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Abstract

We consider the problem of external sorting in a shared-nothing multiprocessor. A

critical step in the algorithms we consider is to determine the range of sort keys to be

handled by each processor. We consider two techniques for determining these ranges of sort

keys: exact splitting, using a parallel version of the algorithm proposed by Iyer, Ricard, and

Varman; and probabilistic splitting, which uses sampling to estimate quantiles. We present

analytic results showing that probabilistic splitting performs better than exact splitting.

Finally, we present experimental results from an implementation of sorting via probabilistic

splitting in the Gamma parallel database machine.

1 Introduction

In this paper we consider the problem of external sorting in a shared-nothing parallel database

system. \Shared-nothing" means that the database system is implemented on top of a multi-

processor in which each processor has its own local memory and disk, and all communication

between processors must take place through an interconnection network. The speci�c sorting

problem we address is \multiple-input multiple-output" sorting. In this sorting problem, ini-

tially the data in the �le to be sorted is on disk, distributed throughout the multiprocessor,

and unsorted. At the termination of the sorting algorithm, the �le must again be on disk, but

partitioned into approximately equal sized non-overlapping sorted runs, one at each processor.

At the top level, an algorithm for this problem is as follows:

1. Determine a \splitting vector" v[i], where 1 � i < k, such that in the �nal sorted order,

all records on processor p1 have sort key value less than v[1], all records on processor p2

have sort key value greater than v[1] but less than v[2], and so on, until all records on

processor pk have sort key value greater than v[k � 1].

2. Based upon this splitting vector, redistribute the records in the �le so that each record is

at the appropriate processor.

3. After this redistribution, locally sort the records on each processor to produce the �nal

result.
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The performance of the sorting algorithm is critically dependent upon Step 1. In this paper we

consider two fundamentally di�erent approaches to determining the splitting vector. The �rst

approach we consider is due to Iyer et al. (An earlier paper due to Yamane and Take [YT88]

proposes a similar algorithm with the same asymptotic running time as the algorithm of Iyer et

al. However, since the description in Yamane and Take is not su�ciently detailed to estimate

anything other than rough asymptotic running times, we chose the algorithm due to Iyer et

al. for this study.) We call their method \exact splitting", since it deterministically computes

an exact splitting vector, that is, one such that each processor is allocated the same number

of records (plus or minus one). The second approach we consider, which we call \probabilistic

splitting," computes an approximate splitting vector by sampling the unsorted �le. As we

discuss below, probabilistic splitting and similar techniques have apparently been discovered

and rediscovered many times in the sorting literature, but to our knowledge have never been

carefully studied in the context of external parallel sorting.

We show, using an analytical model, that on shared-nothing parallel systems, probabilistic

splitting beats exact splitting. Furthermore, we present scaleup, speedup, and sizeup exper-

imental data from an implementation of sorting using probabilistic splitting on the Gamma

database machine.

In related work on parallel external sorting, Salzberg et al. [STG+90] present an algorithm

for single-input single-output sorting. They demonstrate that by using a carefully engineered

parallel version of sort-merge, the internal sort and merge phases can be made fast enough

that the single input and the single output sites become the bottleneck. A parallel sort-merge

has the bene�t that it is not necessary to compute a splitting vector; however, sort-merge is

probably not appropriate in a multiple-input multiple-output sort, since the �nal merge cannot

be accomplished faster than a sequential pass through the entire �le. Beck et al. [BBW88]

describes a similar sort. Other earlier algorithms that also used a �nal sequential merge phase

include Bitton et al. [BBDW83], and Valduriez and Gardarin [VG84].

Graefe [Gra90] presents a thorough description of the implementation and evaluation of

a multiple-input, multiple-output sorting algorithm for a shared-memory multiprocessor. This

algorithm uses a splitting vector. Graefe suggests that this splitting vector might be computable

by sampling, but he does not investigate this alternative. His experimental results assume that

the splitting vector is known exactly before the algorithm is run.

There is a huge body of literature dealing with parallel internal sorting in abstract com-

putational models like the PRAM. This work is not directly relevant to our work, because of

1) the unrealistic abstract computational model, and 2) the unrealistic assumption that the

number of processors is proportional to the number of records to be sorted.

As noted previously, the idea of sorting using an approximate splitting vector obtained by

sampling has been invented and re-invented many times in the sorting literature.

Frazer and McKellar [FM70] proposed a uniprocessor internal sort based upon sampling.

They showed that asymptotically, given some restrictions on the distribution of the data being

sorted, their algorithm runs in linear time.

Distributive Sorting, a recursive bucket sort based upon sampling, has some similarities

with sorting via probabilistic splitting as well. Dobosiewicz [Dob78] originally proposed the

algorithm and proved that if the data is uniformly distributed, it runs in time O(n). Later,

2



Janus and Lamagna [JL85] proposed a �x to distributive sorting that attempts to provide

better performance for non-uniform data distributions. They use sampling to compute an

approximate cumulative distribution function for the data, and experimentally evaluated the

algorithm's performance using 31 partitions. The results showed that if the distribution was

smooth, the algorithm performed well. They did not investigate a parallel implementation of

the algorithm.

Quinn [Qui88] has suggested implementing a parallel quicksort as follows: to sort on k

processors, choose k� 1 pivot elements at random, and run the recursive quicksorts in parallel.

His experiments showed zero speedup beyond 10 processors, because of the skew in the sizes of

the arguments to the recursive quicksorts.

Huang and Chow [HC83] consider parallel external sorting using approximate partitioning

based upon sampling. In their algorithm, the samples are used for two purposes: �rst, to com-

pute the approximate splitting vector; second, within each local quicksort after partitioning the

samples are used as pivot elements. Using combinatorial analysis they present analytic formulas

showing good asymptotic performance, but did not implement their approach or compare it to

any other.

Baugst� and Greipsland [BG89] also consider parallel external sorting using approximate

partitioning based upon synchronized sampling of sorted sub�les. In more detail, in their

algorithm, they implement sampling as follows: �rst, each processor sorts its local �le fragment.

Next, each processor samples some fraction of the fragment by looking at every kth record for

some predetermined k. The resulting set of samples is then sorted and a partitioning vector

is formed. Baugst� and Greipsland do not discuss how to analyze the quality of the resulting

partitioning vector or how to determine what fraction of the �le should be sampled.

Lorie and Young [LY89] describe an algorithm for multiple-input, single-output sorting. A

novel feature of their algorithm is that the �nal output phase is heavily overlapped with the

internal sorting phase, which reduces the time from the initiation of the algorithm until the

�rst sorted tuple appears at the output. Their algorithm uses a splitting vector, which they

suggest might be computable by some statistical technique. In an example they appear to be

using a technique virtually identical to that of Baugst� and Greipsland, but the technique is not

further described. In the analytic data presented, Lorie and Young assume that the splitting

vector is known exactly before the algorithm begins.

Most recently, in work done concurrently with and independently from the work presented in

this paper, Blelloch et al. [BLM+91] investigated internal sorting algorithms for a 2048 processor

CM-2. They concluded (through experimental and analytic comparisons) that probabilistic

splitting followed by local radix sorts provided the highest performance, beating a parallel

bitonic sort and a parallel radix sort.

The remainder of this paper is organized as follows. Sections 2 and 3 describes the proba-

bilistic and exact partitioning algorithms, and gives a cost model for each. Section 4 uses these

cost models to compare the performance of the two. Section 5 describes our implementation

of probabilistic splitting in the Gamma parallel database machine, and Section 6 presents the

results of experiments on that implementation.
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2 Probabilistic Splitting

Algorithm Description

Probabilistic splitting is based upon a simple idea: to �nd an approximate splitting vector for

the �le, compute a random subset of the �le; �nd an exact splitting vector for the random subset;

�nally, use this exact splitting vector for the subset as an approximate splitting vector for the

whole �le. While this idea is simple, some care must be taken in evaluating the quality of this

approximate splitting vector. Also, there is an interesting tradeo� between the added cost of

taking a larger sample, which produces a better approximation, and the improved performance

that results from the better approximation.

An error in the approximate splitting vector translates directly to skew in the number of

records sent to the various processors in the parallel database system. In the following we derive

the number of samples necessary to guarantee a given skew for a given number of processors.

Let s, for skew, denote the ratio of the maximum number of records at any site to the average

number of records at a site. If we have k processors, and N records in the �le to be sorted,

then the average number of records per processor isN=k. Then by de�nition of s, the maximum

number of records at any site is sN=k. By Theorem 7.1 from Seshadri and Naughton [SN91],

if we take a total of kn samples, then the probability p that any processor contains more than

sN=k keys is at most

p = ke
�(1�1=s)2sn=2

Solving this for n gives

n =
2 ln(k=p)

(1� 1=s)2s
(1)

as the number of samples required to guarantee a skew of at most s with probability 1� p.

Trading Samples for Skew

To complete the description of probabilistic splitting, we need to describe how to �nd the optimal

value of the skew s. Setting s too small will result in poor performance due to the cost of too

many samples in the sampling phase; setting s too large will result in poor performance due

to the uneven sizes of the subproblems sent to the processors in later phases of the algorithm.

Since the function relating the skew and the number of samples depends upon the number of

processors k (Equation 1), for each value of k there will be a di�erent optimal s. Section 6

includes experiments illustrating this tradeo� in our implementation of probabilistic splitting.

Finding this optimal s is an optimization problem, and to set up and solve this optimization

problem, we need cost estimates for the various phases of the algorithm. The cost model

developed below is extremely simple, and as such should not be interpreted as an attempt to

predict absolute numbers for running times for the algorithm. Our intent is that although

the model is not su�ciently precise to yield accurate absolute running times, it will be good

enough to predict which choice among a set of alternatives can be expected to give the best

performance. This is analogous to the situation with query optimizers, where optimizers are
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often very successful in choosing a good evaluation plan even though their cost estimates are

not accurate in an absolute sense.

The main simplifying assumptions we make are that there is no overlap between I/O op-

erations, CPU operations, or network tra�c, that there is no contention in the network, and

that the work of the individual nodes of the machine (including I/O, CPU, and network) is

done completely in parallel with the other nodes of the machine. These assumptions allow us

to consider that the time for a single node to perform its segment of the computation is the

total time for the multiprocessor to perform the full computation.

COMP 0.012 ms. to compare keys

KS 0.036 ms. to exchange two keys

MOVE 0.053 ms. to move a record

IOS 44.000 ms. to do a sequential IO

IOR 50.000 ms. to do a random IO

MSG 1.000 ms. to send and receive a message

SAMPLE 120.000 ms. to take a random sample

Table 1: Parameters for the cost model.

We used the set of parameters in Table 1 in the cost model. These parameters are based

upon measurements from the Gamma parallel database machine. Many of these times are

higher than we had guessed before measuring them in the system. The COMP time is high

because for comparisons we used the general purpose Gamma compare key() routine, which

works for keys of arbitrary type at arbitrary positions within a tuple. The MOVE times are

actually measurements for moving a tuple from one slotted page to another slotted page, which

incurs additional overhead when compared to a simple Unix bcopy(). The I/O times were for

32K byte pages. Finally, in general each sample involved two random IOs: one for the index

page to locate the data page for the randomly selected tuple, and another for the data page

itself.

Furthermore, we use the following notation:

B number of records per page

P number of bytes per page (memory and disk)

M number of pages of available main memory

N number of records in the �le

k number of processors

The most interesting case to consider here is the case where the multiprocessor can sort the

�le in two passes. This requires only that each processor's bu�er space exceeds the square root

of the number of �le pages it is allocated, which allows very large �les. For example, if each

processor has 100 pages available for sorting, then each processor can sort a 10000 page sub�le.

With 32 processors, and 8K byte pages, the multiprocessor can sort a two gigabyte �le. If the

number of memory pages per processor is increased to 1000 (which is just 8 megabytes), the

32-node multiprocessor can sort a 200 gigabyte �le in just two passes. For more numbers about

just how large a �le can be sorted in two passes, see the table on page 95 in [STG+90].
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In this case (the two-pass case), at the top level the algorithm works as follows:

1. In parallel, the processors sample their fragment of the disk-resident �le.

2. In parallel, the processors sort their samples, then send the samples to a single processor,

where the sorted sets of samples are merged. Then an approximate splitting vector is

computed from the total sorted set of samples, and this splitting vector is broadcasted to

the other processors.

3. In parallel, the processors read their fragment of the �le, and using the splitting vector,

redistribute the records to the appropriate processor.

4. When a processor's memory has �lled with incoming records, the processor sorts these

records, writes a sorted run to disk, then continues reading incoming records.

5. In parallel, the processors merge the sorted runs from the disk and back onto the disk.

We now consider the cost for each step in turn. For concreteness, we will set

n =
2 ln(k=0:99)

(1� 1=s)2s

that is, n is the expected number of samples taken per processor to guarantee a skew of s with

99% certainty. Then

1. Sampling takes time n � SAMPLE.

2. Sorting each local set of sampled keys, assuming that we use an in-memory heapsort to

do so, takes

n � log2(n) � (KS + COMP)

CPU time. Next, these local sets of sampled keys must be gathered at a single node and

sorted there. The simplest way to do this is to have each processor send a message to the

designated processor, then to have this processor do a total sort. A more e�cient way is to

embed a binary tree in the hypercube. Then initially the leaves send their sorted samples

to their parents, where the two sets of samples are merged. Next, the parents send these

sets of samples to their parents, and so on, until the root of the tree has the complete

sorted set of samples. The total time from the initiation of the sort at the leaves until the

completion of the �nal merge at the root of the tree is given by n log2(n) � (KS+COMP)

to sort the initial sets of samples at each processor, plus 2n(k � 1) � (COMP+ MOVE)

to do the merges up the tree. The time for the merges is computed as follows. The

parents of the leaves merge two �les of size n, at a cost of 2n � (COMP + MOVE); the

grandparents of the leaves merge two �les of size 2n, and so on, until the root merges two

�les of size 2log2(k)�1n. The sum of these quantities is 2n(k�1)�(COMP+MOVE). Also,

the network cost to gather the samples is log2(k) �MSG seconds, and the network cost to

broadcast the resulting splitting vector to all k processors will take another log2(k)�MSG

seconds.
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3. While actually partitioning the source �le, we will assume that, for each record r, a

processor does a binary search of the splitting vector to determine to which processor r

belongs, then copies r to a bu�er page for tuples bound for that processor. The cost for

this step is
N

kB
� IOS + (N=k) � (log2(k � 1) � COMP+MOVE)

Finally, to ship the data will take time N
kB

�MSG.

4. For the sort of incoming records, note that each processor can hold MB records in its

memory, and it must sort this many records s
N

kBM
times, where the extra factor of s

comes from the skew. Assuming that the sort is done by heapsorting (key,ptr) pairs, then

copying records to their �nal position, the cost is

s
N

kBM
((MB) � (log2(MB)) � (KS + COMP))

to sort the keys and

s
N

kBM
((MB) �MOVE+M � IOS)

to move the records to the output bu�ers and write them to disk.

5. In the �nal merge, the processor with the heaviest load will have s N
kBM

runs ofMB records

each, so the time spent will be

s
N

kBM
M � IOR

to read in the runs and

s
N

kBM
((MB) � log2(s

N

kMB
)(KS + COMP))

to do the compares during the merge and �nally

s
N

kBM
((MB) �MOVE+M � IOS)

to copy the records to the output pages and then write them to disk.

Gathering together all the terms that depend on the skew s, we get an equation for the cost as a

function of the skew. This expression involves terms in s, 1=s, 1=s2, and log2(s). To determine

an optimal skew (and hence an optimal number of samples) we could use a numeric method

to �nd roots of the derivative of this equation; however, it is simpler to just compute c(s) for

a reasonable range of skews (say s = 1:0 to 2:0 by increments of 0:01) and return the value of

s that gave the smallest c(s). This value of s can then be used to determine the appropriate

number of samples to take.

We implemented this approach of searching for the best value of s, and found that over

a wide range of numbers of processors and a wide range of problem sizes, taking 100 samples

per processor was close to optimal. This result is supported by our experiments with the

implementation, reported in Section 6. Note that by Equation 1, by keeping the number of

samples per processor constant, we are letting the skew grow (slowly) as processors are added.
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This makes intuitive sense, since as the number of processors grows while keeping the size of

the source �le constant, the amount of work exclusive of sampling that must be done by each

processor decreases. Even keeping the number of samples constant implies that sampling takes

a larger and larger fraction of the execution time as the number of processors increases; if we

increase the number of samples per processor as the number of processors grow, the increase in

the fraction of the total running time due to sampling quickly swamps any gains obtained by

reducing the skew.

Although our goal was not to predict absolute performance numbers, a comparison of the

predicted numbers and the measured numbers in our implementation show that the two are

in fairly good agreement. Table 2 compares the predicted vs. measured numbers for varying

numbers of processors, in each case sorting one million 100 byte tuples and using 100 sam-

ples/processor.

num processors predicted time (sec) measured time (sec) ratio

5 243 271 0.90

10 128 143 0.89

15 90 103 0.87

20 70 80 0.88

25 58 67 0.87

30 51 58 0.88

Table 2: Analytic model predictions vs. measured performance.

3 Exact Splitting

In this section we consider the algorithm proposed by Iyer et al. for �nding an exact splitting

vector. The complete algorithm is rather complex; see Iyer [IRV89] for details. We have adapted

some of the steps for a shared-nothing multiprocessor, since the original algorithm was designed

with shared memory in mind. Our goal in this section is to present enough of the algorithm to

give the intuition behind it and also to justify our model of its cost.

As in the probabilistic splitting section, assume that we have k processors and that the �le

has N records. The �rst step of the exact splitting algorithm is that each processor fully sorts

its fragment of the �le, producing k sorted runs, one per processor. Recall that our overall goal

is to compute a k � 1-element splitting vector that divides the entire �le into k equally sized

segments.

The algorithm can perhaps best be explained in terms of how it computes a single splitting

element. Suppose that we wish to �nd the sort-key value that partitions the entire �le into two

segments, one containing the initial fN records of the entire sorted �le, the other containing

the last (1�f)N records of the entire sorted �le. Furthermore, assume that f � 0:5 (the case

f > 0:5 is symmetric.) Then the algorithm proceeds as follows:

1. Each processor selects (1�f)=f equally spaced elements from its sorted run. (Note that
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these are not randomly chosen elements; they are chosen at equal intervals from the sorted

run.)

2. Each of the processors sends its (1�f)=f elements to a single processor, which merges the

elements and then computes the exact f splitting value for these k(1�f)=f elements.

3. This exact f splitting value is broadcasted to all k processors.

4. Each processor determines the pair of elements from the (1 �f)=f elements chosen in

Step 1 that bracket the broadcasted splitting value.

5. The processors do a form of coordinated binary search on the records in the intervals be-

tween these \bracketing" elements to determine the exact splitting value for the whole �le.

In more detail, suppose that on the previous iteration, the splitting value was determined

to be v, and that for 1 � i � k, processor pi has determined that records ui and li in

sorted order bracket this value v. On the current iteration, for 1 � i � k, each processor

reads element (ui + li)=2 in the sorted order, and sends this element to one coordinating

processor, which then determines a new splitting value v
0. This process continues until

ui = li for 1 � i � k, at which point the current v is guaranteed to be an exact f splitting

value for the entire �le.

The last step of this description is actually greatly simpli�ed | it is not guaranteed that at

any time in the algorithm, the true �nal splitting value will indeed be bracketed by the current

ui and li. In general, the algorithm must search forward or backward outside of this interval.

However, what we have given, the case in which the exact splitting value is always bracketed

by ui and li, is the best case in that it results in the fewest number of records read. (In terms

of the description in Iyer et al. [IRV89], we are assuming the cases 2 and 3 on pages 138{139

never occur.)

Recall that this just describes how to �nd a single element of the splitting vector v[i]. To

compute the full vector, the previous algorithm is repeated for f = 1=k; 2=k; . . . ; (k � 1)=k.

These k iterations make the work per processor in exact splitting proportional to the number

of processors in the system.

We now develop a simple analytic model for the performance of a sorting algorithm that uses

exact splitting. As was the case in the model for probabilistic splitting, our goal is not to predict

absolute numbers. Rather, we want to make a relative comparison between probabilistic and

exact splitting, and also to identify the key parameters that determine how the two algorithms

relate.

Again, as in the case for probabilistic splitting, we assume that the �le can be sorted in two

passes. In this case, the algorithm at the top level looks like:

1. Each processor sorts its local segment of the �le.

2. The processors cooperate to determine an exact splitting vector.

3. The processors redistribute the data and write sorted incoming runs to disk.

4. Each processor merges the runs from disk.
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We now consider the cost of each step in turn.

1. The initial sort of the �le takes IO time N
kB

� IOS to read the local segment of the �le in

order to form the initial sorted runs, and also N
kB

� IOS to write these runs to disk. The

cpu to form these initial sorted runs is just (MB) � (log2(MB)) � KS +MOVE) per run,

and there will be N
BkM

such runs. The IO to merge these runs is N
kB

� (IOS + IOR) since

the reads are sequential while the writes are random. The CPU for the merge will be
N
k � (log2(

N
BkM ) �KS +MOVE).

2. Analyzing the cost of determining the splitting vector is again more complicated. We will

divide the cost into two parts, one for the initialization, one for the iterations. Further-

more, recall that this process must determine k � 1 splitting elements; we �rst consider

the cost of �nding the single splitting element at quantile i=(k�1) (the whole set consists

of the quantiles i=(k� 1) for i = 1; . . . ; k� 1.)

� Basis: Initially, we need to read (1� i
k
)= i

k
= k

i
� 1 pages from disk. This will cost

(k
i
� 1) � (IOR). Next, each processor must send these initial keys to some processor

to be sorted. As we did for probabilistic splitting, we assume that the keys are

gathered by being passed up a binary tree of processors, sorting them as they go.

The initial sort will take (ki � 1) log(ki � 1) � (KS + COMP), while the merges up

the tree will take a total of 2(k
i
� 1)(k� 1) � (KS + COMP), while the network cost

is log2(k) �MSG to gather the keys, and another log2(k) �MSG to distribute the

splitting constant afterwards. The cost for the sum of the basis operations for all

the quantiles will be the sum of the preceding quantities, from i = 1 to k � 1.

� Iterations: Now consider the cost of the iterations for the quantile i=k. First, as

explained above, the number of iterations is just log2(
N
k
=(k

i
� 1)). Each iteration

consists of reading the \midpoint" between two consecutive elements (for a cost of

IOR), sending it to a designated processor (log2(k) � MSG, assuming we pass the

elements up a binary tree of processors), then sorting these k elements (k(log2(k) �

(KS + COMP))), and �nally sending a message back to each processor (log2(k) �

MSG). Again, the total cost is the sum of this quantity for i = 1 to k � 1.

This completes the cost for the quantile determination.

3. After the quantiles have been computed, the computation proceeds as in the case for

probabilistic splitting. To redistribute the data, we again assume that, for each record r,

a processor does a binary search of the splitting vector to determine on which processor r

belongs, then copies r to a bu�er page for tuples bound for that processor. The cpu cost

for this step is (N=k) � (log2(k� 1) �COMP+MOVE) while the IO cost is just N
kB

� IOS.

The network cost to redistribute the data is N
kB

�MSG. Next, each processor must write

the incoming tuples to disk, which will cost N
kB

� IOS.

4. Finally, the processor must merge these runs, which will entail IO cost N
kB
�IOS+

N
kB
�IOR

and cpu cost (N=k) � (log2(
N
kB

=M) �KS +MOVE). Note that there is no skew here.
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4 Analytic Results and Comparison

It is perhaps most clear to consider probabilistic splitting and exact splitting in terms of what

they both add over an ideal (and usually unrealistic) situation where a perfect splitting vector

is known a priori at zero cost. Probabilistic splitting adds the explicit cost of sampling and the

implicit cost due to skew in the later phases of the algorithm. Exact splitting adds the explicit

costs of each processor sorting its original segment of the �le and of the iterative algorithm

to compute the exact splitting vector. In broad terms, our analytic model predicts that in a

shared-nothing multiprocessor, it is better to sample and tolerate some skew than to compute

an exact splitting vector. Furthermore, the relative di�erence in the performance of the two

algorithms increases as the number of processors applied to the sort grows.

Figure 1 shows the performance predicted for the two algorithms on sorting one million 100

byte tuples. Each processor was allocated 25 bu�er pages (32K bytes each) for a total of 800K

bytes. This sounds like a small number of pages, and it is, but as we discuss in Section 5, we

found that as long as there was enough memory to sort the �le in two passes, the performance

of the sorting algorithm was relatively insensitive to the amount of memory allocated. At

25 pages, and 320 tuples per page, each processor can sort 25 � 25 � 320 = 200000 tuples in

two passes. Even with just �ve processors (the smallest number of processors in the plot in

Figure 1), the multiprocessor can sort up to a one million tuple relation in two passes.

Probabilistic

Exact

0 25 50 75 100 125
0

50

100

150

200

250

300

350

400

Number of Processors 

Execution Time (Seconds)

Figure 1: Analytic model predictions for sorting 1M tuples.

Over the complete range of processors considered, probabilistic splitting is faster than exact

splitting. For large numbers of processors, the execution time for exact partitioning actually

begins to increase as more processors are added. This is due to the fact that if there are k pro-

cessors in the system, the algorithm to �nd an individual partitioning element must be repeated

k � 1 times. As mentioned in the sections that developed these models, we regard the relative

positions of the two curves and their shapes as more important than the absolute numbers. For
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this reason, in the remainder of this section we will present graphs of the ratios of the execution

times of these two algorithms instead of the execution times themselves. Speci�cally, we show

the ratio of the time for exact splitting over the time for probabilistic splitting. Hence, the

line y = 2 on the the graph corresponds to probabilistic splitting being twice as fast as exact

splitting.

The next factor we investigated was the dependence of performance of the two algorithms

on the record size. Sampling in general is more expensive as tuple sizes decrease, since each

random sample must pull in a complete page. This means that as tuple sizes decrease, each

random sample represents a larger percentage of the time to scan the whole �le. Figure 2 shows

the di�erence between the relative performance of the two algorithms in sorting one million 50

byte tuples, one million 100 byte tuples, and one million 200 byte tuples. The graph indicates

that the relative performance of the two algorithms remains approximately constant for all three

tuple sizes. The reason for this is that exact splitting is also adversely impacted by small record

sizes, since in much of the binary search phase of the algorithm, each probe of the relation must

pull in a complete page in order to examine a single tuple. The curve for 50 byte tuples stops at

60 processors because with one million 50 byte tuples, and 25 memory pages of 32K bytes each

per processor, if there are more than 60 processors the entire relation �ts into the aggregate

memory of the multiprocessor. (When the entire relation �ts in memory, our cost model, which

assumed two-passes, becomes invalid.)

50 byte tuples

100 byte tuples

200 byte tuples

0 20 40 60 80 100
1.5

1.7
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2.3
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Number of Processors 
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Figure 2: Analytic model predictions for sorting, 50, 100, and 200 byte tuples.

We also wanted to investigate the dependence of the two algorithms on problem size. Fig-

ure 3 shows the predicted relative performances of the algorithm on �les of 1M, 10M, and 100M

100 byte tuples. The shape of these curves can be explained by noting that, roughly, the num-

ber of page reads per processor in the sampling portion of probabilistic splitting is 100 { 200

(the precise number depends upon the hit ratio for index pages in the bu�er pool during the

sampling.) The number of page reads per processor in the percentile determination phase of
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Figure 3: Analytic predictions for ratios of algorithms on 1M, 10M, and 100M tuple �les.

exact splitting is O(k2), where k is the number of processors. As k grows, these k2 I/O's become

a signi�cant factor in the running time of exact splitting, so the ratio of the running time of

exact splitting to that of probabilistic splitting grows. However, as n grows, the fraction of the

total running time represented by these k2 I/Os is hidden by the running time for the sorting

portion of the algorithm. In essence this means that if we �x n and let k grow, then the ratio

of the running times should grow; if we compare curves for di�erent values of n, say n1 and

n2, with n2 larger than n1, this e�ect is delayed (it takes more processors before probabilistic

dominates.) To produce the curves in the �gure, we scaled the memory per processor with the

problem size: 25 pages for 1M tuples, 66 pages for 10M tuples, and �nally 180 pages for 100M

tuples. Also, we started at 10 processors rather than 5. This ensured that at every data point,

the sort could be completed in two passes.

Finally, we anticipated that as the size of the �le grows, probabilistic splitting becomes more

attractive in an absolute sense (not just in comparison with exact splitting.) Figure 4 shows

the speedups for probabilistic partitioning for various �le sizes. In the �gure, the basis point

is 10 processors, so speedups are ratios with respect to the 10 processor time. This implies

that perfect speedup is 10, not 100. (We used 10 processors instead of 1 as the basis because

with only a single processor, the �les cannot be sorted in two passes.) Figure 4 implies that

the larger the �le size, the more processors probabilistic splitting can apply e�ectively to the

sorting problem. Intuitively, the reason for this is that as we add more processors, the amount of

sorting work per processor decreases, but the amount of sampling work per processor remains

constant. For large �le sizes, even at 100 processors the sampling time is a tiny fraction of

the total execution time (e.g., 12 seconds out of 1400 seconds at 100M tuples.) However, for

smaller �les the sampling time at 100 processors becomes a signi�cant portion fraction of the

total execution time (e.g., 12 seconds out of 25 seconds for 1M tuples.)
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Figure 4: Analytic model predictions of speedup for 1M, 10M, and 100M tuple �les.

5 Description of Implementation

In order to investigate the performance of our parallel sorting algorithm based on probabilistic

splitting, we implemented the algorithm using the Gamma Database Machine [DGS+90] as

our experimental vehicle. Gamma falls into the class of shared-nothing [Sto86] architectures.

The hardware consists of a 32 processor Intel iPSC/2 hypercube. Each processor is con�gured

with a 80386 CPU, 8 megabytes of memory, and a 330 megabyte MAXTOR 4380 (5 1/4 in.)

disk drive. Each disk drive has an embedded SCSI controller which provides a 45 Kbyte RAM

bu�er that acts as a disk cache on sequential read operations. The nodes in the hypercube are

interconnected to form a hypercube using custom VLSI routing modules. Each module supports

eight full-duplex, serial, reliable communication channels operating at 2.8 megabytes/sec.

Gamma is built on top of an operating system designed speci�cally for supporting database

management systems. NOSE provides multiple, lightweight processes with shared memory. A

non-preemptive scheduling policy is used to help prevent convoys [BGMP79] from occurring.

NOSE provides communications between NOSE processes using the reliable message passing

hardware of the Intel iPSC/2 hypercube. File services in NOSE are based on the Wisconsin

Storage System (WiSS) [CDKK85].

The services provided by WiSS include sequential �les, byte-stream �les as in UNIX, B+

tree indices, long data items, an external sort utility, and a scan mechanism. A sequential �le

is a sequence of records that may vary in length (up to one page) and that may be inserted

and deleted at arbitrary locations within a �le. Optionally, each �le may have one or more

associated indices that map key values to the record identi�ers of the records in the �le that

contain a matching value. One indexed attribute may be designated to be a clustering attribute

for the �le.

In Gamma, relations are horizontally partitioned [RE78] (also known as declustering [LKB87])
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across all disk drives in order to increase the aggregate I/O bandwidth provided by the hard-

ware. The query language of Gamma provides the user with several alternative declustering

methods. For the experiments described below, the user determined which tuples reside on

each site based on a range predicate applied to the partitioning attribute of each tuple of the

relation. A collection of tuples stored on a processor is referred to as a fragment of the relation.

Our parallel sorting algorithm based on probabilistic splitting operates as follows. First,

each processor randomly samples its local fragment of the relation to be sorted and sends the

sort attribute values of the sampled tuples to a central coordinator. The coordinator sorts

all the sampled values and determines the partitioning elements such that the relation will be

divided into as many partitions as there are processors. The coordinator then sends a vector of

these partitioning elements to each processor whose disk contains a fragment of the relation.

During the second phase of the algorithm the relation is redistributed according to the

elements of the splitting vector. This phase begins by initiating scan, sort, and I/O processes

on each processor. After being initiated, each scan process reads its local fragment of the

relation and re-distributes it over the network using the elements of the partitioning vector (in

Gamma terminology, a split table) to determine to which processor each tuple should be routed

to. Tuples are redistributed using 8K byte network packets.

As each packet of tuples arrives at a processor, the sort process adds the packet to a

memory resident sort bu�er (without incurring a copy). Each time this sort bu�er �lls, an

array of pointers to the tuples is sorted using the WiSS quicksort algorithm. Finally, the sorted

run is given to the I/O process, which materializes the sorted run (by copying each tuple from

its network packet to an output page) and writes it to disk.

In the �nal phase of the algorithm, each of the sort processes merges its sorted runs into

a single run, which is then written back to disk. As currently implemented, the algorithm

terminates with the sorted relation partitioned across all the disks in the system. That is, in

a con�guration with k processors, the �rst 1=kth (approximately) of the relation is stored on

the disk attached to processor 1, the next 1=kth on processor 2, etc. Modifying the implemen-

tation so that the entire relation is materialized in sorted order on the host processor or in an

application program would be straightforward.

In order to minimize the number of random seeks performed, pages of sorted runs are read

and written in blocks composed of two 32K byte pages. Such random seeks occur in both

phases of the algorithm. During the �rst phase of the algorithm, while the scan process at a

node is reading blocks of the unsorted relation for redistribution, the I/O process on the same

node is concurrently writing sorted runs to disk. Since these two processes read/write from/to

di�erent regions of the disk, each I/O operation involves a random seek. The same problem

occurs during the merge phase of the sort as each page that is read from an input run or written

to an output run almost always incurs a random seek.

While performing I/O operations in blocks of pages does provide some improvement, since

the I/O system of the iPSC-2 hypercube does not support IBM-style channel programs, the

improvement is not dramatic. In particular, once a process has issued an I/O request, the

operating system determines whether another process is runnable. If so, a context switch is

performed. If the process selected to run next immediately performs an I/O operation then by

the time the �rst process is allowed to run again, the disk heads will have been moved, negating
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any bene�ts provided by blocking I/O operations.

Our initial implementation used 8K byte pages. Since this con�guration did not provide

\adequate" performance, we added the multi-block I/O feature described above. This change

did not, however, improve performance as much as we had expected. For example, doing I/O

four pages at a time improved performance by only 5-10% over a single page. On the other

hand, switching to a single 32K byte page, improved performance by almost 30%. In general (for

database system operations other than sorting), using such large pages can actually decrease

performance; for example, with index operations. Instead of long pages, a much better long-term

solution would be to modify Gamma's operating system to accept vector's of I/O operations

that would always be executed in order.

One interesting thing that we observed while running some preliminary experiments was

that using the maximum bu�er space available did not generally minimize the execution time

for a sort. When memory was a scarce resource, obtaining long runs was important in order

to minimize the number of passes through the �le. However, as long as the amount of memory

available is between the square root of the data �le size and the size of the entire data �le, the

�le can always be sorted into two passes. Since the CPU cost of the sort is independent of the

size of each run, producing longer runs tends to reduce the I/O cost while making the sort CPU

bound. (Graefe made a similar observation in [Gra90].) Since all our tests required two passes

through the �le, through experimentation we found that using a bu�er size of about 100 pages

balanced the CPU and I/O time and tended to minimize the overall execution time of the sort

operation. We also implemented a second version of the algorithm in which the sorted runs

were produced using a tournament sort. Despite the fact that the runs produced were twice as

long as the ones produced using quicksort, this version actually ran slower.

One problem to overcome with this parallel algorithm is how to correctly and e�ciently

sample the relation in parallel in order to determine the partitioning elements. For correctness,

the relation must be sampled as if it were stored on a single processor. That is, each tuple,

regardless of the processor that it is stored on, must be equally likely to be sampled. (In

statistical terms, this is a \simple random sample.") Note that if we wish to take n samples, it

is not acceptable to have each processor take 1/n samples, since this will not result in a truly

random sample. To see this, note that if each processor takes 1=n samples, then we will never

get a set of n samples in which more than 1=n tuples come from any single processor's portion

of the database.

To take a truly random sample while still making use of the parallelism available, in our

implementation each processor attempts to sample n tuples from its local fragment of the

relation (each processor uses the same random number generator with the same seed). However,

for e�ciency, each processor checks the local catalog information to determine if the tuple to

sample is indeed stored on its local disk. If so, the tuple is retrieved from disk and its sort

attribute value is sampled. If the tuple is not stored locally, the sample can be ignored. In

terms of disk I/O, the e�ect is the same as if some central processor generated n random keys,

then sent to each processor p only the keys that for tuples in the partition stored at p. A B-tree

index is used to e�ciently retrieve the tuple to sample.

Note that this optimization does not require that the sort attribute of the relation be

identical to the attribute used to partition the relation during relation creation. Instead, it
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only requires that the attribute used to fetch a random tuple is the same attribute used to

partition the relation during relation creation. If no such attribute is available, the algorithm

still works correctly, it will only su�er a performance degradation due to unsuccessful searches

of the index for tuples stored on other processors.

6 Results

Scaleup and speedup are useful metrics for evaluating the performance of a parallel algorithm on

a multiprocessor database machine [DG90]. Scaleup is an interesting metric for multiprocessor

database machines as it indicates whether a constant response time can be maintained as the

workload is increased by adding a proportional number of processors and disks. Speedup is

an interesting metric because it indicates whether additional processors and disks result in a

corresponding decrease in the response time of a query. A similar set of experiments were

reported in [EGKS89] for equi-join queries on Release 2 of Tandem's NonStop SQL system,

in [DGS+90] for equi-join queries in Gamma, and in [DNS91] for non-equijoin queries in Gamma.

Scaleup and speedup results for several parallel sorting algorithms are contained in [Gra90] and

in [STG+90]. A third interesting metric for algorithm performance is what we will call \sizeup,"

in which the number of processors is held constant and the size of the problem instance is varied.

Sizeup tests indicate the growth rate of the execution time as a function of the problem size.

Salzberg et al. also reported sizeup numbers for sorting in [STG+90].

For every con�guration for which results are reported in this section, each relation to be

sorted was evenly distributed during relation creation amongst all the processors by applying a

range predicate to the unique1 attribute (whose values range from 0 to the relation cardinality

minus 1). The sort was performed on the unique2 attribute of each relation. The values of this

attribute also range from 0 to the relational cardinality minus 1. However, since the values of

the unique1 and unique2 attributes for a tuple are not correlated with one another, sorting

a relation on its unique2 attribute on k processors results in (k � 1)=kth of the tuples in the

relation being redistributed during the repartitioning phase of the algorithm.

Randomness and Sample Size

We will return to scaleup, speedup, and sizeup later in this section; initially, we present results

illustrating the dependence of the execution time on the sample size. Briey, up to a certain

point, taking more samples signi�cantly reduces skew and hence the total execution time;

however, beyond a certain point, the time spent in the sampling itself outweighs the savings

due to reducing the skew. Another aspect of the dependence between execution time and the

number of samples taken has to do with the probabilistic nature of probabilistic splitting. If we

take two di�erent sets of samples of the same size, the quality of the splitting vector generated

from the two samples will in general not be the same, since some random samples are more

representative of the actual population than others. This means that if we run the sorting

algorithm using two di�erent random samples of the same size, the running time of the sort

using the two sets of samples will also di�er. The more samples taken, the lower the variance

in the running time between di�erent sets of samples.
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Figure 5: Sorting time as a function of sample size.

Figure 5 and 6 illustrate these two aspects of the relationship between the number of samples

and the execution time. The two graphs both represent the same set of experiments | a sort

of one million 100 byte tuples on 30 processors using varying sample sizes. For each sample

size, we ran 30 trials, initializing the random number generator with a di�erent seed each time.

In the graph in Figure 5 there are four lines. For a point (x; y) on the lowest line, labeled

\sampling," y is the average elapsed time (over thirty trials) to take x samples. For a point

(x; y) on the middle of the upper three lines, y is the average total execution time for the sort

(over the thirty trials) using x samples. For a point (x; y) on the uppermost of the upper three

lines, y is the average total execution time for the sort plus one standard deviation, using x

samples, where the standard deviation is computed over the same thirty trials. Similarly, for a

point (x; y) on the lowest of the upper three lines, y is the average total execution time for the

sort minus one standard deviation, using x samples, where the standard deviation is computed

over the same thirty trials.

The graph in Figure 6 expands the scale for the top three lines of the graph in Figure 5.

Also, two additional lines have been added, one showing the maximum execution time observed

over all 30 trials at a given number of samples, the other showing the minimum.

The �nal point we wish to emphasize is that the performance of probabilistic splitting

does not depend on the distribution of the data in the sort attribute. To demonstrate this

experimentally, we generated an instance of the relation to be sorted in which the sort attribute

was drawn from a highly skewed normal distribution (one million values drawn from a normal

distribution with mean 500,000 and variance 10,000.) Table 3 shows the performance of the

sorting algorithm for both the skewed and the uniformly distributed sort attribute. Both lines

of that table refer to sorting one million 100 byte tuples using 30 processors and 3000 samples;

the average, min, max, and variance reported are over 30 trials, each trial with a di�erent

random seed.
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Figure 6: The variance of sorting time as a function of sample size.

distribution average time (sec) max (sec) min (sec) std. deviation (sec)

uniform 57.6 60.6 54.3 1.34

skewed 57.0 60.0 55.1 1.22

Table 3: Performance of sorting on skew vs. uniform distribution.

Scaleup

For the scaleup experiments, we varied the number of processors with disks from 5 to 30, in

steps of 5, sorting an average of 160K, 100 byte tuples per processor. Thus, with 5 processors, a

0.8 million, 100 byte tuple relation was sorted. At 30 processors, the size of the relation sorted

was 4.8 million tuples. As described in Section 2, in our implementation for k processors we

took a total of 100k samples. This means that with 5 processors, we took 500 samples; with

30 processors, 3000. All timings presented are averages over 5 trials, where each trial used a

di�erent random seed.

Table 4 presents the scaleup results we obtained. Ideally the algorithm should exhibit a

constant response time as the relation size and hardware con�guration is scaled. Three factors

contribute to the slight increase in response times. First, as additional processors are added,

the skew in the sizes of the portions of the �le allocated to each processor grows. Second,

the task of initiating four processes at each site (a sampling operator, a relation scan, a sort

operator, and a store operator) is performed by a single processor. Finally, as the number of

processors increase, the e�ects of short-circuiting [DGS+90] messages during the execution of

the query diminishes. For example, in the 5 processor con�guration, approximately 1/5th of

the tuples of the input relation end up being sent to the sort process on the same processor,

thereby short-circuiting the communications network. As the number of processors is increased,

the number of these short-circuited packets decreases to the point where, with 30 processors,
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only 1/30th of the packets will be short-circuited. Because these intra-node packets are less

expensive than their corresponding inter-node packets, smaller con�gurations will bene�t more

from short-circuiting.

no. of proc. relation size (tuples) execution time (sec) actual/ideal

5 0.8M 217 1.00

10 1.6M 227 1.05

15 2.4M 235 1.08

20 3.2M 244 1.12

25 4.0M 249 1.15

30 4.8M 257 1.18

Table 4: Scaleup results.

Speedup

For the speedup experiments, we �xed the size of the relation being sorted at one million tuples

while varying the number of processors from 5 to 30. We again held constant (at 100 samples

per processor) the number of samples used to determine the partitioning elements. The unique2

attribute was again used as the sort attribute. Again, all timings presented are averages over 5

trials, where each trial used a di�erent random seed.

no. of processors execution time (sec) speedup % parallel e�ciency

5 270.7 1.0 100

10 143.5 1.9 95

15 103.2 2.6 87

20 80.4 3.4 85

25 67.2 4.0 80

30 58.3 4.6 77

Table 5: Speedup results.

The response time and speedup for the one million tuple relation sort are shown in Table 5. It

is obvious that adding additional processors signi�cantly reduces the execution time of the query.

Several factors prevent the system from achieving perfectly linear speedups. (It is important to

note that since the base case was 5 processors a perfect speedup factor for 30 processors would

be 6.0 and not 30.0!) As was the case in the scaleup experiments, performance is limited by

the overhead of scheduling the operators of the query tree, the e�ects of short-circuiting, and

the e�ects of skew in the size of the sort tasks allocated to each processor.

To demonstrate the e�ect of errors in the approximate splitting vector, we measured the

number of tuples distributed to each node. We then took the maximum of these values and

measured how far it di�ered from the optimal value (assuming a perfectly uniform distribution).

In the 5 processor con�guration, the maximum skew was approximately 5%. In the 30 processor
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con�guration, though, the maximum skew was found to be 18% above optimal. Since in a

multiprocessor, performance is limited by the slowest site, the increase in skew as processors

are added results in sublinear speedups.

Sizeup

For the sizeup experiments, we �xed the number of processors at 30, and sorted relations of

various sizes ranging from 1.2M tuples to 4.8M tuples. In all cases, the number of samples was

�xed at 3000 (100 per processor), and the times presented are averages over 5 trials.

problem size (tuples) execution time (sec) ratio (running times)

1.2M 70.4 1.0

2.4M 133.0 1.89

3.6M 196.1 2.79

4.8M 257.0 3.65

Table 6: Sizeup results.

Table 6 shows the somewhat surprising result that our implementation achieved sublinear

sizeup. That is, sorting 4.8M tuples took less than four times as long as sorting 1.2M tuples.

The reason this occurs is that the portion of the running time due to sampling takes an amount

of time that is independent of the size of the problem. Hence, for smaller problem sizes, the

sampling overhead is a more signi�cant component of the running time than it is for larger

problem sizes. Table 7 presents the same data as Table 6 except that the sampling overhead

is subtracted from each of the running times. This table shows that if we ignore the sampling

component, the speedup is approximately linear. This highlights an important point: the larger

the problem size, the more e�ective is probabilistic splitting.

problem size (tuples) execution time - sample time (sec) ratio (running times)

1.2M 58.4 1.00

2.4M 121.0 2.07

3.6M 184.1 3.15

4.8M 245.0 4.20

Table 7: Sizeup results exclusive of sampling time.

7 Conclusion

Partitioning the �le being sorted is a critical step in multiple-input multiple-output external

sorting. Our analytic results suggest that for this problem, probabilistic splitting dominates a

previously proposed deterministic method; our experimental results prove that for up to thirty

processors (the maximum we could test), probabilistic splitting achieves good speedup and

scaleup performance.
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This speedup and scaleup will not continue inde�nitely. In order to maintain constant

expected skew in the sizes of the sub�les produced by probabilistic splitting, the number of

samples taken must grow with the number of processors. This means that as the number of

processors scales, eventually one must choose between large skews or large numbers of samples,

neither of which will give good performance in general. However, it is important to note that

the speedup achieved by probabilistic splitting improves as the size of the �le to be sorted grows

(recall Figure 4.) For sorting one million record �les on systems with tens of processors, our

implementation proves that probabilistic splitting is a highly e�ective technique. Although we

are unable to prove it on our current hardware, we expect that for �les of one billion records

and beyond, probabilistic splitting will be e�ective even on systems with a few hundreds of

processors.
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