
CS 880: Quantum Algorithms 2/16/2021

Lecture 6: Quantum distance

Instructor: Dieter van Melkebeek Scribe: Owen Levin

In today’s lecture, we make use of density operators discussed in the previous lecture in two
key areas. First we study the structure of quantum systems involving multiple parties each holding
different parts of the system’s information. Density operators yield a natural way to express the
evolution of the system for either party. The exercise posed in the previous lecture is used as a
segue into this topic. Then we go on to characterize various matrix and vector norms, which we
use in order to evaluate how errors in implementation of a quantum circuit affect the results we
measure. Here, density operators play a key role in allowing us to bound the difference between
outputs of similar systems.

1 Density operators recap

Definition 1 (Density operator). Let {|ψi〉}i be a collection of pure states. Then for any convex
combination of these states, {(pi, |ψi〉)}, i.e. for any mixed or pure state, we define the correspond-
ing density operator ρ as the following matrix:

ρ
.
=
∑
i

pi |ψi〉 〈ψi| .

An equivalent characterization of the set of such matrices is given in the following theorem.

Theorem 1 (Characterization of density operators). A matrix ρ is a density operator if and
only if

◦ ρ is Hermitian,

◦ ρ is positive semi-definite, and

◦ Tr ρ = 1

1.1 Evolution of a quantum system’s density operator

Two key aspects of describing a quantum system is how the states change when we (1) apply
unitary operators, and (2) perform measurements. We show that density operators behave nicely
with both of these actions.

For that, we need to describe the density operator ρ′ corresponding to the state |ψ′〉 obtained
from state |ψ〉 either by applying a unitary operation to |ψ〉 or by making a measurement of |ψ〉.

Let’s start with applying a unitary operation U to the state |ψ〉. The new state is |ψ′〉 = U |ψ〉,
so the corresponding density operator is

ρ′ = U |ψ〉 (U |ψ〉)∗

= U |ψ〉 〈ψ|U∗

= UρU∗.

1



Because U is a linear operator, this extends to any linear combination of states {|ψi〉}i. As a
corollary, any convex combination of states is also covered, so we get the result for all mixed states

for free. Thus, for any density operator ρ and unitary U we have ρ
U7→ ρ′ = UρU∗

Similarly, for partial measurements Ps of ρ via projections onto a subset of the basis, we have
ρ 7→

∑
s PsρPs, where Ps is the projection onto state |ψs〉.

To see how the probability distributions on states changes, suppose we make a measurement
of a state |ψ〉 whose density operator is ρ. We measure with respect to some orthogonal basis
{|φ1〉 , . . . , |φk〉}. The state is a linear combination of the basis vectors, say |ψ〉 =

∑
i αi |φi〉. We

observe the state |φi〉 with probability pi = |αi|2, so the new state is a mixed state
{(
|αi|2 , |φi〉

)}
i
,

and its corresponding density operator is

ρ′ =
∑
i

|αi|2 |φi〉 〈φi| =
∑
i

|φi〉αiαi 〈φi| (1)

Note that if we multiply ρ on the right with |φj〉 and on the left with 〈φj |, we get the probability
that we observe |φj〉. This follows from the second summation in (1) because 〈φj |φi〉 = 1 if i = j,
and is zero otherwise. Thus, another way of writing (1) is

ρ′ =
∑
i

〈φi| ρ |φi〉 |φi〉 〈φi| .

Once again, we can apply linearity to get the resulting density operator when we observe a mixed
state.

Theorem 2. Two states behave identically if and only if they have the same density operator.
Equivalently, we have the contrapositive: for any pair of distinct density operators ρ1, ρ2, there
exists some quantum circuit that distinguishes between the two with positive probability.

Remark 3. Due to the equivalence between distinct states and density operators, we may use the
terms interchangably.

Proof (Theorem 2). Assume that two density operators are the same. We just showed in the
previous paragraphs that we only need the density operator in order to describe the outcome of
some quantum process. We gave an expression for the density operator corresponding to the next
state of the system. Thus, any quantum process operating on two states with the same density
operators evolves the same for both of the states, results in the same final density operator for the
two final states, and, most importantly, the probability of observing a string x is the same for both
states. Thus, since we rely on observations to decide on the output of quantum algorithms, we
cannot tell from the distribution of the observations which state we were in at the beginning.

Now, consider two distinct density operators ρ1, ρ2. Let σ = ρ1 − ρ2. σ is Hermitian because
sums of Hermitian operators are Hermitian. Therefore, σ can be diagonalized over a basis of
orthonormal eigenvectors {|ψi〉}i:

σ =
∑
i

λi |ψi〉 〈ψi| for ~λ 6= ~0.

Now, we observe ρ1, ρ2 in the basis {|ψi〉}i.

Pr [observe |ψi〉 in state ρ1] = 〈ψi| ρ1 |ψi〉
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Pr [observe |ψi〉 in state ρ2] = 〈ψi| ρ2 |ψi〉

These must differ for at least one i because the expansion of their difference σ on the basis element
|ψi〉 is λi. Since ~λ 6= ~0, this difference will be nonzero in some component i. Thus, there is a
positive difference in probability that we observe state |ψi〉 for the densities ρ1, ρ2. �

2 Solution to exercise

Exercise 1. Consider the EPR pair (Einstein-Podolsky-Rosen): a two-component system in state

1√
2

(|00〉+ |11〉) ,

where Alice holds first component, and separately Bob holds the second.

1. Describe the density operator for the entire system

(a) at the start,

(b) after Bob’s component is measured,and

(c) after the outcome is announced.

2. Describe Alice’s view at each of the above points.

2.1 Solution to part 1.

We describe the system using density operators. In part (a) we have

ρa = 1√
2


1
0
0
1

 1√
2

(
1 0 0 1

)
=

1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


After measuring the second qubit, we have

ρb = 1
2


1
0
0
0

(1 0 0 0
)

+ 1
2


0
0
0
1

(0 0 0 1
)

=
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Note that this is just the partial measurement projection of ρa onto just the first qubit: ρb =
P|∗0〉ρaP|∗0〉 + P|∗1〉ρaP|∗1〉. Thus, for outcome b ∈ {0, 1}, the density operator after b is announced
is given by P|∗b〉ρaP|∗b〉 (up to normalization). Thus, ρc can be either of two options:

ρc ∈




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



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2.2 Solution to part 2.

We describe the system using density operators. In part (a) we have

ρa =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


From Alice’s perspective, this is ρ

(Alice)
a = 1

2

(
1 0
0 1

)
After measuring the second qubit, we have

ρb =
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

From Alice’s perspective, this is again ρ
(Alice)
b

1
2

(
1 0
0 1

)
= ρ

(Alice)
a She doesn’t perceive any change

when Bob makes his measurement. ρc can be either of two options:

ρc ∈




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

From Alice’s perspective, these are ρ
(Alice)
c ∈

{(
1 0
0 0

)
,

(
0 0
0 1

)}
.

2.3 Discussion of exercise

Remark 4 (Spooky action at a distance). The collapse of an entire system (two parties’) after
a local observation by only one of two parties for the EPR pair and similar systems has been
called “spooky action at a distance” by some. Einstein, Podolsky, and Rosen described a similar
experiments with change occurring faster than light speed. That is, if Alice and Bob are separated
by some distance, then the instantaneous change in density operator from Bob’s measurement
changed the whole system. However, because Alice cannot perceive any change in her density
operator until she hears what state Bob measured, there’s no actual information traveling faster
than light here.

Remark 5 (Probabilistic spooky action). The same phenomenon occurs in classical proba-
bilistic computation. If we set up the same system with probabilistic measurement and separated
the two bits far apart, then we achieve the same result.

Remark 6 (Hidden variables). It should be noted that in the quantum setting, there is still
more going on than in the classical setting. In the classical setting, such things can be described
by hidden variables such as secret coin flips which neither party can see, but determine all the
information. This is not the case for quantum systems. A well known collection of result codifying
the fact that quantum systems are not described by probabilistic hidden variables can be found by
reading about Bell’s theorem or Bell’s inequality.
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3 Two-party systems

In a two-party system, two parties, Alice and Bob, have access to two different parts A and B of a
quantum register. Alice applies unitary transformations and observations to her part of the register
without affecting Bob’s part, and vice versa. The general form of the state is

∑
s,t αs,t |s〉 |t〉 where

the first component (the state |s〉) belongs to Alice and the second component belongs to Bob. To
Alice, the state of the system looks like a mixed state over all possible states that Bob’s part of the
quantum register could be in. Thus, Alice’s state is{(

Pr[t],

∑
s αs,t |s〉√

Pr[t]

)}
t

where Pr[t] =
∑
s

|αs,t|2,

and there is a symmetric expression for Bob’s state.
Suppose ρ is the density operator for the whole system. Then we wish to reduce ρ to ρ(Alice),

the density operator for Alice. We call this the reduced density operator.

ρ(Alice) =
∑
t

Pr[t] ·
∑

s αs,t |s〉√
Pr[t]

·
∑

s′ αs′,t 〈s′|√
Pr[t]

=
∑
s,s′

(∑
t

αs,tαs′,t

)
|s〉 〈s′|

=
∑
s,s′


∑
t

ρ(s, t)︸︷︷︸
row
index

,(s′, t)︸ ︷︷ ︸
column
index

 |s〉 〈s′| . .= TrB(ρ) (2)

This expression can be extended by linearity to any mixed combined state. The final expression
in (2) TrB(ρ) is read as trace with respect to B of ρ and is known as a partial trace. This may look
a little confusing, so let’s look at an example.

Example 7. Suppose Alice and Bob operate on a two-qubit system, where the first qubit A belongs
to Alice and the second qubit B belongs to Bob. The density operator is

ρ =


ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11
ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11

 .

Then the trace with respect to B is the matrix

TrB (ρ) =

(
ρ00,00 + ρ01,01 ρ00,10 + ρ01,11
ρ10,00 + ρ11,01 ρ10,10 + ρ11,11

)
.

We see that the top left entry of TrB (ρ) is the trace of a submatrix of ρ where Alice’s part of the
first index (i.e., the first bit of the first index in our case) is fixed to s and Alice’s part of the second
index is fixed to s′. Using this observation, we see that the trace with respect to A is the matrix

TrA (ρ) =

(
ρ00,00 + ρ10,10 ρ00,01 + ρ10,11
ρ01,00 + ρ11,10 ρ01,01 + ρ11,11

)
.
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Example 8. Consider the density operator for the EPR pair 1√
2

(|00〉+ |11〉):

ρ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

Then we have TrA (ρ) = TrB (ρ) = 1
2I.

4 Distance between density operators

Suppose we have implemented some quantum system in the real world. In real world situations
due to noise or errors, theoretically identical operators may be different though “close”. For which
sense of “close”do outputs of density operators produce the same or similar output?

4.1 Statistical distance

As a toy model for the situation, consider two distinct densities ρb for b ∈ {0, 1}. Let pb be the
probability distribution on {0, 1}n resulting from full observation of ρb. One notion of distance we
could use is the statistical distance between their probability distributions.

Definition 2 (Statistical distance). The statistical distance between two distributions p0, p1 is
given by

dstat (p0, p1)
.
= max {|p0(E)− p1(E)| : E ⊆ {0, 1}n} =

1

2

∑
s

|p0(s)− p1(s)| =
1

2
‖p0 − p1‖1

Now, we investigate the statistical distance between distributions arising from density operators,
and we connect it back to a norm on the density operators’ difference. First, recall that pb(s) =
〈s| ρb |s〉. Then consider the deviation σ

.
= ρ0 − ρ1 expressed in some orthonormal basis of pure

states {|ψi〉}i. σ =
∑

i λi |ψi〉 〈ψi|. For any state s, this allows us to write p0(s)−p1(s) = 〈s|σ |s〉 =∑
i λi |〈ψi|s〉|2. Now, we can sum over s to compute the 1-norm:

‖p0 − p1‖1 =
∑
s

∣∣∣∣∣∑
i

|〈ψi|s〉|2
∣∣∣∣∣

≤
∑
s

∑
i

|λi| |〈ψi|s〉|2 (by the triangle inequality)

=
∑
i

|λi|
∑
s

|〈ψi|s〉|2︸ ︷︷ ︸
=1 since this is just
the probability of

being in any state s

=
∑
i

|λi|
.
= ‖σ‖Tr

We can conclude for probability distributions p0, p1 arising from density operators ρ0, ρ1 that
dstat (p0, p1) ≤ 1

2 ‖ρ0 − ρ1‖Tr. We aim now to connect ‖·‖Tr to more familiar norms, such as the
2-norm. In particular, we will see that if ρ is a density operator and U0, U1 are unitary, then for
ρb

.
= UbρU

∗
b the trace norm ‖ρ0 − ρ1‖Tr will be bounded above by 2 ‖U0 − U1‖2.
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4.2 Singular value decomposition

Here we describe Singular value decomposition (SVD) of complex matrices, as well as some of the
terminology used with SVD.

Theorem 9 (SVD). For any matrix A ∈ CM×N there exists unitary matrices U ∈ CM×M , V ∈
CN×N as well as diagonal matrix Σ ∈ RM×N

≥0 such that

A = UΣV ∗.

4.2.1 SVD Terminology

Definition 3 (Singular values). Σ is given by diag (~σ) = diag (σ1, σ2, . . .) where σ1 ≥ σ2 ≥ · · · ≥
0 are called the singular values of A. the singular values σ1, σ2, . . . , σk are sometimes called the top
k singular values.

Proposition 10. Singular values are square roots of the eigenvalues of A∗A.

Definition 4 (column/left singular vectors). U∗,j are the column singular vectors, and are
sometimes also called left singular vectors.

Definition 5 (row/right singular vectors). V∗,j are the row singular vectors, and are some-
times also called right singular vectors.

Corollary 11. If A is Hermitian, then (1) The singular values are absolute values of the eigenval-
ues of A, and (2) The left and right singular vectors coincide up to scalar multiplication.

4.3 Vector and matrix norms

Definition 6 (norm). A norm is a map ‖·‖ from a vectorspace V to R satisfying (1), (2), and(3)
for any u, v ∈ V and α ∈ R.

(1) absolute homogeneity: ‖αv‖ = |α| ‖v‖,

(2) triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖,

(3) definiteness: If ‖v‖ = 0, then v = 0.

Example 12 (Vector p-norms). For p ∈ [1,∞) the following is a p-norm on x ∈ Cn:

‖x‖p
.
=

(∑
i

|xi|p
)1

p

.

taking the limit as p→∞, we can extend this to p ∈ [1,∞] with

‖x‖∞
.
= max {|xi|}i .
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Example 13 (Operator norms). Fix your favorite p ∈ [1,∞] and use it to define the operator
p-norm for matrices

‖A‖p
.
= sup

{
‖Ax‖p : ‖x‖p = 1

}
Think of this as the most a ball of p-norm 1 can be stretched in any direction by applying A to it. In
the special case where p = 2, this maximum stretch is just the furthest stretch in Euclidean space.
In this case the maximum stretch is just the largest singular value of A. Therefore ‖A‖2 = σ1.

Example 14 (Frobenius norm). The Frobenius norm is norm norm we get when we consider
A as a big vector and apply the usual 2-norm to it:

‖A‖F
.
=

√∑
i,j

|Aij |2 =
√

Tr (A∗A) =

√∑
i

σ2i = ‖~σ‖2

Example 15 (Schatten norms). The Frobenius norm is actually just a special case of a family
of norms. For any p ∈ [1,∞], the p-Schatten norm of a matrix A with singular values ~σ is given
by ‖~σ‖p.

Remark 16 (Unitary invariance of Schatten norms). A useful property of Schatten norms
is that they are invariant under unitary transformations as the singular values are unaffected. One
way to see this is through the SVD.

Example 17 (Trace/Nuclear norm). The trace norm of a matrix A is given by

‖A‖Tr
.
= Tr

(√
A∗A

)
=
∑
i

σi = ‖~σ‖1 .

4.4 Connecting trace norms and 2 norms

We know that given two density operators ρ0 ρ1, we could compute the statistical distance between
probability distributions of their observations: dstat (p0, p1). We saw previously this is bounded
above by the half trace norm of the density operators’ difference:

dstat (p0, p1) ≤
1

2
‖ρ0 − ρ1‖Tr .

Let’s dive a little deeper now. Suppose we have initial state ρ, and then we apply either of two
unitary operators Ub for b ∈ {0, 1}. Then if ρb = UbρU

∗
b , the result of a unitary operator acting on

ρ, how different can the two results be?

Lemma 18. Given a density operator ρ, let ρb = UbρU
∗
b for b ∈ {0, 1}. Then

‖ρ0 − ρ1‖Tr ≤ 2 ‖(U0 − U1) ρ‖Tr .

Proof (Lemma 18). This is a straightforward computation.

‖ρ0 − ρ1‖Tr = ‖U0ρU
∗
0 − U2ρU

∗
1 ‖Tr (expanding ρb)

= ‖U0ρ (U∗0 − U∗1 ) + (U0 − U1) ρU
∗
1 ‖Tr (adding zero)

≤ ‖U0ρ (U∗0 − U∗1 )‖Tr + ‖(U0 − U1) ρU
∗
1 ‖Tr (triangle inequality)

≤ ‖ρ (U∗0 − U∗1 )‖Tr + ‖(U0 − U1) ρ‖Tr (singular values unchanged by unitary)

= 2 ‖(U0 − U1) ρ‖Tr (conjugation preserves norms),

which proves the result. �
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We can take this result further though.

Theorem 19. Given a density operator ρ, let ρb = UbρU
∗
b for b ∈ {0, 1} and unitary Ub,

‖ρ0 − ρ1‖Tr ≤ 2 ‖U0 − U1‖2 .

Corollary 20. Given a density operator ρ, let ρb = UbρU
∗
b for b ∈ {0, 1}, and let pb be the induced

probability distributions on observed states for ρb.

dstat (p0, p1) ≤
1

2
‖ρ0 − ρ1‖Tr ≤ ‖(U0 − U1)‖2 .

Proof (Theorem 19). First we prove the result for a matrix A acting on a pure state ρ
.
= |ψ〉 〈ψ|,

which is a rank 1 matrix. Then the action would be given by A |ψ〉.
Note that when we apply ρ to |ψ〉, we get (|ψ〉 〈ψ|) |ψ〉 = |ψ〉 (〈ψ| |ψ〉) = |ψ〉. When we apply ρ

to any |φ〉 that is orthogonal to |ψ〉, we get (|ψ〉 〈ψ|) |φ〉 = |ψ〉 (〈ψ| |φ〉) = |ψ〉 · 0, which is the zero
vector.

This implies there is an orthonormal basis containing |ψ〉 in which one basis vector, namely |ψ〉,
is stretched by Aρ by a factor of ‖A |ψ〉‖2 = ‖Aρ‖2, and the other vectors are shrunk by Aρ to the
zero vector. This means that Aρ has one singular vector of value σ1 = ‖A |ψ〉‖2, and the other ones
are all zero. Thus, ‖Aρ‖Tr =

∑
i σi ≥ σ1 = σ1 == ‖A |ψ〉‖2 ≤ ‖A‖2.

Now we extend by linearity to mixed states. Consider the mixed state ρ =
∑

j pjρj where ρj are

pure states. ‖Aρ‖Tr =
∥∥∥∑j pjAρj

∥∥∥
Tr
≤
∑

j pj ‖Aρj‖Tr ≤ ‖A‖Tr, Where the first inequality is the

triangle inequality, and the second comes from the fact that
∑

j pj = 1 combined with our result
on individual pure states. �

5 Quantum gate precision

Suppose we have a unitary circuit with quantum gates Qi for i ∈ [t]. Then any implementation of

Qi may have some imprecision and instead realize Q̃i such that
∥∥∥Q̃i −Qi

∥∥∥
2
≤ ε for some ε > 0.

The overall effect of this imprecision at the ith gate is Ui = Qi ⊗ I ≈ Ũi = Q̃i ⊗ I. Then∥∥∥Ũi − Ui

∥∥∥
2

=
∥∥∥Q̃i −Qi

∥∥∥
2
.

For the whole circuit U = UtUt−1Ut−2 · · ·U2U1 we have approximate implementation Ũ =

ŨtŨt−1Ũt−2 · · · Ũ2Ũ1. Given this, we should investigate how consecutive errors compound.∥∥∥Ũi+1Ũi − Ui+1Ui

∥∥∥
2

=
∥∥∥Ũi+1

(
Ũi − Ui

)
+
(
Ũi+1 − Ui+1

)
Ui

∥∥∥
2

≤
∥∥∥Ũi+1

(
Ũi − Ui

)∥∥∥
2

+
∥∥∥(Ũi+1 − Ui+1

)
Ui

∥∥∥
2

(triangle inequality)

≤
∥∥∥(Ũi − Ui

)∥∥∥
2

+
∥∥∥(Ũi+1 − Ui+1

)∥∥∥
2
, (3)

where (3) follows from the fact unitary matrix multiplication doesn’t affect singular values. We
can conclude that consecutive errors purely add. This allows the bound∥∥∥Ũ − U∥∥∥

2
≤

t∑
i=1

∥∥∥Ũi − Ui

∥∥∥ =

t∑
i=1

∥∥∥Q̃i −Qi

∥∥∥ ≤ tε,
which proves the following theorem.
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Theorem 21. If each of t gates is implemented to within ε precision in 2-norm, Then

dstat (p̃, p) ≤ 1

2
‖ρ̃− ρ‖Tr ≤

∥∥∥Ũ − U∥∥∥
2
≤ tε.

Remark 22. Contrast this with general series of matrix multiplications where instead of tε, the
error bound would be on the order of the product of 2-norms of the matrices times tε.

Note that when solving systems of linear equations the error iscontrolled by the condition
numbers of each matrix, with the condition number being the ratio of top singular value to smallest
singular value. Again, unitary matrices save us there since they have the smallest possible condition
number of 1, because all of their singular values are equal to 1 in absolute value.
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