
Quantum Computing 3/8/2022

Lecture 12: Quantum Walks

Instructor: Dieter van Melkebeek Scribe: Soyeon Choi, Anirudh Yadav

Following amplitude amplification, we discuss another quantum paradigm, quantum walks. A
quantum walk (QW) is the quantum version of classical random walk, which has found a lot of
algorithmic applications. We begin by discussing classical random walks and study concepts fun-
damental to their operation, such as Markov chains. Then we develop their quantum counterpart,
quantum walks, and discuss how they try to mimic random walks in a way that takes advantage of
their quantum features for speedup. This lecture will be more of a survey of the general concepts
and an application of quantum walks, with detailed analysis left for next lecture.

1 Random Walk

1.1 Setup

A graph is a set of points called vertices connected by lines called edges. Each edge (u, v) will have
a weight w, which is proportional to the probability of moving to vertex v when currently at vertex
u. We only consider finite undirected graphs G = (V,E) where V denotes the set of N = n(V )
vertices, and E denotes the set of edges.

We can represent the weighted graph as a symmetric function w : V × V → [0,∞), where
each possible edge that can exist between two vertices gets mapped to a weight ranging from 0 to
infinity. The edges that are in V × V but not in E have weights equal to zero (i.e., for x ∈ V × V
and x /∈ E, w(x) = 0); therefore, E has nonnegative edge weights.
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Figure 1: The leftmost graph shows the actual edge set E, the next graph shows the set V × V
where the dotted lines indicate the edges not in E. The rightmost is a Venn-diagram of the edge
set.

The undirected nature of G is reflected in the symmetry of w with respect to the two vertices
that it connects: w(u, v) = w(v, u).

The weight of a vertex u ∈ V is defined as the sum of the weights of all incident edges on u:

w(u)
.
=
∑
v∈V

w(u, v)
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We assume that none of the vertices in G is isolated. In the unweighed setting, this means that
every vertex is connected to at least one other vertex. In general, this indicates w(u) > 0 for each
u ∈ V .

1.2 Process

A random walk is a process that starts by picking a starting vertex from an initial probability
distribution σ of V . In each step it moves from the current vertex u ∈ V to a neighboring vertex
v ∈ V with a probability proportional to w(u, v). When the graph is unweighted, the subsequent
vertex that the walk moves to is picked uniformly at random among the neighbors of the current
vertex. This process is repeated for a number of steps. We are interested in how the probability
distribution evolves as the number of steps increases. This process can be modeled with Markov
chains, which we will cover next.

2 Markov chain

One way to model and analyze the behavior of a random walk is by viewing it as a Markov chain.
This is a memoryless stochastic process, where the probability distribution of the next step only
depends on the current state, and retains no history of past steps to arrive at where you are.

2.1 Transition matrix

The probability distribution obtained from a Markov chain can be described by a transition matrix
T , which is an N ×N matrix with components defined as follows:

Tvu
.
= Pr[move to v | at u] =

w(u, v)

w(u)

The transition matrix T can be used to describe the probability distribution after t steps of the
random walk as T tσ, i.e., as the product of the t-th power of T with a column vector representing
the initial probability distribution σ. The column vector has one component for every vertex v,
equal to the probability of being at v. The transition matrix T is symmetric (Tuv = Tvu for all
u, v ∈ V ) iff w(u) = w(v) for all u, v ∈ V , i.e., iff the weight w(u) of every vertex u is the same.
For unweighted graphs, T is symmetric iff the degree of every vertex is the same, i.e., the graph G
is regular.

2.2 Stationary distribution

If a Markov chain converges to some distribution, that distribution needs to be stationary, i.e.,
invariant under T .

There may be multiple stationary distributions, but the following distribution π always is one:

π(v)
.
=
w(v)

W
where W

.
=
∑
v

w(v)
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Proof. When the current distribution is π, the weight that is sent from u to v in one step of the
random walk equals Tvu · π(u). Rewriting this expression, we get the following:

Tvu · π(u) =
w(u, v)

w(u)
· w(u)

W
=
w(u, v)

W

Since w is symmetric in u and v (i.e., w(u, v) = w(v, u)), the weight sent from u to v equals the
weight sent from v to u, which gives us the following result:

w(u, v)

W
=
w(v, u)

W
= Tuv · π(u) �

Corollary 1. Note that π is uniform iff w(u) is independent of u iff T is symmetric. In particular,
in the unweighted case, π is uniform iff the graph G is regular.

As a side note, a Markov chain that has a stationary distribution σ with the property that
Tvu · σ(u) = Tvu · σ(v), is called reversible; random walks on undirected graphs are equivalent to
reversible Markov chains.

3 Convergence analysis

We restrict to an important case where T is symmetric; if that is the case, we can do a spectral
analysis of T to analyze the convergence of the Markov chain to a stationary distribution π. In the
general case, one uses the discriminant matrix D defined as:

Duv
.
=
√
Tvu · Tuv

Note that D always is symmetric, and that D = T iff T is symmetric.

3.1 Spectrum of T

Since T is a symmetric real matrix, all its eigenvalues are real. Moreover, the eigenvalues have
absolute values at most 1.

Proof. Since T is stochastic, for any vector x

‖Tx‖1
.
=
∑
v

|
∑
u

Tvuxu| ≤
∑
u

|xu|
∑
v

Tvu =
∑
u

|xu|
.
= ‖x‖1 (1)

If λ is an eigenvalue of T with corresponding eigenvector x, then |λ|‖x‖1 = ‖λx‖1 = ‖Tx‖1, which
by (1) implies that |λ| ≤ 1. �

The eigenvalue 1 of T represents invariance, so there always is an eigenvalue of 1, namely corre-
sponding to the invariant distribution π. The multiplicity of the eigenvalue 1 equals the number
of connected components of G. This means that there is a unique stationary distribution iff G is
connected. In addition, T has an eigenvalue -1 iff G is bipartite. Thus, this leads us to the following
conclusion:

Corollary 2. With the exception of the stationary distribution π, all eigenvectors of T have eigen-
values strictly less than 1 in absolute value iff G is connected and non-biparite.

We are going to use these facts in our convergence analysis of the stationary distribution π.
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3.2 Convergence analysis for symmetric T

As a symmetric matrix, T has an orthogonal basis of eigenvectors including π. Then every vector,
which is the distribution at any point in time throughout the random walk, can be described as a
linear combination of these eigenvectors. Note that the component of any distribution σ along π
equals π. This is because the inner product

(σ, π) =
1

N

∑
u∈V

σ(u) =
1

N

is independent of σ. It follows that (σ − π, π) = 0, so that σ − π has no component along π.
To check for convergence to π, we want to bound the difference between the distribution after t

steps of the random walk, and the stationary distribution π. Since we know that σ−π is orthogonal
to π we can expand σ − π in the set of all orthogonal eigenvectors βi of T excluding π. That is to
say there exist coefficients ci such that

σ − π =
∑
i

ciβi, βi 6= π,∀ i⇒ T t(σ − π) =
∑
i

ciT
tβi

T t(σ − π) =
∑
i

ciT
tβi =⇒ ‖T t(σ − π)‖2 = ‖

∑
i

ciλ
t
iβi‖2 ≤ ‖

∑
i

ciλ
t
maxβi‖2

‖T t(σ − π)‖2 ≤ λtmax‖
∑
i

ciβi‖2 = λtmax‖σ − π‖2

Note that the norm of π is equal to 1, from which you can show that the norm of σ − π is at most
1:

‖π‖2 = 1 = ‖π − σ + σ‖2 = ‖π − σ‖2 + ‖σ‖2 =⇒ ‖σ − π‖2 = 1− ‖σ‖2 ≤ 1

Therefore, we have that

‖T tσ − π‖2 = ‖T tσ − T tπ‖2 = ‖T t(σ − π)‖2 ≤ λtmax · ‖σ − π‖2

Using the above results, we arrive at the conclusion

‖T tσ − π‖2 ≤ λtmax · ‖σ − π‖2 ≤ λtmax (2)

where λmax denotes the maximum absolute value of an eigenvalue corresponding to an eigenvector
that is orthogonal to π: λmax

.
= max{|λ| : (eigenvector with eigenvalue λ) ⊥ π}. (2) gives us an

upper bound on how far the distribution after t steps of the Markov chain is from the stationary
distribution π.

We can express this upper bound in terms of the spectral gap δ, where δ
.
= 1−λmax, as follows:

λtmax = (1− δ)t ≤ exp(−δ)t = exp(−δt),

where we used the fact that 1 + x ≤ exp(x) for x = −δ; this follows from the convexity of the
exponential function.

In order to bound the statistical distance between the two distributions, we use the Cauchy-
Schwartz inequality to upper bound the 1-norm as a function of the 2-norm1:

‖x‖1 =
∑
i

|xi| = (X, 1̂) ≤ ‖X‖2‖1̂‖2 = ‖X‖2
√
N = ‖x‖2

√
N

1X = [|x1|, |x2|, . . . ]T , 1̂ = [1, 1, 1, . . . , 1]T
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Hence,
‖T tσ − π‖1 ≤

√
N‖T tσ − π‖2 ≤

√
Nλtmax ≤

√
N exp(−δt).

Thus, we can guarantee that ‖T tσ − π‖1 ≤ η by setting t ≥ 1
δ log(

√
N/η).

Convergence to π is guaranteed as long as δ > 0, which is the case iff G is connected and non-
bipartite. The number of steps required to approach π scales as 1/δ. If we want to guarantee fast
convergence, we need a large spectral gap δ. On the other hand, if δ is close to zero, convergence
may be slow.

4 Applications of random walks

Random walks can be used to model real world phenomena; for instance, in physics they are used
as simple models of Brownian motion. They also can be used to model gambling. In this section we
review two of the most common applications in computer science: sampling and search. We focus
a little more on search, as our study of quantum walks is focused on their applications in search.

4.1 Sampling

This is the most common use of classical random walks. If we want to sample from a complicated
distribution π, we can set up a random walk with stationary distribution π, start from a simple
distribution σ (e.g., a point distribution), and run the random walk for a number of steps. If
the spectral gap δ is large, then a small number of steps suffice to bring us close to π. This is
known as rapid mixing. If the underlying graph is simple, the process yields an efficient way to
(approximately) sample from π.

The process may also be of interest in case π is simple, say uniform, but one cannot obtain
a uniform sample as a primitive. In such settings expander graphs are often helpful. These are
infinite families of graphs that have bounded (i.e., constant) degree and a spectral gap δ that is at
least some positive constant. By the above analysis, regular expanders exhibit rapid mixing to the
uniform distribution, so a small number of steps of a random walk starting from some fixed vertex
suffices to obtain an almost-uniform sample.

4.2 Search

Another application that is perhaps less common classically, but is very important in the quantum
setting, is search.

Assume we have a set V of vertices, some of which are good and others bad, and our goal is to
find a good vertex. As before, we represent goodness as a Boolean function f : V → {0, 1}, where
f(v) = 1 indicates that v is good. One way to search for a good vector is to pick one uniformly at
random, and check whether f evaluates to one. If so, we are done; if not, we retry. If the fraction ε
of good vertices is large, we expect only need a few trials are needed until the first success, namely
1/ε. However, similar to the above sampling setting, obtaining a uniform vertex may be expensive.
Instead of picking a fresh uniform sample for each trial, it may be cheaper to move to a neighboring
vertex in the underlying graph G, and use that for our next trial. In such settings, searching for a
good vertex using a random walk makes sense.

We distinguish between three contributions to the cost of this search process: setup, update,
and check.

5



◦ Setup cost S: The cost of picking a sample from the start distribution σ, which may or may
not be the stationary distribution π. We incur this cost each time we start the random walk.

◦ Update cost U: The cost to execute one step of the random walk. We incur this cost t times
when we perform a random walk of length t.

◦ Check cost C: The cost to determine whether the current vertex v is good, i.e., whether
f(v) = 1. We may or may not want to do this for every step of the random walk.

5 Quantum Walk

We like to setup an iterative process just like the classical walk that allows us to mimic a classical
random walk, but in such a way that we move faster. Quantum walks take advantage of the
quantum phenomenon of interference to speed up the convergence.

5.1 Model

For ease of exposition we consider the unweighted symmetric case. Now, if we are at vertex v, we
would like to have a unitary transformation (quantum operations are unitary) that maps a vertex
v to a uniform superposition of the neighbors of v.

|v〉 7→ |Nv〉
.
=

1√
|Nv|

∑
u∈Nv

|u〉

If, however, we apply this operation at every vertex, this is not a unitary operation. Consider
a random walk on a line. The above quantum version applied to a basis state |v〉 results in the
following superposition after one step:

.

1√
2

1√
2

As desired, the probability of being at the left neighbor of v equals 1/2, as is the probability of
being at the right neighbor of v. This is realized by transition amplitudes of 1√

2
to both points.

But if we apply this operation at every vertex, the resulting transformation is not unitary, as
the following figure illustrates.

.

1√
2

A

B C
1√
2

1√
2

D E

1√
2

Consider the basis states corresponding to the blue and the red vertex. As distinct basis states,
the two states are orthogonal. After performing one step of the quantum walk on the blue state,
the resulting superposition has an amplitude of 1√

2
for both A and C:

|B〉 7→ 1√
2

(|A〉+ |C〉)
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Similarly, one step of the quantum walk on the red state leads to a superposition of C and E, both
with amplitude 1√

2
:

|D〉 7→ 1√
2

(|C〉+ |E〉)

These two superpositions are no longer orthogonal as they overlap in exactly one component (as
marked by the red box in the graphic). In contrast, a unitary transformation maps orthogonal
states to orthogonal states. Therefore, this operation is not unitary.

〈B|D〉 = 0 7→ 1

2
(〈A|+ 〈C|)(|C〉+ |E〉) =

1

2
6= 0

To fix this we can keep track of more of the history to prevent interference from happening.
It suffices to remember the previous vertex to get this idea to work, i.e., the state consists of the
current vertex v as well as the vertex u where we came from (or will be moving to next): |u, v〉.

5.2 Two different phases of a quantum walk

Each step of a quantum walk consists of two phases: a coin flip phase and a deterministic phase.

◦ Coin flip phase: We first apply a unitary on |u〉 that is controlled by |v〉 and replaces |u〉
by a superposition that corresponds to a random neighbor u′ of v. We call this the coin flip
operator Cv. Intuitively, in this step we decide where to move next.

◦ Deterministic phase: In the second phase we perform the actual move by swapping the
two components:

S |u, v〉 = |v, u〉

Now u is the current vertex, and v the previous one. This phase is deterministic.

6 Choices for coin flip

There are multiple choices for the coin flip operation. The quest is for choices that lead to improve-
ments over the classical setting. Here are two natural choices.

◦ Hadamard type: For this type the amplitude of every neighbor u′ ∈ Nv has the same
absolute value. This is a true quantum realization of selecting a neighbor at random. In the
case of a walk on a line, the Hadamard transform is an obvious choice. It leads to interesting
results in which the walk after t steps seems to spread more or less uniformly up to a distance
of Θ(t) from the start vertex, whereas a classical walk remains concentrated within a distance
Ω(
√
t) of the start vertex. For higher degrees, one can use generalizations of the Hadamard

transform like the Fourier transform over larger groups, which involves complex amplitudes.
However, that line of research has not been very fruitful to date.

◦ Grover type: Given that we know which vertex we came from, we can consider two different
(real) transition amplitudes: one amplitude a for going back to the current component u (the
vertex we came from) and another amplitude b for every other vertex u′ ∈ Nv. In fact,
treating going back differently sometimes also makes sense in classical random walk, but
is nonstandard and requires extending the state space (which is the standard for quantum
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walks). As we will see, this choice of coin flip is closely related to the Grover iterate, and
has led to several interesting speedup results for general random walks. This is the coin flip
operator we consider.

6.1 Analysis of the Grover coin flip

Let us denote the Grover type coin flip transformation as Cv. The defining operation of Cv when
it acts on the state |u, v〉, where the current vertex v has the neighbouring vertex set Nv can be
expressed by the following equation:

Cv ⊗ I |u, v〉 = a |u, v〉+ b
∑

u′∈Nn\{u}

|u′, v〉

Where the operator Cv is described by the following N×N matrix acting on the neighboring nodes
Nv of v, where N

.
= |Nv|:

Cv
.
=


a b b · · · b
b a b · · · b

· · ·
b b b · · · a


The requirement that Cv be unitary is equivalent to the following two conditions:

a2 + (N − 1)b2 = 1 and 2ab+ (N − 2)b2 = 0.

The first condition expresses that every column of the matrix needs to have a two-norm equal
to 1. The second condition expresses that the inner product of two distinct columns of the matrix
is zero. The system of equations has the following two solutions, one of them being

(a, b) = ±(1, 0)

which is just the diagonal matrix and uninteresting, and

(a, b) = ±
(

2

N
− 1,

2

N

)
We analyze the latter solution further, specifically the eigenstructure of the resulting matrix Cv.

◦ The uniform superposition |Nv〉 =
∑

u∈Nv

1√
N
|u〉 over Nv is an eigenvector with a eigenvalue

a+ (N − 1)b = 1. This follows because,
a b b · · · b
b a b · · · b

· · ·
b b b · · · a

 1√
N


1
1
1
...

 =
1√
N


a+ b+ b+ b+ . . .
b+ a+ b+ b+ . . .
b+ b+ a+ b+ . . .

...

 =
1√
N

(a+(N−1)b)


1
1
1
...

 =
1√
N


1
1
1
...


◦ As Cv − (a− b)I has rank 1, a− b = −1 is an eigenvalue with multiplicity N − 1.
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Thus, Cv has one eigenvalue 1, and N−1 eigenvalues -1. This means that Cv is a reflection over the
eigenvector with eigenvalue 1, which is |Nv〉. We therefore sometimes refer to it as the reflection
coin flip.

As |Nv〉 is uniform over Nv, the coin flip operator Cv has a close resemblance to the second
of the two unitaries in one step of Grover, namely a reflection about the uniform superposition.
This is why it is sometimes also referred to as the Grover coin flip. Our analysis of the resulting
quantum walk in the next lecture will give us yet another view on the quadratic speedup that
Grover provides.

7 Random Walk Search Complexity Analysis

We focus on applications of random walks and their quantum variants for search, assuming that
we start from a sample of the stationary distribution π, i.e., we assume σ = π. To simplify the
derivations, we assume that π is uniform, so the transition matrix T is symmetric and we do not
need to refer to the discriminant matrix D. Nonetheless the results we obtain generalize to the
setting of arbitrary T , albeit involving D in the analysis.

7.1 Hitting time

The hitting time describes how many steps of the random walk are needed to find a good vertex.
We formally define it as the expected number of steps until the first success. As the hitting time
depends on both the underlying walk (captured by the transition matrix T ) as well as which vertices
are good (captured by the predicate f), we write the hitting time as H(T, f).

Exercise 1. An alternate definition found may be the minimum number of steps t such that the
probability of visiting a good vertex within the first t steps is at least 50%. Both definitions differ
by a factor at most 2. We leave this as an exercise.

The hitting time can be related in the following manner to the spectral gap δ of T and the
weight ε

.
= Prv∼π[f(v) = 1] of the good vertices:

1

ε
≤ H(T, f) ≤ O

(
1

δε

)
The lower bound follows because, without any knowledge of set of good vertices beyond its weight
ε, the best one can do is to use a fresh sample from π in every step. In that case, we run a Bernoulli
experiment with success probability ε, which takes an expected 1/ε steps until the first success.
Although we do not directly prove the upper bound here, the intuition is that after an unsuccessful
attempt, the vertex is distributed according to π restricted to the bad vertices, and Ω(1/δ) steps
of the random walk are enough to bring that distribution close to π again. Thus, an expected 1/ε
phases of O(1/δ) steps each suffice to hit a good vertex, which is O(1/(δε)) steps in total.

7.2 Expected cost of various classical approaches

We consider three approaches and express their expected costs as a function of the three cost
components defined in section 4.2.
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◦ Without a walk: Every time we pick a new vertex from π. Since we are only setting up
one sample and checking the vertices for one iteration, the cost is S + C. We repeat this for
1/ε stages to get a good vertex with at least 50% probability; therefore, the cost is,

O

(
1

ε
(S + C)

)
◦ Checking each step: Performing a random walk and checking at each step whether the

vertex is good. The setup stage occurs once in the beginning, then we update the distribution
and check repeatedly until we arrive at a good vertex. Therefore, cost function becomes:
S + (U + C) + (U + C) + . . . , if we continue the updating and checking process for about
hitting time H(T, f) stages the cost is,

O(S +H(T, f)(U + C))

This is cheaper if S is large compared to U + C.

◦ Checking each τ-th step: Performing a random walk but only checking at every τ -th step
whether the current vertex is good. As above the setup cost is incurred only once in the
beginning and then we check after precisely τ updates or walks therefore the cost functions
looks like S + (τ ·U + C) + (τ ·U + C) + . . . , as before if we run the update and check stages
for H(T τ , f) number of times the final cost is,

O(S +H(T τ , f)(τ ·U + C)),

where we used the fact that the hitting time for τ steps of the random walk equals H(T τ , f).
This may be cheaper in case the checking cost C is high compared to the update cost U.

A particular setting of interest is τ = Θ(1/δ). Based on the intuition behind the upper bound
H(T, f) = O(1/(δε) that Ω(1/δ) steps of the random walk after an unsuccessful trial bring
us (close to) π again, we have that H(T τ , f) = O(1/ε) for this choice of τ , so the expected
cost is

O

(
S +

1

ε

(
1

δ
U + C

))
7.3 Quantum Walks Search Speed up

We end this section by stating the speedups that can be realized for search by the quantum walks
based on the reflection / Grover coin flip. For comparison, let us first restate the costs for search
based on a classical random walk:

Runtime Classical random walk Quantum random walk

Checking each step O(S +H(T, f)(U + C)) Õ(S +
√
H(T, f)(U + C))

Checking each τ -th
step

O(S +H(T τ , g)(τ ·U + C)) Õ(S+
√
H(T τ , g)(

√
τ ·U+C))

Checking each τ -th
step for τ = Θ(1/δ)

O(S + 1
ε (

1
δU + C)) Õ(S + 1√

ε
( 1√

δ
U + C))
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When checking each step, since classically the number of iterations for achieving at least 50%
probability of success was H(T, f), the same result only requires

√
H(T, f) steps using quantum

walk. Similarly, when checking each τ -th step, in each iteration, classically we required τ stages to
end up at the τ−th stage vertex; however, using the Grover coin flip for quantum walk we would
need only

√
τ updates for roughly the same outcome. This arises from the fast forwarding lemma,

which will be covered in the next lecture (Lecture 13, Lemma 2). Note the square roots on the
hitting time, δ, and ε, resulting in the potential for a square-root speedup. Two caveats:

◦ The costs S, U, and C refer to somewhat different processes in the classical vs. the quantum
setting.

◦ The costs in the quantum setting have additional polylog factors, represented by the use of
the symbol Õ instead of O. The additional polylog factors are not needed when the goal is
to merely detect the existence of a good vertex.

8 Collision Problem

The collision problem takes as input a black-box for a function h : {0, 1}n → R for some range R
and the goal is to find two distinct inputs x1, x2 such that h(x1) = h(x2) or report that no such pair
of inputs exists. The decision version of this problem is known as element distinctness. Quantum
walk search yields an optimal query complexity up to constant or poly-log factors. The collision
problem was one of the main drives behind research into quantum walk search.

8.1 First Attempt

The first idea to tackle such a problem would be to use the Grover search algorithm. We would
pick l values uniformly at random and check if there is a collision among them. If no collisions are
found among the initial group, we simply use the Grover search algorithm to find a collision with
any of those l values. Assuming there is a collision, in the worst case there is only a single collision.
For that collision to be found, at least one of the two values involved in the collision must be in
the l values chosen. Therefore, the probability of success in this case is

(
N−1
l−1
)
/
(
N
l

)
= l

N . As the

probability of success is at least l
N , we repeat the process N

l times to get a high confidence. As the

number of queries for one iteration is l +
√
N , the overall number of queries is O

(
N
l (l +

√
N)
)

,

which isn’t any better than O(N).

8.2 Second Attempt

For the second attempt we might think that we can improve our previous algorithm by utilizing
amplitude amplification. For this we use the same algorithm as above except we use amplitude
amplification to boost the success of finding a collision between one of the l values and the other

values. Using this method we are able to decrease the number of repetitions from N
l to

√
N
l . This

reduces the overall number of queries to O

(√
N
l (l +

√
N)

)
. As the function g(l) =

√
N
l (l +

√
N)

goes to ∞ as l → 0 or l → ∞, we can optimize the function for l. If a function is the sum of a
decreasing and increasing term, finding the intersection point gives the optimum value up to a factor
of two, which is good enough as we don’t care about constants. The factor of two follows because
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Figure 2: Plot of the intersection of the functions
√
Nl and N/

√
l for the case when N = 1.

before the intersection point, the decreasing term is larger than the value µ at the intersection
point, and after the intersection point the increasing term is larger than µ, so the minimum cannot
be smaller than µ, whereas the value at the intersection point of the sum of the two terms equals
2µ. See Figure 2 for an illustration when N = 1.

√
Nl =

N√
l
⇒ l =

√
N

Alternatively we can also differentiate the function to obtain the optimum value of the function
g(l),

dg

dl
=

√
N

2
√
l
− N

2l3/2
= 0⇒ l =

√
N ⇒ g(

√
N) = 2N3/4

So, when the number of queries is optimized with l =
√
N , we get O(N3/4) (the factor of 2 was

dropped as we don’t care about constants). While this is an improvement, we can still do better.

8.3 Using Quantum Walk Search

For quantum walk search, we begin the same way as the first two attempts by randomly selecting
l values and checking if there is a collision among them. The difference now is that if no collision
has been found among the l values, we simply swap one of the l values for a value not among the l
values and check if the new value collides with any of the other l− 1 values. This can be viewed as
a random walk on a graph for which subsets of size l among the N values serve as the vertices and
edges connecting subsets that are only one swap apart. This type of graph is known as a Johnson
graph J(N, l).

A Johnson graph J(N, l) is a regular graph (all vertices have the same degree) with a degree of
l(N − l). As the graph is undirected and regular, the stationary distribution π is uniform. J(N, l)
also has a spectral gap of δ = N

l(N−l) , which is Θ(1l ) for l� N . Assuming that there is at least one
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collision, within this graph there must be at least
(
N−2
l−2
)

good subsets (ones in which a collision is
found). Using this we get:

ε ≥
(
N − 2

l − 2

)/(
N

l

)
= Θ

(
l2

N2

)
H = O

(
1

δε

)
= O

(
N2

l

)
The query cost for the setup is S = l as we need to query f for each of the selected l values.

The query cost for the update is U = 2 as we need to clear the original value in a reversible way
(that is, query f and XOR the result with the stored value) and query f for the new value. Finally,
the query cost for the check is C = 0 as we already have the outputs of f for the l values. This
results in a total decision cost of O(S +

√
H(U +C)) = O(l+ N√

l
) queries. This cost is optimized for

l = N2/3. To see this, we use the same strategy as before where we set the increasing term equal
to the decreasing term.

l =
N√
l

l3/2 = N

l = N2/3

Using the optimum value l, we get a tight upper bound of O(N2/3) on the number of queries. For
search, rather than decision, a Õ cost is incurred.
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