
CS 880: Quantum Information Processing 11/4/2010

Lecture 25: Error Correction

Instructor: Dieter van Melkebeek Scribe: Brian Nixon

In this lecture, we complete our discussion of interactive proof systems and begin talking about
error correcting codes. We gradually build a system that will secure a single qubit from errors
and prove its correctness. Next lecture we will discuss a different method of single qubit error
correction.

1 Quantum Interactive Proof Systems, continued

Recall from last lecture that classically a language L has an interactive proof system (IPS) iff
L ∈ PSPACE. In the quantum setting, both the verifier and the prover gain addition power so it
is not immediately clear how the class of languages that have a quantum interactive proof system
(QIPS) compares. We know that we do not lose power as the verifier can simply force the prover to
adopt a classical protocol by making an observation after each step. So we at least have QIPS for
all of PSPACE. A recent result proved that we get nothing more than PSPACE by demonstrating
that any QIPS can be reduced to a similar type as we used in our graph isomorphism protocol last
lecture. In this standard form there are 4 steps:

1. Prover sends a register X of qubits to Verifier,

2. Verifier picks b ∈ {0, 1} uniformly at random and sends it to Prover,

3. Prover sends register Y to Verifier,

4. Verifier decides whether to accept.

Given this form we want to know the probability that the verifier accepts. We can capture
this behavior with a semi-definite program. Semi-definite programs (SDPs) are similar to linear
programs – they optimize a linear objective function over the reals under linear inequality con-
straints; in addition they can use constaints that require that certain variables from a semi-definite
matrix. They solution to SDPs can be approximated to within ε in time polynomial in the size of
the program and 1/ε.

In our case the objective function can be written as

1

2

1∑
i=0

Pr(Verifier accepts|b = i) =
1

2
Tr(π0ρ0) +

1

2
Tr(π1ρ1),

where πi denotes the projection onto the accepting subspace in the case b = i, and ρi denotes the
density operator related to the combination of X and Y for b = i. The constraints are the following.

• ρ0 and ρ1 are density operators. This can be expressed in and SDP program by stipulating
that ρ0 and ρ1 are positive semi-definite matrices, and the linear equality that they have trace
1.

1

• X is independent of b. This can be expressed by the linear equalities that tracing out Y from
ρ0 and ρ1 yields the same matrix: TrY (ρ0) = TrY (ρ1).

The resulting SDP has exponential size but has enough structure such that it can be solved in
polynomial space.

2 Multiple Prover IPS

How does the model change if we allow multiple provers? Such provers are allowed to collaborate
prior to the start of the protocol but are not allowed to communicate once it has begun (or else
there would effectively be a single prover). In the classical system, the verifier would benefit from
such a situation by being able to check for consistency between the various provers. This way teh
verifier can effectively force the provers to act in a nonadaptive manner where their anwers do not
depend on the questions asked before. It is known that classically a 2-prover IPS exists exactly
for languages in NEXP (nondeterministic exponential time), and that more than 2 provers doesn’t
buy any more. With quantum systems, the effect of multiple provers is an open question. The
key difficulty here is that provers can share entangled qubits prior to the start of the protocol and
cannot be viewed as completely disconnected.

3 Bloch Sphere and Pauli operators

Our discussion of quantum error correcting codes will be limited to codes that can correct errors on a
single qubit. Before starting that discussion, we first review an interesting geometric representation
of single qubit systems and operations.

Recall that an operation on a single qubit can be represented by a 2-by-2 matrix. Let X =(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
. These are the Pauli operators. Each of them

are Hermitian and unitary so induce a legal quantum operation on a single qubit. The following
properties of the operators are useful and you should confirm them for yourself.

Exercise 1. 1. XY = iZ, Y Z = iX, ZX = iY .

2. HXH = Z where H is the Hadamard matrix.

3. {I,X, Y, Z} form a basis for all 2× 2 matrices.

As operations on qubits, X performs a bit flip, Z performs a phase flip, and Y corresponds to a
combination of the two. The second item in Exercise 1 shows that Z corresponds to a bit flip in the
Hadamard basis. The third item implies that all single qubit density operators can be decomposed
into ρ = αI+βX+γY +δZ. We can easily show that α = 1/2 in this case as Tr(ρ) = 1, Tr(I) = 2,
Tr(X) = Tr(Y) = Tr(Z) = 0, and the trace is a linear operator on matrices. This allows us to
write any single qubit density operator as

ρ =
1

2
I +

1

2
(cxX + cyY + czZ). (1)

A pure state of a single qubit can be written uniquely as |ψ〉 = cos(θ)|0〉 + eiφ sin(θ)|1〉 up to
a global phase shift where 0 ≤ φ < 2π and 0 ≤ θ ≤ π

2 . Calculating the corresponding density

2

operator ρ = |ψ〉 〈ψ| yields

ρ =

(
cos2(θ) e−iφ sin(θ) cos(θ)

eiφ sin(θ) cos(θ) sin2(θ)

)
=

1

2

(
1 + cos(2θ) e−iφ sin(2θ)
eiφ sin(2θ) 1− cos(2θ)

)
. (2)

Equating (1) and (2) yields 
cx = sin(2θ) cos(φ)
cy = sin(2θ) sin(φ)
cz = cos(2θ)

These are the polar coordinates of a point on a three-dimensional sphere with radius 1 centered at
the origin. The representation is known as the Bloch sphere.

|0〉

|1〉

|Φ〉

φ

θ

θ = 0

Figure 1: Bloch Sphere

Every single qubit density operator corresponds uniquely to a point on the Bloch sphere. What
about mixed states? These are convex combinations of pure states so will yield a point on the
interior of the sphere.

What is the effect of the Pauli operators on the Bloch sphere? Applying Z adds π to φ, which
amounts to a 180◦ rotation around the z-axis (or if you prefer, a reflection through the z-axis). A
little calculation will reveal that X performs a rotation of 180◦ around the x-axis, and Y performs
a rotation of 180◦ around the y-axis. Any curiosity you might have been holding towards why the
Pauli operators had their specific names should now be resolved. In general, any unitary operation
on |ψ〉 corresponds to a rotation (not necessarily of 180◦) around some axis in the Bloch sphere.

Exercise 2. Show the Hadamard matrix performs a reflection through the plane including the y
and (x+ z) axes.

We note that |〈φ1|φ2〉|2 = Tr(ρ1ρ2) = 1
2 + 1

2(cx1cx2 + cy1cy2 + cz1cz2). In particular, orthogonal
states map to antipodal points on the Bloch sphere.

3

4 Error Correction

Error correction seems considerably harder in the quantum setting than in the classical setting,
and we will only discuss error correction on a single qubit. For comparison, correction on a single
bit is easy - consider the code that repeats each bit thrice. To recover any bit, simply take the
majority view of any triple (taking the view that errors are unlikely to affect more than one bit out
of three).

Why is error correction for a qubit so much harder than the simple code we gave for the classical
bit? There are three main reasons. First, a qubit has a continuum of possibilities where a bit’s
value lies in a discrete set. Second, it is easy to copy a bit but in the quantum setting we have
the no cloning rule restricting us. Third, if we do a measurement in the course of detecting and
correcting errors, that will collapse the state and may destroy information.

In the face of these apparent difficulties we first restrict our question farther to simply correcting
for the possibility of a bit flip error, noting that this corresponds to the only possible error in the
classical environment.

Taking our cue from the classical code, let us consider a system of three qubits that we bind
together by applying CNOT’s to get α|000〉 + β|111〉. See the first half of Figure 2. There are
four possible output states after a single bit flip error, namely α|000〉 + β|111〉, α|100〉 + β|011〉,
α|010〉 + β|101〉, and α|001〉 + β|110〉. Fortunately, these exist in orthogonal subspaces so we can
separate them perfectly. In fact, we can figure out the error and correct if efficiently, as indicated in
the second half of Figure 2. Consider the effect of reapplying the CNOT gates. If bit flips occurred
or the bit flips occurred on the extra qubits, this results in the first qubit returning to α|0〉+ β|1〉.
We can correct the remaining error case by adding a CNOT gate that modifies the first qubit and
is controlled by the other two. After this procedure the other two qubits take on a pure value of
either |0〉 or |1〉. In the field of error correction these extra two bits are called “syndromes” and
they tell us exactly what error occurred:

00 for no error

01 for a bit flip on the third qubit

10 for a bit flip on the second qubit

11 for a bit flip on the first qubit.

|φ〉 • •
Ebit

• • �������� |φ〉
|0〉 �������� �������� • Syndrome

|0〉 �������� �������� •
encoding decoding

︸ ︷︷ ︸ ︸ ︷︷ ︸


Figure 2: Bit flip correction

It is important to note that if there is a phase flip during the error stage, it appears in the final
state |φ〉 on the first qubit. You should verify this for yourself.

To correct a phase flip we can use the fact HZH = X and apply our circuit for correcting
bit flips with the error zone flanked by H⊗3. As a bit flip here corresponds to a phase flip in the
previous circuit, it passes through as a phase flip did before.

4

|φ〉 • • H

Ephase

H • • �������� |φ〉

|0〉 �������� H H �������� •

|0〉 �������� H H �������� •

Figure 3: Phase flip correction

We can handle combined errors by concatenating both codes as in Figure 4. We use the bit flip
code internally to correct a bit flip and transfer a phase flip onto the first of the three qubits in
the block. The dashed line in Figure 4 encircles one of the internal bit flip codes. There are three
such blocks, namely one for each of the qubits of the external code, fore which we use our phase
flip code.

|φ〉 • • H • •

E

• • �������� H • • �������� |φ〉

|0〉 �������� �������� •
|0〉 �������� �������� •
|0〉 �������� H • • • • �������� H �������� •

|0〉 �������� �������� •
|0〉 �������� �������� •
|0〉 �������� H • • • • �������� H �������� •
|0〉 �������� �������� •
|0〉 �������� �������� •

Figure 4: Full Single Qubit Error Correction

The resulting 9-qubit code can correct a single bit flip X, a single phase flip Z, and their
combination Y . By linearity, this means that the code can correct any single-qubit error E, as any
such E can be written as a linear combination of I, X, Y , and Z. Here we can see the magic of
quantum linearity at work – although there is a continuum of possible single-qubit errors, is suffices
to correct a discrete set (bit and phase flips and their combinations) in order to correct all.

Next lecture we will discuss a different method of single qubit error correction that uses only 7
qubits to represent a single logical qubit.

5

