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ABSTRACT

This paper extends earlier research on hash-join algorithms to a multiprocessor architecture. Implementa-
tions of a number of centralized join algorithms are described and measured. Evaluation of these algorithms served
to verify earlier analytical results. In addition, they demonstrate that bit vector filtering provides dramatic improve-
ment in the performance of all algorithms including the sort merge join algorithm. Multiprocessor configurations of
the centralized Grace and Hybrid hash-join algorithms are also presented. Both algorithms are shown to provide
linear increases in throughput with corresponding increases in processor and disk resources.



1. Introduction

After the publication of the classic join algorithm paper in 1977 by Blasgen and Eswaran [BLAS77], the

topic was virtually abandoned as a research area. Everybody "knew" that a nested-loops algorithm provided accept-

able performance on small relations or large relations when a suitable index existed and that sort-merge was the

algorithm of choice for ad-hoc1 queries. Last year two papers [DEWI84a, BRAT84] took another look at join algo-

rithms for centralized relational database systems. In particular, both papers compared the performance of the more

traditional join algorithms with a variety of algorithms based on hashing. The two papers reached the same conclu-

sion: that while sort-merge is the commonly accepted algorithm for ad-hoc joins, it is, in fact, not nearly as fast as

several join algorithms based on hashing. In retrospect, it is interesting to observe that a simple, but very good algo-

rithm has been virtually ignored2 simply because System R [ASTR76] did not support hashing as an access method.

The motivation for the research described in this paper was twofold. First, since [DEWI84a] and

[BRAT84] were both analytical evaluations, we wanted to implement and measure the algorithms proposed in these

papers in a common framework in order to verify the performance of the hash-based join algorithms. Second, we

wanted to see if the results for a single processor could be extended to multiple processors. The hash-based join

algorithms described in [DEWI84a], and in particular the Hybrid algorithm, made very effective use of main

memory to minimize disk traffic. It seemed that since multiprocessor joins require that data be moved between pro-

cessors, that the multiprocessor hash-based join algorithms might minimize the amount of data moved in the process

of executing a join algorithm. Hash-based multiprocessor join algorithms for multiprocessors are not new. They

were first suggested in [GOOD81], next adopted by the Grace database machine project [KITS83], and evaluated in

[VALD84]. While each of these papers made important contributions to understanding multiprocessor hash-based

join algorithms, a number of questions remain. First, in [GOOD81], it is hard to factor out the influence of the X-

tree architecture and the parallel readout disks on the results obtained. [KITS83], on the other hand, concentrates

on the speed of the sort-engine and not the overall performance of the Grace hash-join algorithm. Finally, the algo-

rithm presented in [VALD84] exploits hashing only during the partitioning process and resorts to a pure nested

loops algorithm aided by bit vector filtering during the join phase. The goal of our research was to examine the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 By "ad-hoc" we mean a join for which no suitable index exists.
2 While INGRES [STON76] uses hashing for ad-hoc queries, the limited address space of the PDP 11 on

which INGRES was first implemented made it impossible to exploit the use of large amounts of memory effectively.
Consequently, the algorithm never received the recognition it deserves.
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multiprocessor hash-join algorithms in a multiprocessor environment that enabled us to identify CPU, communica-

tions, and I/O bandwidth design parameters.

In Section 2, we review the join algorithms and analytical results presented in [DEWI84a]. As a first step

toward developing a multiprocessor version of the hash based join algorithms, we implemented the join algorithms

described in [DEWI84a] on top of the Wisconsin Storage System (WiSS). The results presented in Section 3 verify

the analytical results presented in [DEWI84a]. Based on these results, we feel that all relational database systems

should provide a hash-based join algorithm in order to effectively exploit main memory as it becomes increasingly

inexpensive. The algorithms described in Section 3 were also used to gather some "real" numbers for use in a simu-

lation of the multiprocessor join algorithms. In Section 4, we describe two multiprocessor hash join algorithms. We

also present the results of a simulation study of these algorithms. The results are extremely exciting as they indicate

that both algorithms provide very close to a linear speedup in performance with corresponding increases in

resources. In Section 5, our conclusions and our plans for a new database machine based on these multiprocessor

join algorithms are described.

2. An Overview of Hash-Partitioned Join Operations

In [DEWI84a], the performance of three hashed-based join algorithms (termed Simple, Grace [KITS83],

and Hybrid) were compared with that of the more traditional sort merge algorithm. In the following discussion of

the hash-partitioned join algorithms, the two source relations will be named R and S. R is assumed to be smaller (in

pages) than S. All hash-join algorithms begin by partitioning R and S into disjoint subsets called buckets

[GOOD81, KITS83]. These partitions have the important characteristic that all tuples with the same join attribute

value will share the same bucket. The term bucket should not be confused with the overflow buckets of a hash

table. The partitioned buckets are merely disjoint subsets of the original relations. Tuples are assigned to buckets

based upon the value of a hash function that is applied to a tuple’s join attribute value. Assuming that the potential

range of hash values is partitioned into the subsets X 1, ..., Xn, then every tuple of R whose hashed join attribute

value falls into the range of values associated with Xi will be put into the bucket Ri . Similarly, a tuple of S that

hashes to the partition Xi will be put into the bucket Si . Since the same hash function and partitioning ranges are

used with both relations, the tuples in bucket Ri will only have to be joined with those tuples in Si . It will be the

case that tuples from bucket Ri will never have join attribute values equal to those of tuples in Sj where i≠j. The

potential power of this partitioning lies in the fact that a join of two large relations has been reduced to the separate
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joins of many smaller relation buckets.

The hash-join algorithms have two distinct phases. In the first phase, relations R and S are partitioned into

buckets. In a centralized environment, this partitioning might be done by allocating a page frame to buffer the

tuples being assigned to the particular buckets. As a page buffer is filled, it is flushed to a file on disk that represents

a particular bucket. Each relation is scanned and partitioned in turn. At the end of the partitioning phase, relations

R and S are represented by equal numbers of bucket files that have been written to disk. This partitioning phase

must create a suitable number of buckets such that each bucket of relation R will be small enough to fit into main

memory. The size of the buckets of S can be ignored because, at most, only a single page of relation S needs to be

resident in memory at a time during the join phase.

The second phase of the hash-join algorithms effects the actual search for tuples from relations R and S

that have matching join values. Any of the traditional join methods could be used in this phase to realize the final

join result. However, as relation R has been partitioned into buckets that will fit into memory, it seems most

appropriate to use a hash-based algorithm to process the search for matching join tuples. This second phase will be

referred to as the join phase. In the first step of the join phase, a bucket Ri is used to build a hash table in main

memory. Then bucket Si is read and each tuple of Si is used to probe the hash table for matches.

2.1. Problems with Hash Join Algorithms

The partitioning phase must ensure that the size of the buckets created from relation R do not exceed the

size of main memory. Guaranteeing that a chosen partitioning of hash values will result in buckets of relation R that

will fit in memory is not necessarily trivial. The problem of buckets growing unacceptably large is termed bucket

overflow. The choice of an appropriate hash function will tend to randomize the distribution of tuples across buck-

ets and, as such, will minimize the occurrence of bucket overflow. If the chosen hash function fails to distribute the

tuples uniformly and bucket overflow occurs, a number of remedies are available. The relations could be parti-

tioned again with another hash function. This solution is almost always too expensive. A better alternative is to

apply the partitioning process recursively to the oversized buckets [DEWI84a, BRAT84]. The net effect of this

solution is to split an oversized bucket into two or more smaller buckets. If relation R is partitioned before relation

S, then this method only requires rescanning the particular bucket that overflowed. The range of values governing

the partitioning of relation S can be adjusted to reflect the final partitioning of R after bucket overflow has been han-

dled. This method could fail in the case that the combined sizes of tuples having identical join values exceeds the
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size of available memory. In such a case, a hash-based variation of the nested loops join algorithm can be applied.

The performance of such an algorithm is analyzed in Section 3 of this paper. The solutions used to handle bucket

overflow can also be applied to the overflow of a hash table.

2.2. Simple Hash-Join

The Simple hash-join processes one bucket at a time while doing a minimal amount of partitioning. In fact,

the partitioning and join phases are executed simultaneously. Two files are associated with relations R and S. There

are files R_input (S_input) which contain tuples that are waiting to be processed by the current phase of the algo-

rithm. The files R_output (S_output) contain tuples that have been passed over by the current phase of the algo-

rithm. At the start of the algorithm, R_input and S_input are set to equal the relations R and S. R_output and

S_output are initially empty.

A partitioning basis consisting of a number and range of of hash values is chosen at the start. There will be

as many stages to the algorithm as there are buckets of relation R. The buckets of R are sequentially used to build

hash tables in main memory. One hash table is built at the start of each stage. Each stage begins with a scan of

R_input. As each tuple is considered, if it belongs to the targeted memory bucket Ri the tuple is added to the hash

table. Otherwise, the tuple is written to R_output. R_output contains all the remaining buckets that are not of

current interest. Then S_input is scanned sequentially. If a tuple of S_input hashes to bucket Si , then it is used to

probe the hash table built from bucket Ri . If a match is found, the tuples are joined and output. Otherwise, (ie. the

tuple does not belong to bucket Si) it is written to S_output.

At the end of each stage of the Simple hash-join, the R_output (S_output) file becomes the R_input

(S_input) file that will be used by the next stage. As the algorithm progresses, the R_output (S_output) file becomes

progressively smaller as the buckets of interest are consumed. The algorithm finishes when either R_output or

S_output are empty following a processing stage.

2.3. Grace Hash-Join

The Grace hash join algorithm [GOOD81, KITS83] is characterized by a complete separation of the parti-

tioning and joining phases. The partitioning of relations R and S is completed prior to the start of the join phase.

Ordinarily, the partitioning phase creates only as many buckets from relation R as are necessary to insure that the

hash table for each bucket Ri will fit into memory. Since only a single page frame is needed as an output buffer for
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a bucket, it is possible that memory pages will remain unused after the requisite number of bucket buffers have

been allocated. In the Grace algorithm, these extra pages can be used to increase the number of buckets that are

generated by the partitioning phase. Following the partitioning phase, these smaller buckets can be logically

integrated into larger buckets that are of optimal size for building the in-memory hash tables. This strategy is

termed bucket tuning [KITS83]. Bucket tuning is a useful method for avoiding bucket overflow.

2.4. Hybrid Hash Join

The Hybrid hash join was first described in [DEWI84a]. All partitioning is finished in the first stage of the

algorithm in a fashion similar to the Grace algorithm. However, whereas the Grace algorithm uses any additional

available memory during the partitioning phase to partition the relations into a large number of buckets, Hybrid uses

additional memory to begin the joining process. Hybrid creates the minimum number of buckets such that each

bucket can be reasonably expected to fit into memory. Allocating one page frame to be used as an output buffer for

each bucket, the Hybrid algorithm utilizes any remaining pages frames to build a hash table from R 0. The partition-

ing range is adjusted to create N equal-sized buckets, R 1, ..., RN, that are written to disk and one independently sized

bucket, R 0 , that is used to build the hash table. The same partitioning range is used for relation S. Tuples of S that

hash into bucket S 0 are immediately used to probe the hash table for matches. When the partitioning phase com-

pletes, the Hybrid hash-join has already completed processing part of the join phase. Thus, the tuples that are

immediately processed do not have to be written to and retrieved from the disk between the partitioning and join

phases. These savings become significant as the amount of memory increases.

2.5. Sort-Merge Join Algorithm

The standard sort-merge [BLAS77] algorithm begins by producing sorted runs of tuples that are, on the

average, twice as long as the number of tuples that can fit into a priority queue in memory [KNUT73]. This requires

one pass over each relation. During the second phase, the runs are merged using an n-way merge, where n is as

large as possible. If n is less than the number of runs produced by the first phase, more than two phases will be

needed. In the final phase, the sorted source relations are sequentially scanned and matching tuples are joined and

output.
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2.6. Comparison of the Four Join Algorithms

Figure 1 displays the relative performance of the four join algorithms using the analysis and parameter set-

tings presented in [DEWI84a]. The vertical axis is execution time in seconds. The horizontal axis is the ratio of

|R |*F
|M |hhhhhhh where |M| and |R| are, respectively, the sizes of main memory and the R relation in pages and F equals 1.2

(F is a fudge factor used to account for the fact that even if |R| = |M|, a hash table for R will occupy more than |R|

pages in main memory). For all the algorithms, R and S are assumed to be resident on mass storage when the algo-

rithm begins execution. These results clearly indicate the advantage of using a hash based join algorithm over the

more traditional sort merge algorithm. In retrospect, the results are not too surprising, as sorting creates a total ord-

ering of the records in both files, while hashing simply groups related records together in the same bucket.

3. Evaluation of Centralized Hash Partitioned Join Algorithms

To verify the analysis presented in [DEWI84a] and to gather information on CPU and I/O utilizations dur-

ing the partitioning and joining phases of the three hashing algorithms, we implemented the Simple, Grace, and

Hybrid algorithms on a VAX 11/750 running 4.2 Berkeley UNIX. In addition to the three hash-partitioned join

algorithms, two other popular join algorithms were studied. These algorithms, a sort-merge algorithm and a hash-

based nested loops algorithm, provide a context for comparing the performance of the hash-partitioned join algo-

rithms. All the algorithms were implemented using the Wisconsin Storage System (WiSS) [CHOU83].

3.1. An Overview of WiSS

The WiSS project was begun approximately 3 years ago when we recognized the need for a flexible data

storage system that could serve as the basis for constructing experimental database management systems. While

originally conceived as a replacement for the UNIX file system (WiSS can run on top of a raw disk under UNIX),

WiSS has also been ported to run on the Crystal multicomputer [DEWI84b]. The services provided by WiSS

include structured sequential files, byte-stream files as in UNIX, B+ indices, stretch data items, a sort utility, and a

scan mechanism. A sequential file is a sequence of records. Records may vary in length (up to one page in length),

and may be inserted and deleted at arbitrary locations within a sequential file. Optionally, each sequential file may

have one or more associated indices. The index maps key values to the records of the sequential file that contain a

matching value. The indexing mechanism is also used to construct UNIX-style byte-stream files (the pages of the

index correspond to the inode components of a UNIX file). A stretch item is a sequence of bytes, very similar to a
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file under UNIX. However, insertion and deletion at arbitrary locations is supported. Associated with each stretch

item (and each record) is a unique identifier (RID). By including the RID of a stretch item in a record, one can con-

struct records of arbitrary length. As demonstrated in [CHOU83], WiSS’s performance is comparable to that of

commercially available database systems.

3.2. Summary of Algorithms Evaluated

Centralized versions of the Grace, Simple and Hybrid hash-partitioned join algorithms were implemented

in the manner described in Section 2. A modified version of the nested loops algorithm, termed Hashed Loops, was

also implemented [BRAT84]. The Hashed Loops algorithms is so named because it uses hashing as means of

effecting the internal join of tuples in main memory. It is similar to the algorithm used by the university version of

INGRES [STON76]. For each phase of the Hashed Loops algorithm, a hash table is constructed from those pages

of R that have been staged into memory. Tuples from S are used as probes into the hash table. Constructing such a

hash table avoids exhaustively scanning all of the R tuples in memory for each tuple in S as is done with the simpler

form of the nested loops algorithm. The last algorithm, the Sort Merge join, employed the sort utilities provided by

WiSS.

All the algorithms were allocated identical amounts of main memory for buffering pages of the relation.

Similarly, all the algorithms accessed relations on disk a page at a time, blocking until disk operations completed.

3.3. Presentation of Performance Results

The join algorithms were compared using queries and data from the Wisconsin Benchmark Database

[BITT83]. As in Figure 1, the execution time of each join algorithm is shown as a function of the amount of avail-

able memory relative to the size of the smaller relation. The relative amount of memory is defined to be the number

of pages of main memory, |M|, divided by the size in pages of the smaller relation, |R|. The elapsed times for all join

algorithms include the time required to write the final result relation to disk. All tests were run in single user mode.

The test machine had 8 megabytes of memory so no paging occurred. Bucket overflow did not occur in any of the

tests of the hash-partitioned algorithms.

The results of joining two 10,000 tuple relations using each of the join algorithms is presented in Figure 2.

The join produces 10,000 result tuples. The join attribute is a randomly ordered, two byte integer. Every tuple from

both relations participates in the result relation produced by this join query. Whereas Figure 1 presented perfor-
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mance results that were calculated from analytical models, Figure 2 presents the measured performance of actual

implementations of the algorithms. We find the similarity of Figures 1 and 2 both reassuring and encouraging.

In Figure 2, the performance of the Grace hash-join algorithm is constant for the given range of available

memory. This results from the total separation of the partitioning and join phases in the Grace algorithm. From a

performance viewpoint, the Grace algorithm only uses memory optimally during the joining phase. Excess memory

during the partitioning phase is used as a means of creating a large number of buckets for the bucket tuning process.

In contrast, the performance of the Simple hash-join algorithm is significantly affected by the amount of available

memory and performs well only when the smaller relation is less than twice the size of available memory. The per-

formance of the Hybrid algorithm reflects the fact that it combines the best performance features of the Grace and

Simple3 hash-join algorithms. Since Hybrid completes all partitioning in a single pass through both source rela-

tions, it’s performance is always as least as good as that of the Grace algorithm. The Hybrid algorithm increasingly

outperforms Grace as the amount of relative memory increases because the additional memory is used for immedi-

ately joining tuples from one bucket of each source relation. Such immediate joining eliminates the cost of writing

and reading these tuples to disk between the partitioning and joining phases. The performance of all of the hash-

partitioned algorithms remains unchanged once the smaller relation fits in memory. This point occurs at a relative

memory value of 1.2 and not when available memory exactly equals the size of the smaller relation. This results

from the fact that the hash-join algorithms use some of the available memory during the join phase for the structure

of the hash table itself. Also, it must be realized that partitioning is a predictive process and as such, prudence

requires that additional memory be used to accommodate fluctuations in the size of the hash tables that are con-

structed from buckets.

The performance of the Sort-Merge join algorithm is constant over a wide range of available memory in

Figure 2. Until a source relation fits into memory, the sorting process completely reads and writes the relation at

least twice, once when the sorted runs are produced and a second time when the sorted runs are merged. The Sort-

Merge join algorithm then reads the source relations a third time to effect the final joining of tuples. An optimiza-

tion is possible. Given sufficient memory, the sorted runs of both relations can be merged and joined simultane-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 The Simple hash-join algorithm should have performance equal to that of the Hybrid algorithm for relative

memory values in excess of approximately 0.5. The difference in the performance of the Hybrid and Simple hash-
join algorithms for relative memory values between 0.5 and 1.2 is an artifact of the implementation.
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ously. In this case, the performance of the Sort-Merge algorithm could be expected to be similar to the Grace algo-

rithm as each algorithm would access every page of each source relation three times (two reads and a write).

Perhaps, surprisingly, the Hashed Loops algorithm has quite good performance over a wide range of avail-

able memory in Figure 2. Due to the existence of the hash table, the cost of of probing for matches with tuples from

relation S is a relatively inexpensive operation. The algorithm performs especially well when the size of the smaller

relation is less than twice the size of available memory. As this is exactly the situation one would expect in the case

of bucket overflow, the hash-based nested loops algorithm is an attractive remedy for handling bucket overflow.

The performance of the join algorithms for a join of a 1,000 tuple relation with a 10,000 tuple relation is

shown in Figure 3. The result relation contains 1,000 tuples. The Hybrid algorithm continues to dominate all the

other join algorithms over a wide range of relative memory values. The stepwise performance transitions of the

Sort-Merge and nested loops algorithms become more obvious in the environment of this query.

Figure 4 reflects the performance of the join algorithms on the same query used for Figure 3. The differ-

ence is that in Figure 4 all the algorithms use bit vector filtering techniques [BABB79, BRAT84, VALD84]. The

notable performance improvements demonstrated are the result of eliminating, at an earlier stage of processing,

those tuples that will not produce any result tuples. The bit vector filtering technique used by the hash-partitioning

and Sort-Merge algorithms are very similar.4 Prior to the initial scan of relation R, a bit vector is initialized by set-

ting all bits to 0. As each R tuple’s join attribute is hashed, the hashed value is used to set a bit in the bit vector.

Then as relation S is scanned, the appropriate bit in the bit vector is checked. If the bit is not set, then the tuple

from S can be safely discarded. Applying the bit vector from relation R against relation S approximates a semijoin

of relation S by relation R. The net impact of this process depends on the semijoin selectivity factor of relation S by

R which is defined to be the ratio of tuples resulting from the semijoin of S by R relative to the cardinality of S. In

the example query of Figure 4, the semijoin of relation S by R has a semijoin selectivity factor of 0.1. The net effect

is that approximately 90% of the tuples of relation S can be eliminated at a very early stage of processing by the

hash-partitioned and Sort-Merge algorithms. Significant I/O savings accrue from the fact that these non-

participating tuples do not have to be stored on disk between the partitioning and joining phases of the hash-

partitioning algorithms. Two disk accesses are saved for every page of tuples that can be eliminated by the bit
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4 The bit vector filtering technique used by the hash-partitioned and Sort-Merge algorithms is directly extendi-
ble to the case of Hashed Loops if the names of the relations in the discussion are reversed.
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vector filtering of relation S.

Since, the Hashed Loops algorithm does not complete a scan of relation R until the end of the query, it

must instead use bit vector filtering to approximate a semijoin of relation R by S. In Figure 4 the semijoin selec-

tivity factor for a semijoin of R by S is 1.0. Therefore, in this instance, the Hashed Loops algorithm doesn’t derive

any benefit from applying bit vector filtering.

Collisions that occur in the process of accessing bit vectors may result in non-qualified (phantom) tuples

being propagated along to the final joining process. The phantom tuples will, however, be eliminated by the final

joining process. The number of phantom tuples can be reduced by increasing the size of the bit vector or by split-

ting the vector into a number of smaller vectors [BABB79]. A separate hash function would be associated with

each of the smaller bit vectors. The costs associated with bit vector filtering are modest. For the given test, a single

bit vector of length 4K bytes was used. Since the hash-partitioning algorithms already compute the hashed value of

each tuple’s join attribute, the only additional cost of bit vector filtering for these algorithms is the amount of space

required for the bit vector itself.

4. Multiprocessor Hash-based Join Algorithms

Multiprocessor versions of the Hybrid and Grace algorithms are attractive for a number of reasons. First,

the ability of these algorithms to cluster related tuples together in buckets provides a natural opportunity for exploit-

ing parallelism. In addition, the number of buckets produced during the partitioning phase (or activated in the join-

ing phase) of each algorithm can be adjusted to produce the level of parallelism desired during the joining phase.

Second, the use of buckets by multiprocessor versions of the two algorithms should minimize communications over-

head. Furthermore, just as the centralized form of the Hybrid algorithm made very effective use of main memory in

order to minimize disk traffic, one would expect that a multiprocessor version of the Hybrid hash join algorithm

should be able to use memory to minimize both disk and communications traffic. Finally, it appears that control of

these algorithms can also be decentralized in a straightforward manner.

4.1. Horizontal Partitioning of Relations

All relations are assumed to be horizontally partitioned [RIES78] across all disk drives in the system. From

the view point of raw bandwidth, this approach has the same aggregate bandwidth as the disk striping strategies

[GARC84, KIM85, BROW85] given an equal number of disk drives. The difference is that in our approach once
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the data has been read, it can be processed directly rather than being transmitted first through some interconnection

network to a processor.

There are at least two obvious strategies for distributing tuples across the disks drives in the system. One

approach is to apply a randomizing function to each tuple (or the key attribute of the tuple) to select a disk for stor-

ing the tuple. Each processor maintains an independent index on the tuples stored on its disk. The advantage of this

approach is that as additions are made to the file, the number of tuples on each disk should remain relatively well

balanced. The second approach is to cluster tuples by key value and then distribute them across the disk drives. In

this case the disks, and their associated processors, can be viewed as nodes in a primary, clustered index. A control-

ling processor acts, in effect, as the root page of the index. We intend to investigate whether traditional tree balanc-

ing algorithms provide acceptable performance in such an environment. This approach is similar to, but much

simpler than, the clustering approach employed by MDBS [HE83]. In MDBS [HE83], each backend processor must

examine every query as the clustering mechanism is implemented by the backends, not the controlling processor.

The real advantage of the second approach comes when processing queries. With the first distribution stra-

tegy (ie. tuples distributed randomly), except in the case of exact match queries on the attribute used to distribute

tuples, all processors must execute every query. With the second distribution strategy, the controlling processor

(which maintains the root page of each index) can direct each query to the appropriate processors. While there is

certainly some overhead in performing this function, it is certainly less than the cost of sending the query to all the

processors. Furthermore, for even a fairly large database, the root pages of all indices should fit in the controlling

processor’s main memory. While the two distribution strategies should provide approximately the same response

time in single user benchmarks, we expect that system throughput would be significantly higher with the second

distribution strategy in a multiuser environment. When no suitable index is available, all processors are available to

perform the query.

4.2. Description of Multiprocessor Hybrid and Grace Algorithms

The algorithms described in this section assume that the relations of the database have been horizontally

partitioned across multiple disk drives in the manner described above. Each disk drive has a processor associated

with it. (Note, the converse is not necessarily true.) For the purposes of the performance evaluation presented

below, we have assumed that the processors are interconnected with an 80 Mbit/second token ring. As we will

demonstrate, such an interconnection topology provides adequate performance even when 50 processors are being
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used.

4.2.1. A Multiprocessor Version of the Grace Hash-Join Algorithm

There appear to be a number of alternative strategies for parallelizing the Grace hash-join algorithm. The

approach we have selected and evaluated assumes that a different set of processors is used for the joining and parti-

tioning phases of the algorithms. Furthermore, while the "partitioning" processors are assumed to have disk drives

associated with them, the "joining" processors are assumed to be diskless. One reason that we find this strategy

attractive is that diskless nodes are cheaper than nodes with disks and we are interested in exploring whether such

processors can be effectively utilized.

The algorithm proceeds as follows. Each node with a disk partitions the smaller relation into buckets that

are written across the network to the nodes without disks. These nodes perform the join phase of the algorithm.

Each joining node will contain a single hash table that has been built from the tuples of a single bucket of the

smaller source relation. After the hash tables have been completely built, the larger relation is partitioned and the

buckets are sent to the joining nodes. Corresponding buckets of both source relations are guaranteed to be sent to

the same joining node. Tuples from the larger relation are used to probe the join node hash tables for matches. If

the size of the smaller relation exceeds the aggregate memory capacity of the joining nodes, multiple phases are

necessary and unused buckets will be temporarily saved on the disks attached to the partitioning nodes.

The multiprocessor Grace algorithm can allocate varying numbers of joining nodes. The Grace algorithms

have been named according to the ratio of partitioning nodes to joining nodes. The Grace 1:1 design allocates one

partitioning node for each joining node. There is one partitioning node for every two joining nodes in the Grace 1:2

design. Finally, the Grace 2:1 design allocates two partitioning nodes for each joining node. While these design

combinations proved optimal for the execution of single join queries, it may very well be the case that more varied

combinations of processors may prove optimal for more complex queries.

4.2.2. A Multiprocessor Version of the Hybrid Hash-Join Algorithm

While the multiprocessor Grace algorithm employs a combination of processors with and without disks,

the multiprocessor Hybrid algorithm requires that each processor has a disk drive. The multiprocessor Hybrid

hash-join algorithm performs the partitioning and joining phases on the same nodes. Each processor partitions the

source relations in a fashion similar to the Grace algorithms. However, each node allocates excess memory during
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the partitioning phase to a hash table for one bucket of tuples. As the source relations are partitioned on a local

Hybrid processor, most tuples are written across the net to the appropriate join node. Tuples belonging to the bucket

associated with a partitioning processor are instead immediately used to either build or probe the local hash table.

Because some of the tuples can be processed locally, the Hybrid hash join algorithm generates a relatively lighter

network load than the Grace algorithm. For a given level of resources, a Hybrid multiprocessor algorithm will use

more disks and fewer processors than a Grace multiprocessor algorithm.

4.3. Discussion of Simulation Model

To evaluate the performance of the distributed Hybrid and Grace hash-join algorithms a simulation model

of the proposed multiprocessor architecture was constructed. The hardware components that are represented in the

model are intended to be examples of current, commercially available components. The capabilities of the various

components can be varied to test the effects of various combinations of resources. While the distributed hash-

partitioned algorithms could be implemented in many different kinds of network environments, the processors in the

current simulation are loosely coupled via a token ring network.

4.3.1. Hardware

The model allows us to simulate 1, 2, and 3 MIP processors. The disk drives were modeled after the

Fujistu Eagle drive and are assumed to support a transfer rate of 1.8 Mbytes/second. The combined positioning and

latency times have been modeled as a normal distribution with a mean value of 26 milliseconds and a standard devi-

ation of 4 milliseconds. The processor’s network interface is assumed to have a single, output buffer of 2 Kbytes. A

similar input buffer is assumed. The effective DMA bandwidth at which these buffers can be filled or flushed to the

main memory of a processor is assumed to be either 4 Mbits/second or 20 Mbits/second. The 4 Mbits/second

number is derived from measurements made on a VAX 11/750 with a Proteon ProNet interface [PROT83] attached

to the Unibus. The 20 Mbits/second is an estimate of the DMA rate if the device were attached to the internal bus of

a VAX 11/750. The token ring is assumed to have a bandwidth of either 10 Mbits/second or 80 Mbits/second. The

10 Mbits/second value is representative of currently available local network interfaces such as the ProNet token

ring. The 80 Mbits/second interface with a 20 Mbits/second DMA rate is representative of the CI interface from

Digital Equipment Corporation.

Since the multiprocessor version of the Hybrid algorithm requires that each processor has a disk drive,
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while the Grace algorithm employs processors with and without disks, a method for computing the "cost" of a par-

ticular configuration of processors and disk was needed. The approach we adopted was to assume that a 1 MIP pro-

cessor cost the same as a disk drive and controller. The relative cost of the 2 and 3 MIP processors was computed

using Grosch’s law [GROS53] which relates the cost of a processor to the performance (speed) of the processor:

Performance = Technology_Constant * Processor_Costg

The technology constant and cost exponent were assigned, respectively, values of 1 and 1.5.5 The cost of a particu-

lar configuration is calculated by computing the aggregate cost of all processors6 and disks.

So far, we have not incorporated memory or communications costs in our cost model. It might, for exam-

ple, be more cost effective to use more memory and a lower speed communication device.

Using this cost model, calculating the cost of a particular configuration of processors and disks is straight-

forward. The reverse transformation, is not, however, always obvious. Assume, for example, that all processors are

1 MIP processors. Then a Hybrid join configuration with a cost of 10 will consist of 5 processors and 5 disks. A

2:1 Grace configuration (2 partitioning processors for every join processor), with a cost of 10 will consist of 4 parti-

tioning processors, 4 disks, and 2 joining processors. No 1:2 or 1:1 Grace configuration will have exactly a cost of

10. For example, a 1:2 configuration with 2 partitioning nodes, 2 disks, and 4 joining nodes has a cost of 8 while the

next 1:2 configuration (3,3,6) has a cost of 12. Likewise, the 1:1 Grace configuration with a cost closest to 10 will

have 3 partitioning processors, 3 disks, and 3 join processors. To facilitate interpretation of the results presented

below, we have summarized in Table 1 the resource costs of 6 alternative hardware configurations (assuming 1 MIP

processors) for each of the four algorithms (Hybrid, Grace: 1:1, 2:1, and 1:2). The same 6 configurations were also

used when we evaluated 2 and 3 MIP processors. While the cost of each configuration changes for these cases, the

table can still be used to determine the hardware configuration associated with each data point.

4.3.2. Software

The operation of each simulated processor is controlled by a simple operating system kernel that provides a

preemptive scheduler. Processes have associated priorities that are used to resolve contention for system resources.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5 The price/performance relationship of the IBM System/370 series correlates well with a value of 1.6 for the

cost exponent [SIEW82]).
6 Note that in the case of the Grace algorithm, different performance processors might be used for the parti-

tioning and joining nodes.
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Resource Hybrid Grace 1:1 Grace 2:1 Grace 1:2
Cost #P #D #PP #D #JP #PP #D #JP #PP #D #JP
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2 1 1
3 1 1 1
4 2 2 1 1 2
5 2 2 1
6 2 2 2
8 2 2 4
9 3 3 3

10 5 5 4 4 2
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20 10 10 8 8 4 5 5 10
21 7 7 7
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30 15 15 10 10 10 12 12 6
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#P - number of Processors
#D - number of Disks
#PP - number of Partitioning Processors
#JP - number of Joining Processors

Table 1
Resource Costs for Hash-Join Configurations

(1 MIP Processors)

To minimize overhead, all disk transfers are done a track (28 Kbytes) at a time [GARC84]. In addition, a double

buffer is associated with each open file so that while a process is processing track i, track i+1 can be read. The max-

imum packet size supported by the network is assumed to be 2K bytes.

The proposed multiprocessor join algorithms require that large blocks of data be transferred across the

communications device. To this end, a model has been built of a modified, sliding window protocol that insures the

reliable delivery of large blocks of data while enhancing the effective throughput of the network for such transfers.

To help control contention for receivers, a higher-level, connection-based communications protocol has also been

incorporated in the simulation model.

We have, so far, ignored the issue of memory size and bucket overflow. The preliminary results presented

below assume that the smaller of the two relations being joined always fits in the aggregate memory of the proces-
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sors used for joining. While this assumption will be true in a number of cases, one would not want to base the

design of a machine on such an assumption. Assume, for example, that 8 processors are used for partitioning. With

64K RAMs, 1 megabyte memory boards are common. As 256K RAMS become available, a typical memory board

will hold 4 megabytes of data. Thus with just 2 memory boards, an aggregate of 64 megabytes will be available for

holding buckets. If one assumes that the smaller relation will be produced by applying a selection operation first,

64 megabytes might be enough to hold most temporary relations. We have also not addressed the issue of bucket

overflow (the size of a bucket is larger than the memory of the joining processor to which the bucket is assigned)

which can occur even in the case that the size of the smaller relation is less than the total available memory.

4.4. Preliminary Results

To evaluate the performance of the different algorithms, two 10,000 tuple relations were joined with each

other. The result relation contained 10,000 tuples. For 1, 2, and 3 MIP processors, the network bandwidth and

DMA rate were held constant while varying the resources available to the multiprocessor Hybrid join algorithm and

the 3 configurations of the multiprocessor Grace algorithm: 1:1, 1:2, and 2:1. Throughput, measured in terms of

queries per minute, was used as the performance metric. While we have conducted a wide range of tests, we have

included only the results obtained using a network bandwidth of 80 Mbits/second and a DMA rate of 20

Mbits/second. A summary of the results obtained with other configurations is contained in Section 4.6. Since the

cost of displaying or saving the result relation is the same for each configuration it has been ignored in the results

displayed below.

The performance obtained by the multiprocessor Hybrid join algorithm and the 3 configurations of the mul-

tiprocessor Grace algorithm are displayed in Figures 5, 6, and 7 for 1, 2, and 3 MIP processors, respectively. We

think these results are very exciting and represent a breakthrough in designing an architecturally simple, but very

high speed database machine. For each type of processor, almost linear speedups are obtained with increasing level

of resources.

With 1 MIP processors, the 1:1 Grace configuration provides a higher throughput rate over a wide range of

available resources. The principal reason is that with 1 MIP processors, the average CPU utilization for the Hybrid

design is almost 100%, whereas the 1:1 Grace design, which uses a larger number of processors per resource cost

level, is not CPU bound. For example, when the total resource cost is equal to 6, the Grace design is using 2 parti-

tioning nodes, 2 join nodes, and 2 disks. By comparison, for a resource cost of 6 the Hybrid design is using 3
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processors and 3 disks. The average disk utilization was approximately 20% for the Hybrid design and 30% for the

1:1 Grace design. Thus, Hybrid’s advantage of having the source relations partitioned over a larger number of disks

for a given resource cost level was not a significant factor.

Figure 6 presents the throughput results for the case where all processors are assumed to be 2 MIP proces-

sors. In this test, the Hybrid processors are no longer CPU bound and the Hybrid algorithm outperforms all the

Grace design combinations. The balanced nature of the processing requirements of this query favor the Hybrid and

Grace 1:1 designs that allocate balanced processor resources. The Grace 2:1 and 1:2 designs perform less well

because of lower processor utilizations resulting from the mismatch of processor resources. Figure 7 presents the

throughput results when 3 MIP processors are used. The increased processor performance favors the Hybrid design

which processes a bucket of each relation on the local processor. The Grace designs are not able to utilize the

increased processor performance to the same magnitude as the network data transfers7 become an impediment to

increased performance.

4.5. A Look at Resource Utilizations with 2 MIP Processors

The performance of the multiprocessor hash-join algorithms necessarily depend on how well the algo-

rithms utilize hardware resources. The Hybrid algorithm has the intrinsic advantage of sending a relatively smaller

number of tuples across the communications network. On the other hand, the Hybrid algorithm imposes a greater

load on each of the processors.

Figure 8 presents the resource utilization levels for the multiprocessor Hybrid algorithm with 2 MIP pro-

cessors. The high CPU utilization levels reflect the fact that each processor in the Hybrid algorithm is used for both

the partitioning and joining phases of the algorithm. The initial increase in CPU utilization is caused by the transi-

tion of the algorithm from using a single processor to using two processors. Whereas the single processor Hybrid

design did not utilize the network at all, the two processor Hybrid design must expend a substantial amount of pro-

cessing effort transferring buckets of tuples between processors. As additional processors are added to the Hybrid

algorithm, the CPU utilization of the processors begins to decline. This decline corresponds to an increased level of

contention for the network. As the level of contention for the network increases, processors are more frequently

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 For a given query, the Grace designs must transfer a larger amount of data across the network than the Hy-

brid design.



18

blocked waiting to transfer blocks of data across the network. The increased levels of network contention also

result in an increase in the total utilization of the network. The relatively low disk utilizations result from the fact

that data is read from the disk a track at a time. With that disk I/O blocking factor, the disk is frequently idle while

the previously read tuples are being partitioned. 8

Figure 9 presents the resource utilizations for the Grace 1:1 multiprocessor algorithm design with 2 MIP

processors. The relative CPU utilizations for the partitioning nodes and joining nodes reflect the fact that the parti-

tioning phase is normally the most computationally expensive phase of the hash-join algorithm. The CPU utiliza-

tions of both the partitioning nodes and joining nodes decrease as the levels of network contention increase. The

CPU utilizations of the Grace processors are relatively lower than the CPU utilizations presented for the Hybrid

algorithm. This is due to the fact that for a given resource level, the Grace algorithm uses a greater number of pro-

cessors than does the Hybrid algorithm. Conversely, the fact that the Grace algorithm uses fewer disks than the

Hybrid algorithm for a given resource level leads to the relatively higher disk utilizations that are seen for the Grace

algorithm.

4.6. Other Tests

Similar results were obtained when we varied the network bandwidth and the DMA rate. With a network

bandwidth of 10 Mbits/second and a DMA rate of 4 Mbits/second (the slowest configuration tested), almost linear

speedups were obtained up to approximately a resource cost of 20.9 After this point, the network tended to become

completely utilized and throughput remained constant.

We have, so far, chosen the same type of processors for the partitioning and joining nodes for the three

alternative Grace designs. Join queries with varied distributions of join attribute values may provide the possibility

of altering the balance of performance between the processing and joining nodes. We plan on investigating this

alternative.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8 Disk I/O blocking factors have been reduced to as low as 8 Kbytes without significantly altering the perfor-

mance of the algorithms.
9 The actual point varied with the MIP rate of the processors.
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5. Conclusions and Future Research

In this paper, the hash-join algorithms presented in [DEWI84a] were extended to a multiprocessor architec-

ture. As a first step, the algorithms described in [DEWI84a] were implemented using WiSS [CHOU83] running on

a VAX 11/750 running 4.2 Berkeley UNIX. In addition to providing CPU and I/O utilization figures for use in the

simulation of the multiprocessor algorithms, these centralized experiments provided two interesting results. First,

the measured performance of the algorithms was very similar to that predicted analytically in [DEWI84a]. Second,

bit vector filtering [BABB79] was shown to provide a dramatic reduction in the execution time of all algorithms

including the sort merge join algorithm. In fact, for the one query tested, with bit-vector filtering all algorithms had

virtually the same execution time.

We also extended the centralized Grace and Hybrid hash-join algorithms to a common multiprocessor

configuration. These two centralized algorithms were chosen as they each provide a natural point for separating the

joining and partitioning phases of the algorithm. The multiprocessor Hybrid algorithm uses a multiprocessor

configuration consisting entirely of nodes having an associated disk drive. The nodes are used for both the partition-

ing and join phases of the algorithm. Three configurations of the multiprocessor Grace algorithm were evaluated:

Grace 1:1, Grace 2:1, and Grace 1:2. In the 1:1 design one diskless joining processor is allocated for each partition-

ing processor. The 2:1 design allocates two partitioning nodes for each diskless joining node. The 1:2 design has

one partitioning node for every two diskless joining nodes. The results from the simulation experiments of these

algorithms is very encouraging as both algorithms provide linear increases in throughput with corresponding

increases in processor and disk resources.

There are two interesting extensions to this research that we are currently exploring. This first is what we

term adjustable join parallelism. By adjusting the partitioning algorithms, the number of buckets produced can be

adjusted.10 This in turn, effects how much parallelism can be used during the joining phase.11 For example, if the

partitioning phase produces just two buckets, than at most 2 processors can be used during the joining phase. There

are a number of cases when such a technique might be useful:

(1) load balancing under heavy loads
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

10 Constrained by the requirement that each bucket be reasonably be expected to fit into the memory of the
joining processor.

11 Equivalently, multiple buckets can be assigned to the same join processor. Since only one bucket will be ac-
tive at any given time, the level of parallelism is controlled.
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(2) low priority queries

(3) joins of small relations - Too much parallelism doesn’t make sense if the relations being joined are small.

A second promising area is the use of bit filtering in multiprocessor hash join algorithms. There are a number of

ways bit filtering [BABB79, KITS83] can be exploited by the multiprocessor hashing algorithms. For example, each

joining node can build a bit vector simultaneously with the construction of a hash table. When completed, the bit

vectors would be distributed to the partitioning processors. The partitioning processors could maintain the bit vec-

tors on a per bucket basis. Alternately, the partitioning nodes might merge the per bucket bit vectors into a single bit

vector. The bit vector(s) would then be applied during the partitioning of relation S. This strategy, plus a number of

other bit vector filtering strategies, look promising.

Finally, we intend to use these algorithms as part of the Gamma Project. Gamma is a new database

machine project that was begun recently. Gamma will provide a test vehicle for validating our multiprocessor

hash-join results. Gamma will be built using the Crystal multicomputer [DEWI84b] and WiSS [CHOU83] as a

basis. The Crystal Multicomputer project was funded as part of the National Science Foundation’s Coordinate

Experimental Research Program. Crystal is a network of bare VAX 11/750 processors (currently twenty, eventually

forty) serving as nodes, connected by a 10 Mbit/second token ring from Proteon Associates [PROT83]. This ring is

currently being upgraded to an 80 Mbit/second ring. Nine node machines have attached disks. File and database

services are provided to Crystal "users" using WiSS. Crystal software provides a simple operating system (NOSE)

with multiple, lightweight processes with shared memory and reliable connections to NOSE processes on other node

machines and UNIX processes on the host machines (Vax’s running 4.2 Unix). WiSS runs on top on NOSE. Crystal,

NOSE, and WiSS are all operational and in production use.
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