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Lecture 9: Expanders

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Adam Everspaugh

Expanders are directed or undirected multigraphs that are almost as well-connected as the
complete graph but contain a lot fewer edges. We typically consider families of regular graphs
of low (often constant) degree. The savings in edges are similar to the savings in randomness in
PRGs, and in later lectures we will see how expanders can be used to construct various PRGs. In
this lecture we discuss several measures of expansion and their relationships, and focus on the one
known as spectral expansion. We also recap some linear algebra background for this and future
lectures.

1 Measures of Expansion

Although we mostly deal with undirected multigraphs, the formal definitions in this section presume
a directed multigraph G = (V,E). In order to apply them to an undirected graph, we orient all
edges both ways. We denote the neighborhood of a set of vertices S ⊆ V as

Γ(S)
.
= {v ∈ V |(∃u ∈ S)(u, v) ∈ E}.

The following quantities are commonly used to measure the well-connectedness of (multi)graphs.
They are all closely related, as we will discuss further.

◦ Vertex Expansion
This is the notion that gives expanders their name. Informally, we want any set S of vertices to
expand a lot when we take its neighboring set Γ(S). Formally, we require that |Γ(S)| ≥ c|S|,
where c > 1 is a parameter. Of course, this is only possible when the set S isn’t too large
to begin with, say |S| ≤ α|V |, where α is another parameter. This leads to the following
definition: G has vertex expansion (α, c) if

(∀S ⊂ V with |S| ≤ α|V |) |Γ(S)| ≥ c|S|.

In a complete digraph with self-loops every non-empty set S expands to all of V . If the
maximum degree of G is d, the expansion c can be at most d. Typically, we want c to be
some constant larger than 1, and α some positive constant.

Note that vertex expansion does not require that S ⊆ Γ(S), although that inclusion always
holds when G has a self-loop at every vertex. Related to this, a slightly different way of
formalizing that S expands is that Γ(S) has a significant number of “new” vertices, i.e.,
|Γ(S) \ S| ≥ γ|S|, where γ > 0 is a parameter. We say that G has boundary expansion (α, γ)
if

(∀S ⊂ V with |S| ≤ α|V |) |Γ(S) \ S| ≥ γ|S|.

Note that an (α, c) vertex expander is an (α, γ) boundary expander with γ = c − 1. The
converse holds when G has a self-loop at every vertex.
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◦ Edge Expansion
Instead of looking at the new vertices in Γ(S), we look at the number of edges leaving S, i.e.,
at E(S, S)

.
= E ∩ S × S. We say that that G has edge expansion (α, c) if

(∀S ⊂ V with|S| ≤ α|V |) |E(S, S)| ≥ c|S|.

A closely related notion is that of conductance. If G is d-regular, the conductance of G equals
the largest real Φ such that G has edge expansion (12 ,Φ · d).

◦ Quasi-Randomness
This is a notion from random graph theory. A random (di)graph on a given number of vertices
is one where an independent fair coin is tossed to determine the presence of every individual
edge. A graph G is called quasi-random if for any two (not necessarily disjoint) subsets of
vertices, S and T , the fraction of edges that go from S to T is about the same as in a random
digraph. More precisely, G is ε-quasi-random if

(∀S, T ⊂ V )

∣∣∣∣ |E(S, T )|
|E|

− µ(S)µ(T )

∣∣∣∣ ≤ ε,
where µ(S)

.
= |S|
|V | denotes the relative size of S. Note that the complete digraph with self-loops

is trivially ε-quasi-random for any ε ≥ 0.

Phrased in terms of PRGs, G is ε-quasi-random if picking an edge from G is ε-pseudorandom
for randomized algorithms that use two random vertices and check whether the first vertex
is in S and the second one in T , where S and T can be any subsets. If G has small degree
d, then this yields a nontrivial ε-PRG for this class of algorithms: Pick a vertex x from G
uniformly at random, and then pick one of its neighbors y uniformly at random. In order to
generate 2 log |V | bits, this PRG only needs log |V | + log d truly random bits. We will use
this PRG as a building block later on.

◦ Rapid Mixing
This is a notion from the theory of Markov processes. We consider the Markov process
of a random walk on G: Start at some vertex, and repeatedly move to a neighbor chosen
uniformly at random. We require the process to mix rapidly, i.e., to quickly converge to a
unique invariant distribution for every possible start vertex. For the complete digraph with
self-loops, the process converges in a single step to the uniform distribution. In the next
section we provide some background on Markov processes and the notion of rapid mixing.

◦ Spectral Expansion
This notion forms the basis for our definition of expanders. It is linear-algebraic in nature
and also involves the above random walk. We present it after our discussion of rapid mixing
and a recap of the relevant linear algebra.

2 Rapid Mixing

A Markov process is a memoryless randomized process. Specifically, it is a randomized process
where the probability distribution for the next state is determined only by the current state – with
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no memory of the prior states. If the state space is finite, say of size N , the process can be specified
by the N ×N transition matrix M with Mij = Pr[next state is i | current state is j].

To run the process we also need an initial state distribution π(0), which we view as a column
vector of length N with π(0)(i) = Pr[initial state is i]. The column vector π(t) describing the state
distribution after t steps of the process is then given by the matrix-vector product π(t) = M tπ(0).

A random walk on a directed multigraph is such a process. If there are no parallel edges, we
can write

Mij =

{ 1
outdeg(j) if(j, i) ∈ E
0 otherwise.

If there are parallel edges, then the numerator 1 is replaced by the number of edges from j to i. If
every vertex has outdegree d, we can write M as M = 1

dA
T , where A denotes the adjacency matrix

of G (with multiplicities).
An invariant distribution (also called a stationary distribution) of a Markov process is an initial

distribution π that remains unchanged throughout the process, i.e., such that Mπ = π. A Markov
process always has an invariant distribution, but it may not be unique. The latter depends on
the structure of the tree of strongly connected components (SCCs) of the underlying multigraph of
transitions with nonzero probabilities, which can be seen as follows. Note that for a random walk
on G the underlying multigraph is G itself.

◦ Every vertex in the support of an invariant distribution has to belong to an SCC that is a
leaf in the tree of SCCs, i.e., an SCC from which no other SCC can be reached. This is
because for all other SCCs one step of the process permanently leaks a nonzero amount of its
probability mass to SCCs further down the tree.

◦ For every leaf SCC C there is an invariant distribution whose support coincides with C. To
see this, first note that the restriction of M to rows and columns in C defines a Markov
process M ′ on C. Since ~1M ′ = ~1, M ′ has a left eigenvector with eigenvalue 1, and thus also
a (right) eigenvector π with eigenvalue 1. This vector is not identically zero and satisfies
Mπ = π. It remains to show that, up to a scalar, π is a probability distribution with support
C, i.e., that all components of π have the same sign. Since C is strongly connected, it suffices
to argue the following claim for i, j ∈ C: If Mij > 0 then the sign of πj equals the sign of πi
or πj = 0. If πi = 0 for some i ∈ C, then the claim implies that πj = 0 for all j ∈ C from
which i can be reached, which is all of C. Since π is not identically zero, we conclude that
πi 6= 0 for every i ∈ C. By the same token, the claim then shows that the sign of πj is the
same for every j ∈ C.

We argue the claim by contradiction. Suppose that Mij > 0, πj 6= 0, and the sign of πi differs
from the sign of πj . Since π = Mπ, we have that

πi = Mijπj +
∑
k 6=j

Mikπk.

Under the given sign conditions, this equality can only hold if at least one of the terms on
the right-hand side with k 6= j has the opposite sign of the first term, which implies that

|πi| <
∑
k

Mik|πk|.
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If we define the probability distribution π′ on C by π′i = |πi|/
∑

j∈C |πj | for i ∈ C, this
further implies that 1 =

∑
i π
′
i <

∑
i(Mπ′)i. Thus Mπ′ is not a probability distribution,

which contradicts the fact that M transforms every probability distribution into a probability
distribution.

The two points combined show that a Markov process has a unique invariant distribution iff the
tree of SCCs has a single leaf. For a random walk on an undirected multigraph G this is the case
iff G is connected.

We call a randomized process mixing if it converges to a unique distribution that is independent
of the initial distribution. For a Markov process to be mixing, it has to have a unique invariant
distribution but that is not enough. For example, consider the case where a vertex v in the unique
leaf SCC has a nontrivial period. By this we mean that there exists an integer p > 1 such that
the Markov process starting from state v only has a positive probability of being in state v at time
steps that are multiples of p. In that case the Markov process does not converge. We leave it as
an exercise to show that this is the only bad case.

Exercise 1. Show that a Markov process is mixing iff (i) it has a unique invariant distribution,
and (ii) no state in the unique leaf SCC has a nontrivial period.

For a random walk on an undirected multigraph G, the only possible nontrivial period p is 2,
as it is always possible to return from a vertex v itself in two steps. It can be seen that a vertex
in a leaf SCC C has period 2 iff C is bipartite. Thus, the random walk process on an undirected
multigraph G is mixing iff G is connected and not bipartite.

The mixing is called rapid if the convergence to the unique invariant distribution π happens fast.
More precisely, for some slowly growing function t of |V | and 1

ε , we require that dstat(π
(t), π) ≤ ε

for every initial distribution π(0) and every positive ε. Typically, we aim for t logarithmic in |V |
and 1

ε .
For the purposes of constructing PRGs, we are mostly interested in the case where the unique

invariant distribution is uniform. For an undirected multigraph G the distribution that assigns a
vertex a probability proportional to its degree is always invariant. This distribution is uniform iff
G is regular. For regular directed multigraphs (where all vertices have the same outdegree as well
as indegree), the uniform distribution is also always invariant. This is the reason why in the sequel
we focus on regular (directed) multigraphs.

3 Linear Algebra Background

Before moving on to the notion of spectral expansion, we first review some facts from linear algebra
that will be useful for the rest of this lecture as well as for later lectures.

3.1 Vector Norms

We work with N -dimensional vectors over R or C. For x, y ∈ CN , we define their inner product
as 〈x, y〉 .=

∑N
i=1 xiyi, where yi denotes the complex conjugate of yi. In the case of real vectors

the complex conjugation can be dropped. Sometimes we also use the scaled inner product (x, y)
.
=

1
N 〈x, y〉. These definitions agree with the ones we saw in Lecture 7 for the inner product of functions
f : G→ C by viewing a vector x ∈ CN as a function f : [N ]→ C with f(i) = xi.
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A norm on a vector space is a function ‖ · ‖ from the vector space to C satisfying the following
properties for all vectors x, y and scalar α ∈ C:

◦ Non-negativity: ‖x‖ is a nonnegative real, and ‖x‖ = 0 if and only if x is the zero vector.

◦ Linearity: ‖αx‖ = |α| · ‖x‖.

◦ Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Exercise 1 from Lecture 7 shows that ‖x‖2
.
=
√
〈x, x〉 defines a valid norm on CN . More generally,

so does ‖x‖p
.
= p

√∑N
i=1 |xi|p for every p ∈ [1,∞], where ‖x‖∞

.
= limp→∞ ‖x‖p = maxi |xi|. ‖ · ‖ is

referred to as the p-norm. In addition to the case p = 2, we will only use p = 1 and p = ∞, for
which the above properties are straightforward to verify.

If x represents a probability distribution π, then the 1-norm is always 1, and the ∞-norm
equals the maximum probability of any of the outcomes. The square of the 2-norm represents the
collision probability of the distribution, i.e., the probability that two independent draws yield the
same outcome.

In the context of probability the 1-norm is most interesting because the statistical distance
between two distributions equals half the 1-norm of their difference. However, in a linear-algebraic
context the 2-norm is often easier to handle because of the underlying inner product. Thus, we
often switch between the 1-norm and the 2-norm, and rely on the following inequalities.

We have that ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞, and the equalities hold iff x has at most one nonzero
component. A notable inequality in the other direction follows from the Cauchy-Schwarz inequality,
which states that

|〈x, y〉| ≤ ‖x‖2 · ‖y‖2,

where the equality holds iff x and y are identical up to a multiplicative scalar. By setting yi = xi/|xi|
if xi 6= 0 and yi = 0 otherwise, the Cauchy-Schwarz inequality tells us that

‖x‖1 ≤
√

#{i ∈ [N ] : xi 6= 0} · ‖x‖2, (1)

where the equality holds iff all nonzero components of x have the same absolute value. In particular,
‖x‖1 ≤

√
N‖x‖2 always holds, and equality holds iff all components of x have the same absolute

value.

3.2 Matrix Norms

Given a vector norm ‖ · ‖, we can define a matrix norm as the maximum stretch with respect to
‖ · ‖ of a nonzero-vector under the linear operation defined by the matrix: For M ∈ CN×N

‖M‖ .= max
x∈CN\{0N}

‖Mx‖
‖x‖

. (2)

Exercise 2. Show that:

◦ (2) defines a valid matrix norm,

◦ ‖M‖ = max‖x‖=1 ‖Mx‖,
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◦ ‖Mx‖ ≤ ‖M‖ · ‖x‖, and

◦ ‖MM ′‖ ≤ ‖M‖ · ‖M ′‖,

where x ranges over CN , and M and M ′ over CN×N .

Of particular interest to us are the matrix norms induced by the p-norm for p ∈ {1, 2,∞}.

Exercise 3. Show that:

◦ ‖ · ‖1 induces the column-sum norm, i.e., ‖M‖1 = maxj∈[N ]

∑N
i=1 |Mij |, and

◦ ‖ · ‖∞ induces the row-sum norm, i.e., ‖M‖∞ = maxi∈[N ]

∑N
j=1 |Mij |,

where M ranges over CN×N .

In particular, if M represents the transition matrix of a Markov process, then ‖M‖1 = 1.

3.3 Spectral Decompositions

A spectral decomposition of a vector involves the spectrum of a matrix M , a term that either refers
to the (multi)set of eigenvalues of M or the (multi)set of singular values of M .

For a symmetric real matrix M ∈ RN×N , all eigenvalues are real, eigenvectors belonging to
distinct eigenvalues are orthogonal, and M has a set of real eigenvectors that forms an orthogonal
basis for RN : There exist λi ∈ R and vi ∈ RN \ {0N} for i ∈ [N ] such that

◦ Mvi = λivi for every i ∈ [N ], and

◦ 〈vi, vj〉 = 0 for every i, j ∈ [N ] with i 6= j.

This implies that every x ∈ RN can be decomposed in a unique way as

x =
N∑
i=1

ξivi, (3)

where ξi ∈ R, namely ξi = 〈x, vi〉/〈vi, vi〉. Such an expression is called an eigenvalue decomposition
of x with respect to M .

Matrices that have a full orthogonal basis of eigenvectors are called normal. Although there are
non-symmetric real matrices that are normal, not every real matrix has a full basis of eigenvectors,
let alone an orthogonal one. However, every real matrix has a full orthogonal basis of singular
vectors, obtained as follows.

For a given real matrix M ∈ RN×N , consider M ′
.
= MTM . Note that M ′ is a real symmetric

matrix, and therefore has a full orthogonal basis of real eigenvectors vi, i ∈ [N ], with corresponding
eigenvalues λi. The vi’s are referred to as the singular vectors of M . Note that the eigenvalues λi
of M ′ are nonnegative reals, as

λi =
vTi M

′vi

vTi vi
=

(Mvi)
T (Mvi)

vTi vi
=
‖Mvi‖22
‖vi‖22

∈ [0,∞].
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The values σi
.
=
√
λi are therefore well-defined, and are called the singular values of M . An

eigenvalue decomposition (3) of x with respect to M ′ is called a singular value decomposition of x
with respect to M . It follows that a singular value decomposition of x exists with respect to any
real matrix M . Moreover, in the case where M is a real symmetric matrix, M ′ = M2, the singular
vectors of M coincide with the eigenvectors of M , the singular values of M are the absolute values
of the corresponding eigenvalues of M , and the singular value decomposition coincides with the
eigenvalue decomposition.

4 Spectral Expansion

We are now ready to introduce the notion of spectral expansion, which forms the basis for our
definition of an expander. Although spectral expansion can be defined more generally, we develop
it only for regular directed multigraphs. This is because we only need the regular case, and the
development for that case is simpler. In fact, the case of regular undirected multigraphs is even
simpler, so we present that first.

4.1 Regular Undirected Case

Let G be a d-regular undirected multigraph on N vertices, and let MG represent the transition
matrix of the random walk on G. Note that MG is a symmetric real matrix, and therefore all
of its eigenvalues are real. We already argued that 1 is an eigenvalue of MG, and the uniform
distribution UN is a corresponding eigenvector. Moreover, all eigenvalues are at most 1 in absolute
value. This follows from the fact that as the transition matrix of a Markov process, ‖MG‖1 ≤ 1:
For any eigenvector v with eigenvalue λ, we have that

|λ|‖v‖1 = ‖λv‖1 = ‖MGv‖1 ≤ ‖M‖1 · ‖v‖1 = ‖v‖1,

or more explicitly:

|λ|
N∑
i=1

|vi| =
N∑
i=1

|(MGv)i| =
N∑
i=1

|
N∑
j=1

(MG)ijvj | ≤
N∑
i=1

N∑
j=1

(MG)ij |vj | =
N∑
j=1

(

N∑
i=1

(MG)ij)|vj | =
n∑
j=1

|vj |,

which implies that |λ| ≤ 1. Thus, we can order the N eigenvalues of MG (including multiplicities)
in order of non-increasing absolute value starting with λ1 = 1:

1 = λ1 ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λN | ≥ 0.

The gap between the top two absolute values defines the spectral expansion.

Definition 1 (Spectral Expansion – Undirected). An undirected regular multigraph G has
spectral expansion γ if

λ(G)
.
= |λ2| ≤ 1− γ,

where λ2 denotes the eigenvalue of MG that is the second largest in absolute value. We call 1−|λ2|
the spectral gap of G.

The eigenvalue decomposition yields the following alternate characterization.
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Proposition 1. For an undirected regular multigraph G,

λ(G) = max
0N 6=x⊥UN

‖MGx‖2
‖x‖2

.

Proof. Consider the eigenvalue decomposition (3) with respect to MG of a nonzero vector x ∈ RN
that is orthogonal to UN . Since v1 = UN , we have that ξ1 = 0, and by the orthogonality of the vi’s

‖MGx‖22 = ‖
N∑
i=2

λiξivi‖22 =

N∑
i=1

|λi|2|ξi|2‖vi‖22 ≤
N

max
i=1

(|λi|2)
N∑
i=1

|ξi|2‖vi‖22 = |λ2|2‖x‖22 = λ(G)2‖x‖22.

Moreover, equality holds for x = v2, which is orthogonal to UN . The proposition follows by taking
square roots on both sides and dividing by ‖x‖2. �

The value of λ(G) ranges over [0, 1]. It equals 0 iff MG has rank 1. This is the case for the
complete digraph with self-loops, and there is no other regular graph for which this is the case. At
the other end, λ(G) = 1 iff G is disconnected or has a bipartite component. This follows from the
next properties, which are left as an exercise.

Exercise 4. Show that:

◦ the multiplicity of 1 as an eigenvalue of MG equals the number of connected components of
G, and

◦ -1 is an eigenvalue of MG iff G has a bipartite component.

4.2 Regular Directed Case

Recall that a directed multigraph G is d-regular if every vertex has indegree and outdegree d. We
consider the singular values of MG, which are the roots of the eigenvalues of MT

GMG. Note that the
regularity of G implies that MT

G is the transition matrix of a random walk, namely on the digraph
obtained by reversing all the edges of G. This implies that MT

GMG is the transition matrix of a
Markov process, and therefore the eigenvalues of MT

GMG are at most 1 in absolute value, so the
singular values of MG are at most 1. Moreover, UN is an invariant distribution of the random walks
on G and the reverse of G, so 1 is a singular value of MG. Thus, we can order the N singular values
of MG (including multiplicities) in non-increasing order starting with σ1 = 1:

1 = σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σN ≥ 0.

The gap between the top two singular values defines the spectral expansion.

Definition 2 (Spectral Expansion – Directed). An directed regular multigraph G has spectral
expansion γ if

λ(G)
.
= σ2 ≤ 1− γ,

where σ2 denotes the second largest singular value of MG. We call 1− σ2 the spectral gap of G.

Note that for an undirected regular multigraph G, directing the edges both ways yields a directed
regular multigraph G′ with MG = MG′ , and Definitions 1 and 2 agree. This follows from the
connections between the singular values and eigenvalues of symmetric matrices. They imply that
σi(G

′) = |λi(G)| for every i ∈ [N ], and thus that λ(G) = λ(G′).
The alternate characterization given by Proposition 1 generalizes.
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Proposition 2. For a directed regular multigraph G,

λ(G) = max
0N 6=x⊥UN

‖MGx‖2
‖x‖2

.

The proof uses the singular value decomposition instead of the eigenvalue decomposition.
Proposition 2 forms the basis for the following interpretation of the spectral gap as a measure

for the similarity to the complete digraph with self-loops.

Proposition 3. Let G be a regular directed multigraph on N vertices, and K the complete directed
graphs with self-loops on N vertices. G has spectral gap at least γ iff there exists a matrix ∆ ∈ RN×N
with ‖∆‖2 ≤ 1 such that

MG = γ ·MK + (1− γ) ·∆.

The proposition states that one step of a random walk on G can be viewed as taking one step of a
random walk on K with probability γ, and doing “something else” with probability 1 − γ, where
“something else” does not need to be a Markov process but cannot affect the state of the system
by too much because ‖∆‖2 ≤ 1.

Proof. Consider M
.
= MG − γMK . Since all of MG, MK , and their transposes leave UN invariant,

UN is a singular vector of M (with singular value 1). It follows that both of the following spaces
are closed under the operation of M :

◦ U‖N
.
= {x ∈ RN : x ‖ UN}

For x‖ ‖ UN , we have that Mx‖ = (1− γ)x‖.

◦ U⊥N
.
= {x ∈ RN : x ⊥ UN}

For x⊥ ⊥ UN , we have that MKx
⊥ = 0 and therefore Mx⊥ = MGx

⊥.

As both spaces are orthogonal complements, it follows that each x ∈ Rn can be decomposed as
x = x‖ + x⊥ with x‖ ‖ UN and x⊥ ⊥ UN such that ‖x‖‖22 + ‖x⊥‖22 = ‖x‖22 and

‖Mx‖22 = ‖Mx‖‖22 + ‖Mx⊥‖22 = (1− γ)2‖x‖‖22 + ‖MGx
⊥‖22.

It follows that ‖M‖2 = max((1 − γ),max0n 6=y⊥UN
(‖MGy

⊥‖2/‖y‖2)), and by Proposition 2 that
‖M‖2 = max(1 − γ, λ(G)). We conclude that ‖M‖2 ≤ 1 − γ iff λ(G) ≤ 1 − γ, which is equivalent
to the statement of the proposition. �

5 Properties of Expanders

Spectral expansion and all of the other measures of expansion mentioned before are equivalent up
to some loss in parameters. We now analyze the direction that matters to us, namely that our
definition of expanders based on spectral expansion implies all other expansion properties.
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5.1 Rapid Mixing

The connection with rapid mixing is the most immediate one, and is tight.
Let G be a regular directed multigraph, and MG the transition matrix for the random walk on

G. Because of regularity, the uniform distribution UN is invariant under MG.
Let π(0) denote the distribution at the start of the random walk. Measuring distance using the

2-norm we have:

‖π(t) − UN‖2 = ‖M t
Gπ

(0) − UN‖2 = ‖M t
G(π(0) − UN )‖2 ≤ λ(G)t‖π(0) − Un‖2,

where the inequality follows from t repeated applications of Proposition 2 and the fact that for any
distribution D, (D−UN ) ⊥ UN . Moreover, the inequality becomes an equality for π(0) of the form
π(0) = UN + α · v2, which is a probability distribution for some sufficiently small positive real α.

In terms of statistical distance, this implies that

dstat(π
(t), UN ) =

1

2
‖π(t) − UN‖1 ≤

1

2

√
N‖π(t) − UN‖2 ≤

1

2

√
Nλ(G)t‖π(0) − UN‖2 ≤

1

2

√
Nλ(G)t,

where the last step follows because for any distribution D

‖D − UN‖22 = ‖D‖22 − ‖UN‖22 ≤ ‖D‖21 = 1.

Thus, dstat(π
(t), UN ) ≤ ε for t ≥ log(

√
N/ε)

log(1/λ(G)) , which is logarithmic in N/ε when λ(G) is bounded from
above by a constant less than 1, i.e., when the spectral gap of G is at least some positive constant.

5.2 Quasi-Randomness

A regular directed multigraph G is ε-quasi-random for ε = λ(G). This follows from the next result,
which is often referred to as the expander mixing lemma.

Theorem 4 (Expander Mixing Lemma). Let G = (V,E) be a d-regular directed multigraph.
For all S, T ⊆ V∣∣∣∣ |E(S, T )|

|E|
− µ(S)µ(T )

∣∣∣∣ ≤ λ(G) ·
√
µ(S)(1− µ(S))

√
µ(T )(1− µ(T )),

where µ(S)
.
= |S|
|V | denotes the relative size of S.

Proof. We associate V with [N ] and let IS and IT denote the characteristic vectors of S and T ,
respectively, i.e., IS is the column vector of dimension N with the i-th component equal to 1 if
i ∈ S, and 0 otherwise.

We first express |E(S, T )| in linear-algebraic terms using MG:

|E(S, T )| = d · ITTMGIS . (4)

To see this, note that dMG = AT , where A denotes the adjacency matrix of G (with multiplicities).
Therefore,

d · ITTMGIS = ITT A
T IS =

N∑
i,j=1

(IT )jAij(IS)i =
∑
i∈S

∑
j∈T

Aij = |E(S, T )|.
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In order to exploit the spectral gap of G in evaluating (4), we decompose IS and IT into their
components parallel to UN and orthogonal to UN . For IS note that 〈IS , UN 〉 = µ(S), 〈UN , UN 〉 =
1/N , and 〈IS , IS〉 = |S|. It follows that

IS = |S|UN + I⊥S ,

where

‖I⊥S ‖22 = ‖IS‖22 − ‖|S|UN‖22 = |S| − |S|2 1

N
= |S| · (1− µ(S)). (5)

We decompose IT in a similar way. Using those decompositions we obtain

ITTMGIS = (|T |UN + I⊥T )TMG(|S|UN + I⊥S )

= (|T |UN + I⊥T )T (|S|UN +MGI
⊥
S )

= (|T |UN )T (|S|UN ) + (I⊥T )TMGI
⊥
S ,

where the cross terms disappeared by orthogonality and the fact that MG maps I⊥S to a vector
orthogonal to UN . As the first term equals Nµ(S)µ(T ), using (4) and the fact that |E| = dN , we
obtain

|E(S, T )|
|E|

= µ(S)µ(T ) +
1

N
(I⊥T )TMGI

⊥
S .

We conclude that∣∣∣∣ |E(S, T )|
|E|

− µ(S)µ(T )

∣∣∣∣ = | 1
N

(I⊥T )TMGI
⊥
S | =

1

N
|〈I⊥T ,MGI

⊥
S 〉|

≤ 1

N
‖I⊥T ‖2 · ‖MGI

⊥
S ‖2

≤ 1

N
‖I⊥T ‖2 · λ(G) · ‖I⊥S ‖2 = λ(G) ·

√
µ(S)(1− µ(S))

√
µ(T )(1− µ(T )),

where we used Proposition 2 and applied (5) to S and T . �

Instead of decomposing the vectors IS and IT as in the proof of Theorem 4, we can alternately
decompose the matrix MG as in Proposition 3. The derivation is somewhat shorter but also yields
a somewhat weaker result.

We follow the outline and notation from the proof of Theorem 4. Using (4) and the decompo-
sition MG = γMK + (1− γ)∆ from Proposition 3 with γ = 1− λ(G) we have that

|E(S, T )| = dITTMGIS = (1− λ(G))dITTMKIS + λ(G)dITT ∆ITS .

Applying (4) with G = K tells us that NITTMKIS = |S||T |, which leads to

|E(S, T )|
|E|

= (1− λ(G))µ(S)µ(T ) + λ(G)
1

N
ITT ∆ITS ,

whence ∣∣∣∣ |E(S, T )|
|E|

− µ(S)µ(T )

∣∣∣∣ ≤ λ(G)

(
µ(s)µ(T ) +

1

N
|ITT ∆IS |

)
.

Since ‖∆‖2 ≤ 1, we have that

|ITT ∆IS | = |〈IT ,∆IS〉| ≤ ‖IT ‖2 · ‖∆IS‖2 ≤ ‖IT ‖2 · ‖∆‖2 · ‖IS‖2 ≤ ‖IT ‖2 · ‖IS‖2 =
√
|S||T |,
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which leads to the conclusion∣∣∣∣ |E(S, T )|
|E|

− µ(S)µ(T )

∣∣∣∣ ≤ λ(G)
√
µ(S)µ(T )

(
1 +

√
µ(S)µ(T )

)
.

Note that this upper bound is somewhat weaker than the one given in Theorem 4.

5.3 Edge Expansion

Edge expansion follows immediately from quasi-randomness. Picking T = S in Theorem 4 yields
that ∣∣∣∣ |E(S, S)|

dN
− µ(S)µ(S)

∣∣∣∣ | ≤ λ(G)µ(S)µ(S),

whence
|E(S, S)| ≥ (1− λ(G))d|S|µ(S).

This shows that G has edge expansion (α, (1−λ(G))(1−α)d) for every α ∈ [0, 1], and conductance

Φ ≥ 1−λ(G)
2 .

5.4 Vertex Expansion

For a d-regular directed multigraph G, the result for edge expansion implies that G has boundary
expansion (α, (1−λ(G))(1−α)) for every α ∈ [0, 1]. This is because every “new” vertex can induce
at most d edges in E(S, S).

If G has a self-loop at every vertex, it follows that G has vertex expansion (α, 1+(1−λ(G))(1−
α)). Vertex expansion follows from spectral expansion in general; we refer to [Tan84] for an argu-
ment that works in the general case.

In particular, a family of expanders G with constant degree d and λ(G) ≤ λ for some constant
λ < 1 has vertex expansion (12 , c) for some constant c > 1. It follows that the diameter of G is
O(logN). This is because when we iteratively take the neighbor set starting from the singleton
{u} for any fixed vertex u, the neighbor set keeps growing by a factor of c or more until it occupies
more than half the vertices. The latter happens after no more than s

.
= logc(N) iterations. Thus,

for any two such vertices, u and v, these sets have to overlap after s steps, so there is a path of
length at most 2s between u and v. As u and v are arbitrary, this means that the diameter of G
is no more than 2s = O(logN).
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