
CS 710: Complexity Theory 10/20/2011

Lecture 13: Randomness

Instructor: Dieter van Melkebeek Scribe: Brian Nixon

In this lecture we will wrap up our discussion of the relationship between NC1 and branching
programs by completing the proof we left unfinished last lecture. Moving forward, we begin a
discussion on the power of randomness on the cost of solving problems by formally defining what
we mean by randomness and noting some simple implications and known results. We will continue
on the topic of randomness for the next few lectures.

1 Rest of proof from last lecture

Theorem 1. The following are equivalent:

1. f ∈ NC1

2. f has poly-size formulas

3. f has log-depth formulas

4. f has poly-size branching programs of constant width.

Proof. Last lecture we proved the implications (1) ⇒ (2), (2) ⇒ (3), and started (3) ⇒ (4). Let
us present a compete proof of that claim here. Also, recall we noted that we can, in fact, prove
the stronger claim that f has a poly-size oblivious permutation branching program (denoted pbp)
with width 5. In a pbp, any two consecutive levels of the program represent a permutation when
considering the arrows representing transitions of a single label as the figure shows. Different labels
might induce different permutations.

��������
0

�� 1 ��?
??

??
??

? ��������
0

��?
??

??
??

?
1

����
��

��
��

��������
0

����
��

��
��

1 ��?
??

??
??

? ��������
0

��

1

����
��

��
��

��������
0,1

���������� �������� �������� �������� ��������
Thus, no matter the input the overall effect is of a permutation as each level will be a permuta-

tion. f will yield a stricter program, a π-pbp with π 6= e with e as the identity permutation. This
means the permutation realized by the program is π if the input is accepted or e if it is rejected.
Note that at least one starting vertex is mapped elsewhere if x is accepted and unchanged if x
is rejected as in the following figure. We’ll take this vertex to be the root node of our branching
program.

1



�������� /.-,()*+2

�� ��+
++

++
++

++
++

++
++

++
++

++
+

�������� �������� ��������

�������� �������� �������� �������� ��������

...
...

�������� /.-,()*+2 GFED@ABCπ(2) �������� ��������
One key property we can use is if f has a π-pbp and σ is conjugate to π (i.e. ∃τ such that

τ−1πτ = σ) then f has a σ-pbp of the same size. This follows as we take our π-pbp and permute
the top level by τ and the bottom by τ−1. If the input is accepted, the inner permutation will be
π for a overall permutation of τ−1πτ = σ. If the input is rejected, the inner permutation will be e
for a overall permutation of τ−1eτ = τ−1τ = e. Consequently, we have flexibility in our choice of
permutation π. Recall that π and σ are conjugate if they have the same cycle structure.

Let us consider the problem of transforming a fan-in 2 formula into a π-pbp for some e 6=
π ∈ Sw = Sym(w). Eventually we’ll settle on w = 5 but for now let us proceed in generality by
inducting on the size (equivalently, the depth).

The base case includes all formulas that consist of a single variable. Here, the branching program
would merely be two layers with the 0 labelled arrows inducing the identity permutation and the
1 labelled arrows inducing a permutation π.

For the induction step, it is enough to prove for negation and AND as De Morgan’s laws will
suffice to prove the case of OR gate. For negation, we know that a permutation and its inverse are
conjugate as they share the same cycle structure. By the induction hypothesis, we have a π−1-pbp
of the same size for the formula inside the not operation. Now we permute either the top or bottom
by π. The action of the whole is πe = π if the interior rejects and ππ−1 = e if the interior accepts.

For conjunction, we have two interior formulas f and g. Suppose we have a π-pbp for f
(called Mf ) and a σ-pbp for g (called Mg). Then there is a τ = [π, σ]-pbp for f ∧ g of size
≤ 2(SIZE(Mf ) + SIZE(Mg)). This is done by putting the four machines for π−1σ−1πσ in sequence.
If one machine rejects, it and its inverse act as the identity so the whole collapses to the identity.
If both accept, it acts as the commutator τ . If all possible commutators reduce to the identity we
have a problem, so will need to choose our permutation group appropriately. If τ is conjugate to
π then we get a π-pbp in the end. Thus if there exist conjugates τ , π, σ where τ = [π, σ] 6= e then
we can obtain the desired π-pbp of width w with size ≤ 2d SIZE(f) for the formula f , letting d
be the depth of the formula as the worst case is a conjunction on each level doubling the size. If
the formula is log-depth then 2d is polynomial in the input. If the formula size is polynomial then
π-pbp is polynomial size.

We claim that such π, σ, τ exist for w = 5. This is true as S5 is not solvable, and in fact is the
smallest permutation group that isn’t solvable. Examples would be π = (12345), σ = (13542), and
τ = (12534).

Finally, let us prove (4) ⇒ (1), that poly-size branching programs of constant width can be
implemented with NC1 circuits. To do this we use the same technique as in the proof NSPACE(n) ⊆
DSPACE(n2). Instead of dividing a computational tableau, here we divide the given branching
program itself.

2



Let F (a, b) return true if the execution of the branching program on its given input enters
node a and eventually transitions to the node b and return false otherwise. As the execution of
the program must pass through all layers, computing the value of F (a, b) can be broken up from
the question of whether “a transitions to b” into deciding over all ci in the middle layer, halfway
between the layer of a and the layer of b, whether the scenario “a transitions to b passing through
node ci” holds. The width of the program is a constant k, so this can be done with an OR gate
of fan-in k. Each scenario can be returned to our initial form using an AND gate of fan-in 2,
evaluating “a transitions to ci” and “ci transitions to b.

∨

∧

F (a, c1) F (c1, b)

∧

F (a, ck) F (ck, b)

· · ·

Figure 1: F(a,b)

We repeat the process to determine the validity of each leaf node. This terminates at the trivial
case when a and b are in adjacent layers where we evaluate the single transition. We know the
initial start state and, if the program accepts, the final state so to check if a branching program
accepts we simply evaluate F (start state, accept state).

Let us check the properties of the resulting circuit. The fan-in is bounded by k, a constant.
Adding two layers to the circuit reduced the size of the problem by a factor of two so the circuit
depth will be log in the depth of the branching program. the program depth is polynomial so the
circuit will have log depth. Thus the circuit is in NC1.

Another similar proof is L ⊆ NC2. Here the number of choices for intermediate node ci in
the reduction step is polynomial rather than constant. In order to bring our fan-in down from a
polynomial, we must use a log depth circuit of OR gates, each with constant fan-in. Avoiding this
extra log factor in the induction step is the critical element to bringing the circuit from the above
proof into NC1 rather than NC2.

We note that it is still possible that NP ⊆ NC1. We know AC0 is much more restricted.

2 Randomness

How does the computing power of a machine change if we allow it to flip unbiased coins to generate
random bits? Assuming the existence of a suitable source of randomness and allowing a machine
to make use of the resulting bit strings has resulted in simpler algorithms in a variety of settings.
There are some settings where we know how to solve problems using randomness for which we
have no deterministic algorithms. One example is the dining philosopher’s problem in distributed
computing. Cryptography seems to rely crucially on the use of randomness to disguise the particular

3



form of the cipher being used through the generation of keys. Without randomness, the strength
of a cipher would correspond to how secret the algorithm itself remained.

2.1 Standard Model

In the standard setting where the objects under consideration are mappings from inputs to outputs,
it is still an open question whether randomized algorithms enjoy asymptotic complexity gains
that cannot also be realized by a well chosen deterministic algorithm. The current conjecture is
randomness induces at most a polynomial speedup in time or at most a constant reduction in space.

Formally, we include randomness in a Turing machine by allowing the machine to generate
random bits and base decisions on the results, making the configuration at any time a random
variable. As a consequence, the output of the program will be a random variable, introducing the
possibility that our machine will return an incorrect result. For the class of decision problems, we
consider three types of algorithms distinguished by the types of error they allow.

• 2-sided error. False positives and false negatives are both allowed.

• 1-sided error. Only false negatives allowed.

• 0-sided error. Program allowed to output accept, reject, or “unknown”. When it accepts or
rejects it is correct in its decision.

Machines that aren’t solving decision problems can use randomness to get benefits without the
possiblity of error in the output. Quicksort would be one such example. It always returns a sorted
set and never returns “unknown” but the running time is affected by the randomness.

Notice that in machines using randomness, running time and space are also random variables.
We are interested in improving the bounds on these variables while controlling the error in the
output. By controlling the error, we mean bounded away from trivial. For example, it is easy to be
right in a decision problem 1

2 of the time by flipping a coin and outputing the result. A non-trivial
error bound would be ε ≤ 1

2 − δ with δ > 0. Once error is restricted away from 1
2 we can reduce it

further by running k independant instances in parallel and outputting the majority answer.

Pr[majority vote is wrong] =
k∑

i=k/2

Pr[Exactly i trials are wrong]

=
k∑

i=k/2

(
k

i

)
εi(1− ε)k−i

≤ (
1
2
− δ)k/2(

1
2

+ δ)k/2
k∑

i=k/2

(
k

i

)
≤ (

1
2
− δ)k/2(

1
2

+ δ)k/22k

= (1− 4δ2)k/2

≤ (e−4δ2)k/2

= e−2kδ2

4



Exercise 1. Prove the inequalities.

• εi(1− ε)k−i ≤ εk/2(1− ε)k/2 for i ≥ k/2.

• ex ≥ 1 + x. Consider the tangent line at x = 0.

This tells us if δ is 1
poly then some poly k will make δ really small. Thus we can control the

2-sided error case as if the original probability of error is not too close to 1
2 then it is possible

to produce an exponentially small probability of error through a majority vote over a polynomial
number of runs. For 1-sided error, the bounding calculation is easier as we are only searching for at
least one “yes” vote. As machines with 1-sided error or 0-sided error can be viewed as into 2-sided
error machines with comparable terms, our analysis above suffices to prove we can control error
rates on all machines.

2.2 Examples of Randomized Algorithms

In the time bounded setting, the traditional example of the power of randomization has been
primality testing where we have simple polynomial time algorithms that use randomness. However,
we now know there exists a polynomial time deterministic algorithm that also performs primality
testing.

Instead, consider polynomial identity testing. To create an arithmatic formula we are allowed
to add, multiply, and subtract variables and constants with the use of brackets allowed to control
the order of operations. It is not clear when the resulting multivariate polynomial is identically
zero for all variable settings (the variables can be drawn from domains such as the integers or
finite fields, constrained such that all variables draw form the same domain). One method would
be to expand all the terms and collect the resulting terms one monomial at a time. However, the
number of monomials can be exponential in the size of the formula. In fact, all known deterministic
algorithms for polynomial identity testing run in exponential time.

By switching the question to ask when a multivariate polynomial is not identically zero we can
get a simple 1-sided error algorithm by performing test and check at points chosen independently
and uniformly at random over a sufficiently large interval I in the domain. What does sufficiently
large mean in this instance?

Lemma 1. Pr[P (~x) = 0|P 6= 0] ≤ deg(P )/|I| where P is the multivariate polynomial and elements
of ~x are chosen from I.

We note that considering the polynomial as the circuit generated by the arithmetic formula
yields the bound deg(P ) ≤ (size of formula). This is apparent as the addition gates don’t add to
the total degree but just return the maximum degree of their children and the multiplication gates
return the degree that is the sum of the degrees of their children. Thus we get nontrivial bounds
using |I| of order the size of the formula. Controlling the size of our inputs is important because
it allows us to control the time it takes to evaluate the formula. Letting N be the size of the
formula, each value in ~x is from I so can be specified with O(logN) bits. Evaluating the formula
raises the variables to no more than the power N , thus the intermediate numbers have no more
than O(N logN) bits. All the arithmetic operations can be performed in polynomial time in the
bit length of the input numbers so the formula can be evaluated in time polynomial in N .

Exercise 2. Prove lemma 1. This can be done by induction on either the degree or the number of
variables.

5



For multivariate polynomials, there is no known efficient deterministic algorithm. The existence
of one would have major implications for circuit complexity questions that are approximately 40
to 50 years old now.

3 Looking Ahead

Next time we will examine arithmetic circuits instead of formulas. These will have similar construc-
tion as we saw in the Boolean setting but use different gates (addition and multiplication instead of
AND and NOT). Unfortunately, here we won’t have total degree bounded by circuit size. Consider
the following figure where the degree is approximately 2size of circuit.

'&%$ !"#∗

'&%$ !"#∗

== aa

...

>> ``

'&%$ !"#∗

>> ``

'&%$ !"#x

== aa

In this case we have to compute x2size
which is expensive. Our |I| being exponential size isn’t a

problem as it still has only a polynomial number of bits but the evaluation step is too expensive as
it involves numbers with an exponential number of bits. We can control this by taking operations
modulo some m.

Acknowledgements

In writing the notes for this lecture, I sampled from the notes by Brian Rice and Jake Rosin for
lecture 11 from the Spring 2010 offering of CS 710 to revise the section on randomness. I similarly
used the notes by Jake Rosin for lecture 11 from the Spring 2007 offering of CS 710 to improve my
section on randomness.

6


