
CS 810: Complexity Theory 2/20/2007

Handout: Finite Fields

Instructor: Dieter van Melkebeek TA: Jeff Kinne

This handout covers some basic properties of finite fields that will be needed in the course and
may not be familiar to all students. We first show the existence of finite fields and then consider
the efficiency of arithmetic within finite fields. We conclude with a few remarks regarding uses of
finite fields.

1 Preliminaries

We first recap the terminology we use. A group is a structure consisting of a universe G and a
binary operation + that is associative, has a neutral element (a.k.a. a unit), and such that every
element has an inverse. If + is commutative, the group is called commutative. A ring is a structure
consisting of a universe R and two binary operations + and · where: (R,+) forms a commutative
group, · is associative on R, and · distributes over +. If · is commutative, the ring is called
commutative. A field is a commutative ring with a multiplicative unit such that each element
other than the additive unit 0 has an inverse for ·. We often refer to (F,+) as the additive group
of the field and to (F \ {0}, ·) as the multplicative group of the field.

The following proposition gives a useful sufficient condition for a finite ring to be a field.

Proposition 1. Consider a finite commutative ring R with a multiplicative unit that is different
from 0. Then R is a field iff for all a, b ∈ R, ab = 0 implies that a = 0 or b = 0.

Proof. Let the multiplicative unit of R be denoted by 1. We must only show that each element a of
R has a multiplicative inverse. We show this by showing that the mapping x→ a · x is a bijection.
If this is a bijection, then there is some element a′ such that a · a′ = 1. This a′ is the multiplicative
inverse of a.

Now suppose for the purpose of contradiction that x → a · x is not a bijection. Then we have
a ·x1 = a ·x2 for distinct x1, x2 ∈ R. Rearranging terms, we have a · (x1−x2) = 0 which contradicts
the hypothesis.

Given a field F , we consider polynomials over a single variable with coefficients from F .

Exercise 1. The set of polynomials F [x] over F forms a commutative ring with a multiplicative
unit.

We will be interested in polynomials over F that do not factor over F , as defined presently.

Definition 1. Let F be a field. A polynomial g(x) with coefficients from F is called irreducible
over F if there are no two polynomials g1(x) and g2(x) with coefficients over F and of degree less
than g(x) such that g(x) = g1(x) · g2(x).

Example: Consider the polynomial g(x) = x3 +x+ 1 over Z2. We claim that g(x) is irreducible
over Z2. In principle, we must verify that each pair of polynomials of degree less than three over
Z2 multiplies to yield something other than g(x). The set of polynomials that must be checked is:
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{1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2}. In this case we can also argue as follows. Since g(x) has
degree 3, at least one of the factors of any factorization as g(x) = g1(x)g2(x) with g1(x) and g2(x)
of degree less than three, has to have degree exactly one. This implies that g(x) would have a zero
over Z2. However, g(0) = 1 = g(1). �

An irreducible polynomial plays the role in the polynomial ring that prime numbers play in the
integers. The following is a property of irreducible polynomials that also holds for prime numbers
in the integers.

Proposition 2. Let g(x), g1(x), and g2(x) be polynomials over a field F . If g(x) is irreducible
over F , then g(x) divides g1(x) · g2(x) iff g(x) divides g1(x) or g(x) divides g2(x).

Proof idea: Just as an integer can be factored uniquely into its prime factors, a polynomial over
a field can be factored uniquely into irreducible polynomials. If g(x) divides g1(x) · g2(x), then
g(x) ·h(x) = g1(x) ·g2(x) for some polynomial h(x). If we view this equation in terms of the unique
factorization of each polynomial into irreducible polynomials, it becomes evident that g(x) must
divide either g1(x) or g2(x).

The final building block we need is that of modular arithmetic. We assume the reader is familiar
with Zn, the integers modulo n. We can also use modular arithmetic over the ring of polynomials
over a field F .

Definition 2. Let F [x] be the ring of polynomials over a field F , and let g(x) be a polynomial with
coefficients from F . Then F [x]/g(x) is the ring of polynomials over F modulo g(x). Formally,
F [x]/g(x) contains an equivalence class for each polynomial that can result as a remainder upon
dividing by g(x), and arithmetic among the equivalence classes is performed modulo g(x).

Exercise 2. If F is a field and g(x) is a polynomial with coefficients from F , then F [x]/g(x) is
a finite commutative ring with a multiplicative unit. Further, if g(x) has degree d, the elements of
F [x]/g(x) are in one-to-one and onto correspondence with the polynomial of degree less than d over
F .

2 Existence

We have now set up the appropriate background to prove the existence of finite fields. We first
mention the finite fields that we are most familiar with.

Theorem 1. For all n ≥ 2, Zn is a commutative ring with a multiplicative unit. Zn is a field if
and only if n is prime.

The second part of Theorem 1 follows from Proposition 1 and demonstrates finite fields that
are suitable for many of our purposes. However, there are other finite fields we will need to make
use of. The following theorem is the main purpose of this handout, demonstrating a finite field for
all prime powers.

Theorem 2. For prime p, and k ≥ 1 there is a field with pk elements.

Proof. Let Zp[x] be the ring of polynomials with coefficients from Zp, and Zp[x]/g(x) be the quotient
ring of polynomials modulo the polynomial g(x). By Exercise 2, Zp[x]/g(x) is a finite commutative
ring with a multiplicative unit. The theorem follows from the following two lemmas.
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Lemma 1. Let k ≥ 1 be an integer and p a prime. There exists an irreducible polynomial of degree
k over Zp.

Proof idea: This can be proved by a careful counting argument showing that the number of irre-
ducible polynomials is positive. We do not present further details here.

Lemma 2. Zp[x]/g(x) is a field if and only if g(x) is irreducible over Zp.

Proof. The elements of Zp[x]/g(x) are in one-to-one and onto correspondence with the polynomials
over Zp of degree less than the degree of g(x). A product of two elements is zero iff the product of
the corresponding polynomials is a multiple of g(x).

If g(x) is not irreducible, then g(x) = g1(x) · g2(x) for some polynomials g1(x) and g2(x) of
degree less than the degree of g(x), meaning that for non-zero ring elements g1(x) and g2(x) their
product is zero. Then Zp[x]/g(x) is not a field by Proposition 1.

Let g(x) be irreducible. Suppose there are g1(x) and g2(x) whose product is a multiple of g(x)
(i.e., whose product is zero in the ring). Then Proposition 2 tells us that g(x) must divide at least
one of g1(x) or g2(x), meaning at least one of g1(x) or g2(x) is zero in the ring. By Proposition 1,
Zp[x]/g(x) is a field.

In fact, the construction given in Theorem 2 is enough to generate all possible finite fields,
stated formally in the following theorem whose proof we omit.

Theorem 3. Let F be a finite field. Then F has pk elements for some prime p and integer k ≥ 1.
Further, each finite field with pk elements is isomorphic.

We use GF(pk) to denote a generic finite field with pk elements. 1

Example: Let us construct GF(23) using the irreducible polynomial of degree 3 from the exam-
ple in the first section. Therefore, GF(23) can be constructed as Z2[x]/(x3 + x + 1). Each element
of the field is viewed as a degree at most two polynomial, and can thus be specified with three bits.
As an example of multiplication in the field, (x2+1) ·(x+1) = (x3+x+x2+1) = (x3+x+1)+x2 =
0 + x2 = x2. As an example of addition in the field, (x2 + 1) + (x+ 1) = (x2 + x+ 1 + 1) = x2 + x.
�

3 Complexity

Theorem 2 only shows that finite fields of order pk exist. For a finite field to be of practical use,
it should be efficiently constructible, and arithmetic in the field should be efficient. We leave it
as an exercise to verify that arithmetic can be performed in GF(pk) in polynomial time once an
irreducible polynomial of degree k over Zp is found.

To efficiently construct GF(pk), all that needs to be done is to find an irreducible polynomial
of degree k over Zp. We would like to be able to find such a polynomial in polynomial time, where
the input length is the number of bits needed to specify a degree k polynomial with coefficients in

1“GF” stands for “Galois Field,” after Evariste Galois.
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Zp, i.e. O(k · log p). It is unknown if there is an algorithm running in time poly(k, log p) to do this.
The following is essentially the best known algorithm.

Theorem 4 ([Shoup]). There is a deterministic algorithm running in time poly(k, p) to find an
irreducible polynomial of degree k over Zp.

Notice that for small values of p this is in fact a polynomial time algorithm. In particular,
this shows that we can in polynomial time construct a suitable irreducible polynomial to construct
GF(2n). For most purposes, this is sufficient. If our requirements are even more lenient, we can do
even better. The following gives an explicit formula for irreducible polynomials for certain values
of n.

Theorem 5 ([van Lint] Thm 1.1.28). Let n = 2 · 3`−1. Then xn + xn/2 + 1 is irreducible over Z2.

4 Remarks

One common use of finite fields is to view data as elements of the finite field and take advantage
of the nice properties of polynomials over fields. In particular, a degree d polynomial can have at
most d roots. We will see in the lectures how this property is used.

Finally, we remark on the distinction between formal polynomials and polynomials as functions.
A formal polynomial refers to the particular coefficients that specify it. Two formal polynomials
over a finite field F induce the same function iff they are equal modulo

∏
a∈F (x−a). In particular,

all polynomials of degree less than q over GF(q) induce different functions.
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