
Quantum Computing 2/15/2022

Lecture 7: Quantum distance

Instructor: Dieter van Melkebeek

In this lecture we investigate how errors propagate through a quantum circuit. We measure
distances between probability distributions using that statistical distance, and distances between
density operators and unitaries using various matrix norms. We characterize common norms after
a review of the singular value decomposition of a matrix, and then establish bounds on the error
propagation.

1 From states to output distributions

Suppose we have implemented some quantum system in the real world. Due to noise or errors,
theoretically identical operators may be different though “close”. For which sense of “closeness” of
density operators guarantee closeness of the resulting output distributions?

Let us first recall the notion of closeness of probability distributions based on the statistical
distance.

Definition 1 (Statistical distance). The statistical distance between two distributions p0, p1 is
given by

dstat (p0, p1)
.
= max {|p0(E)− p1(E)| : E ⊆ {0, 1}n} =

1

2

∑
s

|p0(s)− p1(s)| =
1

2
‖p0 − p1‖1

We investigate the statistical distance between distributions arising from density operators, and
connect it back to a norm on the density operators’ difference.

Consider two density operators ρb for b ∈ {0, 1}, and the probability distributions pb they induce
on the possible outcomes after a full measurement. First, recall that pb(s) = 〈s| ρb |s〉. Then consider
the deviation σ

.
= ρ0 − ρ1, which is a Hermitian matrix and therefore has an orthonormal basis of

eigenstates {|ψi〉}i. We can express σ in terms of its eigenstates as follows: σ =
∑

i λi |ψi〉 〈ψi|. For
any state s, this allows us to write p0(s)− p1(s) = 〈s|σ |s〉 =

∑
i λi |〈ψi|s〉|2. Now, we can sum over

s to compute the 1-norm:

‖p0 − p1‖1 =
∑
s

∣∣∣∣∣∑
i

|〈ψi|s〉|2
∣∣∣∣∣

≤
∑
s

∑
i

|λi| |〈ψi|s〉|2 (by the triangle inequality)

=
∑
i

|λi|
∑
s

|〈ψi|s〉|2︸ ︷︷ ︸
=1 since this is just
the probability of

being in any state s

=
∑
i

|λi|
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The sum
∑

i |λi| of the absolute values of the eigenvalues of σ is known as the trace norm of σ,
denoted ‖σ‖Tr. We will explain the terminology and connect with other norms after a review of
the singular value decomposition, but let us first state the result we obtained.

Fact 1. Let p0, p1 be the probability distributions on the outcomes obtaining by full measurements
of the quantum states ρ0, ρ1, respectively. Then

dstat (p0, p1) ≤ 1
2 ‖ρ0 − ρ1‖Tr ,

where ρ1 and ρ2 are viewed as density matrices.

2 Singular value decomposition

We describe the singular value decomposition (SVD) of complex matrices, as well as some of the
terminology used with SVD.

Theorem 2 (Singular Value Decomposition (SVD)). For any matrix A ∈ CM×N there exist
unitary matrices U ∈ CM×M , V ∈ CN×N as well as a diagonal matrix Σ ∈ RM×N

≥0 such that

A = UΣV ∗.

We use the following terminology:

◦ Σ is given by diag (~σ) = diag (σ1, σ2, . . .) where σ1 ≥ σ2 ≥ · · · ≥ 0 are called the singular
values of A. The singular values σ1, σ2, . . . , σk are the top k singular values. Note that the
singular values are the square roots of the eigenvalues of A∗A.

◦ U∗,j are the column singular vectors, and are also called left singular vectors.

◦ V∗,j are the row singular vectors, and are also called right singular vectors.

Note that if A is Hermitian, then:

◦ The singular values are absolute values of the eigenvalues of A.

◦ The left and right singular vectors coincide up to scalar multiplication.

3 Vector and matrix norms

Recall the requirements for a norm:

Definition 2 (norm). A norm is a map ‖·‖ from a vectorspace V to R satisfying (1), (2), and
(3) for any u, v ∈ V and α ∈ R.

(1) absolute homogeneity: ‖αv‖ = |α| ‖v‖.

(2) triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

(3) definiteness: If ‖v‖ = 0, then v = 0.
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We make use of the following norms for vectors:

Definition 3 (Vector p-norms). For p ∈ [1,∞) the following is the p-norm of x ∈ Cn:

‖x‖p
.
=

(∑
i

|xi|p
)1

p

.

Taking the limit as p→∞, we can extend this to p ∈ [1,∞] with

‖x‖∞
.
= max {|xi|}i .

Given a vector norm ‖·‖, we can generically define an induced matrix norm ‖·‖, known as the
operator norm:

‖A‖ .= max {‖Ax‖ : ‖x‖ = 1} .
Think of ‖A‖ as the most a ball of norm 1 can be stretched in any direction by applying A to it.
In particular, we use ‖A‖p for p ∈ [1,∞] to denote the operator norm induced by ‖·‖p as the vector
norm.

Definition 4 (Operator norm). For a matrix A and any p ∈ [1,∞],

‖A‖p
.
= max

{
‖Ax‖p : ‖x‖p = 1

}
.

In the special where p = 2, the maximum stretch is just the furthest stretch in Euclidean space,
which is given by the largest singular value of A, so ‖A‖2 = σ1. This norm is often referred to a
the spectral norm.

Another commonly used matrix norm is what we get when we view the matrix A as a big vector
and apply the 2-norm to this vector:

Definition 5 (Frobenius norm). The Frobenius norm of a matrix A is:

‖A‖F
.
=

√∑
i,j

|Aij |2.

Note that √∑
i,j

|Aij |2 =
√

Tr (A∗A) =

√∑
i

σ2i = ‖~σ‖2 .

The Frobenius norm is actually just a special case of a family of norms known as Schatten norms.
For any p ∈ [1,∞], the p-Schatten norm of a matrix A with singular values ~σ is given by ‖~σ‖p.
Another special case of the Schatten norms that is often used and has its own name, corresponds
to the case p = 1.

Definition 6 (Trace/Nuclear norm). The trace norm (also known as nuclear norm) of a matrix
A is given by

‖A‖Tr
.
= Tr

(√
A∗A

)
=
∑
i

σi = ‖~σ‖1 .

A useful property of Schatten norms is that they are invariant under unitary transformations
as the singular values are unaffected by such transformations. One way to see this is through the
SVD.

3



4 From unary operators to states

Suppose that we want to apply a unitary operator to a given state, but we only manage to realize
a close approximation and thus in reality apply a different unitary. How different can the resulting
states be? We derive a good upper bound in this section.

Suppose we have initial state ρ, and then we apply either of two unitary operators U0 or U1,
resulting in the states ρ0 or ρ1, respectively. We know from previous lectures that ρb = UbρU

∗
b for

b ∈ {0, 1}. We have the following:

‖ρ0 − ρ1‖Tr = ‖U0ρU
∗
0 − U2ρU

∗
1 ‖Tr (expanding ρb)

= ‖U0ρ (U∗0 − U∗1 ) + (U0 − U1) ρU
∗
1 ‖Tr (adding zero)

≤ ‖U0ρ (U∗0 − U∗1 )‖Tr + ‖(U0 − U1) ρU
∗
1 ‖Tr (triangle inequality)

≤ ‖ρ (U∗0 − U∗1 )‖Tr + ‖(U0 − U1) ρ‖Tr (singular values unchanged by unitary)

= 2 ‖(U0 − U1) ρ‖Tr (conjugation preserves norms)

In order to upper bound ‖(U0 − U1) ρ‖Tr as a function of the distance between U0 and U1, we
analyze ‖Aρ‖Tr for a generic matrix A, and apply the result with A = U0 − U1.

First consider the case of a pure state ρ
.
= |ψ〉 〈ψ|, which is a rank 1 matrix, and analyze the

effect of Aρ. Note that when we apply ρ to |ψ〉, we get (|ψ〉 〈ψ|) |ψ〉 = |ψ〉 (〈ψ| |ψ〉) = |ψ〉. When we
apply ρ to any |φ〉 that is orthogonal to |ψ〉, we get (|ψ〉 〈ψ|) |φ〉 = |ψ〉 (〈ψ| |φ〉) = |ψ〉 · 0, which is
the zero vector. This implies there is an orthonormal basis containing |ψ〉 in which one basis vector,
namely |ψ〉, is stretched by Aρ by a factor of ‖A |ψ〉‖2 = ‖Aρ‖2, and the other vectors are shrunk
by Aρ to the zero vector. This means that Aρ has one singular vector of value σ1(Aρ) = ‖A |ψ〉‖2,
and the other ones are all zero. Thus, ‖Aρ‖Tr =

∑
i σi(Aρ) ≥ σ1(Aρ) = ‖A |ψ〉‖2 ≤ ‖A‖2.

Now we extend by linearity to mixed states. Consider the mixed state ρ =
∑

j pjρj where ρj

are pure states. ‖Aρ‖Tr =
∥∥∥∑j pjAρj

∥∥∥
Tr
≤
∑

j pj ‖Aρj‖Tr ≤ ‖A‖Tr, where the first inequality is

the triangle inequality, and the second one comes from the fact that
∑

j pj = 1 combined with our
result on individual pure states.

We conclude:

Fact 3. Let ρ0 and ρ1 be the states obtained by applying the unitary matrices U0 and U1 to a
common start state ρ, respectively. Then

‖ρ0 − ρ1‖Tr ≤ 2 ‖(U0 − U1)‖2 .

Combined with Fact 1, we obtain the following upper found on the statistical distance between the
output distributions p0 and p1 obtained by measuring states ρ0 and ρ1, respectively:

d(p0, p1) ≤ ‖(U0 − U1)‖2 .

5 Quantum gate precision

Suppose we have a unitary circuit with quantum gates Qi for i ∈ [t]. Then any implementation of

Qi may have some imprecision and instead realize Q̃i such that
∥∥∥Q̃i −Qi

∥∥∥
2
≤ ε for some ε > 0.
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The overall effect of this imprecision at the ith gate is Ui = Qi ⊗ I ≈ Ũi = Q̃i ⊗ I, and the

operator definition of the matrix norm implies that
∥∥∥Ũi − Ui

∥∥∥
2

=
∥∥∥Q̃i −Qi

∥∥∥
2
.

For the whole circuit U = UtUt−1Ut−2 · · ·U2U1 we obtain the approximate implementation

Ũ = ŨtŨt−1Ũt−2 · · · Ũ2Ũ1. How do the consecutive errors compound?∥∥∥Ũi+1Ũi − Ui+1Ui

∥∥∥
2

=
∥∥∥Ũi+1

(
Ũi − Ui

)
+
(
Ũi+1 − Ui+1

)
Ui

∥∥∥
2

(adding zero) (1)

≤
∥∥∥Ũi+1

(
Ũi − Ui

)∥∥∥
2

+
∥∥∥(Ũi+1 − Ui+1

)
Ui

∥∥∥
2

(triangle inequality)

≤
∥∥∥(Ũi − Ui

)∥∥∥
2

+
∥∥∥(Ũi+1 − Ui+1

)∥∥∥
2
, (2)

where the last step follows from the fact unitary matrix multiplication doesn’t affect singular values.
We can conclude that consecutive error bounds purely add:

∥∥∥Ũ − U∥∥∥
2
≤

t∑
i=1

∥∥∥Ũi − Ui

∥∥∥ =

t∑
i=1

∥∥∥Q̃i −Qi

∥∥∥ ≤ tε.
In combination with Fact 1 and Fact 3 we have shown that

d(p̃, p) ≤ 1

2
‖ρ̃− ρ‖Tr ≤

∥∥∥Ũ − U∥∥∥
2
≤ tε.

In words:

Theorem 4. If each of t gates is implemented to within ε precision in 2-norm, then the output
distribution differs from the correct one by at most tε in statistical distance.

The reason why the errors only add up (as opposed to being blown up) is the fact that the
transition matrices are unitary. For general transition matrices, the error bound would be on the
order of the product of the differences in 2-norm times tε.

This relates to how the errors propagate when solving systems of linear equations. There the
error is controlled by the condition number of the matrix, with the condition number being the
ratio of top singular value to smallest singular value. Unitary matrices similarly save us there since
they have the smallest possible condition number of 1; as they maintain inner products, all of their
singular values are equal to 1 in absolute value.
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