they come o� the network, then written in

sorted runs. Next, these sorted runs can be merged, but

instead of writing the result of the merge back to disk,

the tuples produced by the merge can be joined with

MapS and S \on the 
y." In this way R is sorted without

incurring any overhead beyond that required to spool R

to disk and re-read it in the join. Figure 7 shows SNL-S,

OSNL-S (Optimized SNL-S), and HH for the medium

memory con�guration. While the optimization clearly

improves upon the performance of SNL-S, it does not

change the overall result: the nested loops algorithms



0 5000 10000

0

50

100

150

time

(sec)

R pages

(S pages 30000, memory 2150, numprocs 30.)

SNL-S

SNL

HH

Figure 6: Analytic model performance of SNL, SNL-S

and HH, large memory case.

do well only when R is very small, but they do very well

in that case.

0 5000 10000 15000 20000

0

50

100

150

200

250

time

(sec)

R pages

(S pages 30000, memory 200, numprocs 30.)

SNL-S

OSNL-S

HH

Figure 7: Optimized versus basic SNL-S.

5 Implementation and Experi-

ments

In this section we describe the implementation and

experiments with the nested loop join algorithms in

Gamma. Our goal was to explore the performance of

the algorithms in an implementation, and also to inves-

tigate how naturally the nested loops algorithms could

be implemented in a system that already has indices and

the hash-join algorithms available.

5.1 Implementation

Gamma falls into the class of shared-nothing [Sto86] ar-

chitectures. The hardware consists of a 32 processor

Intel iPSC/2 hypercube. Each processor is con�gured

with a 80386 CPU, 8 megabytes of memory, and a 330

megabyte MAXTOR 4380 (5 1/4 in.) disk drive. Each

disk drive has an embedded SCSI controller that pro-

vides a 45 Kbyte RAM bu�er that acts as a disk cache

on sequential read operations. The nodes in the hyper-

cube are interconnected to form a hypercube using cus-

tom VLSI routing modules. Each module supports eight

full-duplex, serial, reliable communication channels op-

erating at 2.8 megabytes/sec.

Gamma is built on top of an operating system de-

signed speci�cally for supporting database management

systems. NOSE provides multiple, lightweight pro-

cesses with shared memory. A non-preemptive schedul-

ing policy is used to help prevent convoys [BGMP79]

from occurring. NOSE provides communications be-

tween NOSE processes using the reliable message pass-

ing hardware of the Intel iPSC/2 hypercube. File ser-

vices in NOSE are based on the Wisconsin Storage Sys-

tem (WiSS) [CDKK85].

The services provided byWiSS include sequential �les,

byte-stream �les as in UNIX, B+ tree indices, long data

items, an external sort utility, and a scan mechanism. A

sequential �le is a sequence of records that may vary in

length (up to one page) and that may be inserted and

deleted at arbitrary locations within a �le. Optionally,

each �le may have one or more associated indices that

map key values to the record identi�ers of the records

in the �le that contain a matching value. One indexed

attribute may be designated to be a clustering attribute

for the �le.

The basic code that needed to be added to Gamma

included:

1. The code to perform a local indexed nested loops

join.

2. The code to broadcast tuples to multiple sites.

3. The code to do the SMap lookup and redistribution

for the SNL and SNL-S algorithms.

Item one was straightforward. Item two was necessary

because the tuple redistribution mechanisms used by the

parallel hybrid-hash algorithm assume that each tuple

is sent to exactly one destination. Fortunately, we had

already added code to do the broadcast and subset re-

distributions in our work on skew-handling join algo-

rithms [DNSS92], so no new code needed to be written.

Items one and two were all that was necessary to imple-

ment the RNL and RNL-S algorithms.



Item three was less straightforward. The di�culty is

that although SMap is conceptually a lot like an index, it

is used in a very di�erent manner: instead of using values

to associatively access tuples, it uses join attribute val-

ues to determine a set of target processors. Accordingly,

to implement SMap as described in Section 2 would have

required a rewrite of a signi�cant portion of the system

code that implements indices. To avoid this rewrite,

instead of making SMap an access method (index), we

made it a relation. In more detail, SMap(P;B) is a bi-

nary relation containing a tuple (m:P;m:B) for every

tuple (s:P; s:B; : : :) in S (recall that P is the partition-

ing attribute of S). We store SMap hash partitioned on

SMap:B.

We then noticed that if the optimizer rewrites the bi-

nary join

range of r is R

range of s is S

retrieve (r.all, s.all)

where r.A = s.B

into the three relation join

range of r is R

range of m is SMap

range of s is S

retrieve (r.all, s.all)

where r.A = m.B and m.P = s.P

then the result of this join is the same as the result of

the two relation join. (Recall that by de�nition S:P

is a key for S.) More importantly, after some minor

modi�cations to the Gamma scheduler, when evaluating

this three way join, Gammadoes almost exactly the SNL

join algorithm. The execution works as follows:

1. Each R tuple r is shipped to the processor that

contains the SMap tuples m with m:B = r:A.

2. At each processor, the fragment of R received in

Step 1 is joined with the local fragment of SMap.

The tuples produced include the attributes A (from

R), and B and P (from m).

3. Each tuple j produced in the join in Step 2 is sent

to the processor that contains the S tuples s with

s:P = j:P .

4. At each processor, the tuples sent to procj in Step

3 are joined with S.

The main di�erence between the algorithm this produces

and the SNL algorithm we described in Section 2 is that

the join between R and SMap in Step 2 is not just a

lookup on SMap. This join is accomplished by a (lo-

cal) nested loop with index join algorithm; we created a

clustered index on SMap:B to make this e�cient.

To implement RNL-S and SNL-S, we used existing

system sorting code. This code assumes that the input

relation to be sorted is on disk both at the beginning

and end of the sort, so we implemented these algorithms

without the optimization described in Subsection 4.2.

5.2 Experiments

We con�gured the system to use 125 bu�er pool pages

per processor, each of 8K bytes, and used 30 proces-

sors. We also used 8K byte network packets. In all

cases, the tuple size of both R and S was 208 bytes. We

performed two sets of experiments with the implemen-

tation, roughly corresponding to the \mediummemory"

and the \large memory" cases from the analytic model.

Figure 8 contains the results of an experiment in S

contained 500K tuples. At approximately 40 tuples per

page, this is approximately 12,500 pages. Spread over 30

processors, this is roughly 400 pages per processor. This

will not �t entirely in the 125 page bu�er pool, although

the S:B index and SMap will �t. We varied the size

of R from 10 to 100K tuples. The relative performance

of the algorithms closely matches that predicted by the

analytic model in Figure 3.

0 5000 10000

0

200

400

600

800

time

(sec)

R pages

(12500 S pages, 30 processors)

RNL-S

RNL

HH

SNL

SNL-S

Figure 8: Experimental data from Gamma, medium

memory case.

Figure 9 shows the Gamma performance of HH and

SNL-S in the medium memory case. The graph is

roughly analogous to Figure 4; in Figure 9 since there is

relatively more free memory, HH does not have to use

multiple partitions and its performance does not degrade

as in Figure 4.

For the large memory case, because we were limited by

the availability of physical memory, instead of growing

the bu�er pool, we shrank the relations, setting S to

contain 100K tuples. With 8K pages, the entire relation

occupies about 2500 pages. Spread over 30 processors,



0 500 1000

10

20

30

40

time

(sec)

R pages

(500K S tuples, 30 processors)

HH

SNL-S

Figure 9: Experimental data from Gamma, medium

memory case.

this gives roughly 80 pages per processor, which �ts in

the 125 page bu�er pool with su�cient free space to also

hold the index pages and SMap pages. We varied the

size of R from 10 to 100K tuples. Figure 10 shows the

results from this experiment. This graph corresponds to

the graph in Figure 5 generated by the analytic model.

0 1000 2000 3000

0

20

40

60

80

time

(sec)

R pages

(2500 S pages, 30 processors)

RNL
RNL-S

HH

SNL

SNL-S

Figure 10: Experimental data from Gamma, large mem-

ory case.

Finally, Figure 11 shows the performance of SNL,

SNL-S, and HH in the large memory case. As predicted

by the analytic model (see Figure 6), SNL beats SNL-S

in this region, and both SNL and SNL-S beat HH for

very small R relations.

0 200 400 600 800

5

10

15

20

time

(sec)

R pages

(2500 S pages, 30 processors)

HH

SNL

SNL-S

Figure 11: Experimental data fromGamma, large mem-

ory case, SNL, SNL-S, and HH.

6 Conclusion

Our analytic and experimental investigation of paral-

lel hybrid hashing vs. parallel nested loops with index

con�rms the intuition that while hybrid hashing out

performs nested loops for most combinations of input

relation sizes, if the relation sizes are very di�erent,

then nested loops with index provides signi�cantly bet-

ter performance than hybrid hashing. Furthermore, of

the nested loops algorithms we considered (SNL, SNL-S,

RNL, RNL-S), only SNL-S provided acceptable perfor-

mance in general, although if the available memory is

larger than the indexed relation, SNL is the algorithm

of choice.

Since joins of relations of disparate sizes are not un-

common (e.g., a select-join where the selectivity is high),

parallel database systems could pro�t from implement-

ing both algorithms. However, having only the nested

loops with index algorithm is not su�cient, since the

nested loops algorithms only perform well when the ap-

propriate index exists and the join input relation sizes

are su�ciently di�erent. Our simple cost formulas from

the analytic model could be used by an optimizer to

determine which algorithm to use.

References

[BE77] M. W. Blasgen and K. P. Eswaran. Stor-

age and access in relational databases. IBM

Systems Journal, 16(4), 1977.

[BGMP79] M. W. Blasgen, J. Gray, M. Mitoma, and

T. Price. The convoy phenomenon. Operat-

ing System Review, 13(2), 1979.



[CDKK85] H-T. Chou, D. J. Dewitt, R. H. Katz, and

A. C. Klug. Design and implementation of

the Wisconsin Storage System. Software|

Practice and Experience, 15(10):943{962,

October 1985.

[CK85] G. Copeland and S. Khosha�an. A de-

composition storage model. In Proc. of the

ACM SIGMOD Conference, pages 268 {

279, Austin, Texas, May 1985.

[DG85] D. M. DeWitt and R. Gerber. Multiproces-

sor hash-based join algorithms. In Proc. of

the Twelfth VLDB, pages 151{164, Stock-

holm, Sweden, 1985.

[DGS+90] D. DeWitt, S. Ghandeharizadeh, D. Schnei-

der, A. Bricker, H.-I Hsiao, and R. Ras-

mussen. The Gamma database machine

project. IEEE TKDE, 2(1), March 1990.

[DKO+84] D. J. DeWitt, R. H. Katz, F. Olken, L. D.

Shapiro, M. R. Stonebraker, and D. Wood.

Implementation techniques for main mem-

ory database systems. In Proc. of the ACM

SIGMOD Conference, pages 1{8, June 1984.

[DNSS92] D. J. DeWitt, J. F. Naughton, D. A. Schnei-

der, and S. Seshadri. Practical skew han-

dling in parallel joins. In Proc. of the Nine-

teenth VLDB, Vancouver, British Columbia,

August 1992.

[EGKS90] S. Englert, J. Gray, T. Kocher, and P. Shah.

A benchmark of NonStop SQL Release

2 demonstrating near-linear speedup and

scaleup on large database. In Proc. of the

SIGMETRICS Conference, pages 245{247,

May 1990.

[ESW78] R. Epstein, M. Stonebraker, and E. Wong.

Distributed query processing in a relational

database system. In Proc. of the ACM-

SIGMOD Conference, 1978.

[KTMo83] M. Kitsuregawa, H. Tanaka, and T. Moto-

oka. Application of hash to data base ma-

chine and its architecture. New Generation

Computing, 1(1), 1983.

[OL89] R. Omiecinski and E. T. Lin. Hash-based

and index-based join algorithms for cube

and ring connected multicomputers. IEEE

TKDE, 1(3):329{343, September 1989.

[SC90] E. J. Shekita and M. J. Carey. A per-

formance evaluation of pointer-based joins.

In Proc. of the ACM-SIGMOD Conference,

pages 300{312, Atlantic City, New Jersey,

May 1990.

[SD89] D. A. Schneider and D. J. DeWitt. A per-

formance evaluation of four parallel join al-

gorithms in a shared-nothing multiproces-

sor environment. In Proc. of the ACM-

SIGMOD Conference, pages 110{121, Port-

land, Oregon, June 1989.

[STG+90] B. Salzberg, A. Tsukerman, J. Gray, S.

Uern, and B. Vaughan. FastSort: A dis-

tributed single-input single-output external

sort. In Proc. of the ACM-SIGMOD Con-

ference, pages 94{101, Atlantic City, New

Jersey, May 1990.

[Sto86] M. Stonebraker. The case for shared noth-

ing. Database Engineering, 9(1), 1986.

[SY89] J. W. Stamos and H. C. Young. A sym-

metric fragment and replicate algorithm for

distributed joins. TR RJ 7118 (67667), IBM

Research Division, Almaden Research Cen-

ter, San Jose, California, December 1989.

[Val87] P. Valduriez. Join indices. ACM TODS,

12(2):218 { 246, June 1987.

[VG84] P. Valduriez and G. Gardarin. Join and

semijoin algorithms for a multiprocessor

database machine. ACM TODS, 9(1):133{

161, March 1984.

[WDY90] J. L. Wolf, D. M. Dias, and P. S. Yu.

An e�ective algorithm for parallelizing sort

merge joins in the presence of data skew. In

Proc. of the Second ISDPDS, pages 103{115,

Dublin, Ireland, July 1990.

[WDYT90] J. L. Wolf, D. M. Dias, P. S. Yu, and J. J.

Turek. An e�ective algorithm for paralleliz-

ing hash joins in the presence of data skew.

IBM T. J. Watson Research Center Tech Re-

port RC 15510, 1990.


