
Quantum Computing 3/10/2022

Lecture 13: Fast Forwarding

Instructor: Dieter van Melkebeek Scribe: Jonah Liu, Tiger Ji

We discuss the fast forwarding property of quantum random walks, a key property in searching.
To demonstrate this, we involve block encodings, Chebyshev polynomials, and linear combinations
of unitaries (LCU). Finally, we introduce interpolating walks.

1 Recap

1.1 From Random to Quantum Walk

Consider a weighted graph G = (V,E) without any isolated vertices (i.e., the sum of all the weights
of all the edges incident to any vertex is positive). In the classical setting, when at vertex u, move
to vertex v with probability proportional to the weight of the corresponding edge. This can be
modeled as a Markov chain with transition matrix T such that:

Tuv = Pr[move to u|at v]

There is a unique stationary distribution π provided that G is connected, and convergence to the
distribution is guaranteed given G is connected and non-bipartite.

In a quantum walk, we act on pairs of vertices, namely |u, v〉 where u represents the previous or
next vertex and v represents the current one. Each step of the quantum walk can be decomposed
into two parts: a coin flip C, where we decide the next node to go to, and a swap, where we actually
”move” from one vertex to the next. While there are several choices for the coin flip, the reflection
coin enables the square root speed-up results.

Specifically, the two steps can be formalized as:

◦ Reflection Coin C: Reflects the first component of |u, v〉 about |Nv〉
.
=
∑

u′

√
Tu′v |u′〉.

Assuming there exists some unitary U : |0n〉 |v〉 7→ |Nv〉 |v〉, then C can be expressed as
C = UR|0n∗〉U

∗

◦ Swap S: Swap vertex u and v to realize |u, v〉 7→ |v, u〉

Theorem 1. There exists a quantum algorithm that takes an undirected weighted graph G = (V,E)
without isolated vertices and a black-box for f : V → {0, 1}, and outputs v ∈ V with f(v) = 1 in
expected time Õ(S +

√
H(T, f)(U + C)).

The quantum walk versions of S,U,C are similar to the classical random walk. Here are the
precise definitions of the quantities in Theorem 1.

◦ H(T, f): smallest t such that Pr[random walk visits v such that f(x) = 1 within t steps]

◦ S: Time to sample from π: Create |π〉 .=
∑

v∈V
√
π(v) |v〉

◦ U: Time for one step of the quantum walk/application of SC:
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– S: |u, v〉 7→ |v, u〉
– C: |u, v〉 7→ R|Nv〉 |u〉 |v〉
– C = UR|0n∗〉U

∗ where U : |0n〉 |v〉 7→ |Nv〉 |v〉.

◦ C: Time to check f(v) = 1: Apply |v〉 |b〉 7→ |v〉 |b⊕ f(v)〉

1.2 Block Encoding

Block encodings are essential for fast forwarding, so we will review them here.

Definition 1. A block encoding of a matrix M acting on m qubits is a unitary (circuit) A acting
on l +m qubits such that

A =

[
M ∗
∗ ∗

]
The block encoding can be used as a probabilistic encoding of M with a success indicator as

follows:

1. Apply A to state |0l〉 |ψ〉 representing 0 in all ancillas and |ψ〉 being the state to which we
want to apply M .

2. Measure the first register (first l qubits).

3. If the outcome is 0l, the second register is in the state M |ψ〉 /||M |ψ〉 ||2. For this encoding
to be useful, ||M |ψ〉 ||22, the probability of observing 0l, should be sufficiently large.

To express that A is a block encoding of M , we project onto the subspace where the first l
qubits are set to 0. This projection can be realized by:

P
.
= P|0l∗〉 =

[
I 0
0 0

]
As a result, we have

PAP = P

[
M ∗
∗ ∗

]
P =

[
M 0
0 0

]

2 Fast Forwarding

Now we state the fast forwarding property of quantum walks, which is the key ingredient for
speedups compared to classical random walks. For simplicity, we consider the case where T is
symmetric, but this generalizes to non-symmetric transition matrices as well.

Lemma 2. There exists a quantum algorithm that for any t ∈ N and η > 0, realizes a block
encoding of matrix M such that ||T t −M ||2 ≤ η in time O(

√
t log (1/η)U), where U represents the

cost of one application of the quantum walk operator (U∗, R|0n∗〉, U, and S).

Here, t is the number of steps to simulate and η is the accuracy parameter. The idea behind
the lemma is that we can find an approximation for T t to simulate t random walk steps in time
O(
√
t). The outline of the proof is as follows:
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◦ Connection with Chebyshev polynomial Td of degree d: (SC)d encodes UTd(T )U∗

◦ Approximation of T t by linear combination of Td(T ) for d around Θ(
√
t)

◦ Linear combination of unitaries (LCU) yields desired block encoding

2.1 Iterates of Quantum Walk Operator

For the following section, recall the notation/definitions:

◦ S: |u, v〉 7→ |v, u〉

◦ U : |0n〉 |v〉 7→ |Nv〉 |v〉

◦ R .
= R|0n∗〉: reflection about |0n∗〉

From the previous section, we have that

SC = SURU∗ (C = URU∗)

= (UU∗)SURU∗ (UU∗ = I)

= U(U∗SU)RU∗

= US̃RU∗ (S̃
.
= U∗SU)

= UQU (Q
.
= S̃R)

where S̃
.
= U∗SU and Q

.
= S̃R. Notice that

(SC)2 = (UQU∗)(UQU∗)

= UQ2U∗

In general, we have that
(SC)d = UQdU∗

2.2 Block of Q

Consider the top left block of S̃
.
= U∗SU , where U : |0n〉 |v〉 7→ |Nv〉 |v〉. To obtain the entry

S̃0nu,0nv, we multiply S̃ to the right with the basis vector corresponding to the column index, and
to the left with the complex conjugate transpose of the basis vector corresponding to the row index:

S̃0nu,0nv = 〈0nu| S̃ |0nv〉
= 〈0nu|U∗SU |0nv〉 (S̃

.
= U∗SU)

= (U |0nu〉)∗S(U |0nv〉) ((U |0nu〉)∗ = 〈0nu|U∗)
= (|Nu〉 |u〉)∗S(|Nv〉 |v〉) (U : |0n〉 |v〉 7→ |Nv〉 |v〉)
= (|Nu〉 |u〉)∗(|v〉 |Nv〉) (S : |u, v〉 7→ |v, u〉)

=
√
Tvu ·

√
Tuv

= Tuv
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Since |Nv〉
.
=
∑

u′
√
Tu′v |u′〉, the inner product of |u〉 and |Nv〉 is

√
Tuv, since all terms besides

u = u′ disappear. The same reasoning can be applied to the inner product of |v〉 and |Nu〉. The
last step is due to the symmetry of T . In the general case, this will be some discriminant matrix
instead. This means that S̃ is a block encoding of T :

PS̃P =

[
T 0
0 0

]
To find the top left block of Q, we first argue that R and 2P − I have the same effect. For all

vectors v in the subspace |0n∗〉, which is the axis we reflect about, both R and P have no effect on
them. Therefore, (2P − I)v = 2Pv− Iv = 2v− v = v. However, if the vector v is orthogonal to the
subspace |0n∗〉, R flips the sign and P projects to 0. Therefore, (2P −I)v = 2Pv−Iv = 0−v = −v.
In both cases, R behaves the same as 2P − I, so

PQP = PS̃RP = PS̃(2P − I)P = 2PS̃P 2 − PS̃P = PS̃P =

[
T 0
0 0

]
This comes from the fact that P 2 projects the vector twice, which is the same as projecting it

once, thus P 2 = P . As a result, we have shown that S̃ and Q both block encode T .

2.3 Recurrence for Blocks of Q’s Iterates

We are interested in the blocks for the higher powers of Q, so we setup a recurrence which turns
out to be the same one as for the Chebyshev polynomials:

PQd+1P = P (S̃R)QdP (Q
.
= S̃R,Qd+1 = QQd = (S̃R)Qd)

= PS̃(2P − I)QdP (R behaves the same as 2P − I)

= 2PS̃PQdP − PS̃QdP
= 2(PS̃P )PQdP − PS̃(S̃R)Qd−1P (P = P 2, Q

.
= S̃R)

= 2(PS̃P )PQdP − PRQd−1P (S̃2 = (U∗SU)(U∗SU) = U∗S2U = U∗U = I)

= 2(PS̃P )PQdP − PQd−1P (PR = P since reflect has no effect after projection)

= 2

[
T 0
0 0

]
PQdP − PQd−1P (PS̃P =

[
T 0
0 0

]
)

Since multiplying by P on the left and right of Qd produces a matrix with the top left block of
Qd, we can define Md

.
= top left block of Qd. Therefore, the recurrence for Md is:

M0 = I

M1 = T

Md+1 = 2 · T ·Md −Md−1 for d ≥ 1
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2.4 Connection with Chebyshev Polynomials

Chebyshev polynomials are defined by the following recurrence relation:

T0(x) = 1

T1(x) = x

Td+1(x) = 2 · x · Td(x)− Td−1(x) for d ≥ 1

Therefore, from the recurrence, we have shown thatQd is a block encoding of the d-th Chebyshev
polynomial applied to the transition matrix T , Td(T ). Recall that, up to the basis transformation,
Qd = U∗(SC)dU . From this definition, we also have that U∗(SC)dU block encodes Td(T ).

2.5 Properties of Chebyshev Polynomials

Now that we are given the definition of Chebyshev polynomials, we observe a few properties:

◦ Td is a polynomial of degree d

– This follows from the recurrence relation for Td.

◦ Td(cos (θ)) = cos (dθ) for θ ∈ R.

– This follows by induction. For d = 0, T0(x) = 1 = cos (0θ). Assume that Td(cos (θ)) =
cos (dθ) for some arbitrary d > 0. Therefore:

Td+1(cos (θ)) = 2 cos (θ)Td(cos (θ))− Td−1(cos (θ)) (by definition of Td(x))

= 2 cos (θ) cos (dθ)− cos ((d− 1)θ) (by inductive hypothesis)

= 2 cos (θ) cos (dθ)− (cos (dθ) cos (θ) + sin (dθ) sin (θ)) (trigonometric identity)

= cos (θ) cos (dθ)− sin (dθ) sin (θ)

= cos ((d+ 1)θ) (trigonometric identity)

◦ Td(x) ∈ [−1, 1] for x ∈ [−1, 1]

– For any x ∈ [−1, 1], there exists θ ∈ R such that cos (θ) = x. Therefore, Td(x) =
Td(cos (θ)) = cos (dθ) ∈ [−1, 1].

Here are the first few Chebyshev polynomials:
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Any polynomial of degree t can be expressed as a linear combination of the Chebyshev poly-
nomials up to degree t. This will be helpful later on when attempting to approximate T t, which
is closely related. To find the Chebyshev expansion of xt, we recall the recurrence of Chebyshev
Polynomials:

Td+1(x) = 2xTd(x)− Td−1(x)

xTd(x) =
1

2
(Td+1(x) + Td−1(x))

= E∆[Td+∆(x)] where ∆ ∈u ±1

Note that this relationship extends to d ∈ Z when T−d(x)
.
= Td(x). The following expansion

property allows us to write xt as a linear combination of Chebyshev polynomials up to degree d.

Theorem 3. For every t ∈ N, xt = Edt [Tdt(x)], where dt is the sum of t independent uniform ±1
random variables.

Proof. Base case: t = 0
Induction step t→ t+ 1 for t ∈ N :

xt+1 = x · xt = x · Edt [Tdt(x)] = Edt [xTdt(x)] = Edt [E∆[Tdt+∆(x)]] = Edt+1 [Tdt+1(x)] �

In this linear combination, the weight will be concentrated on polynomials up to degree
√
t

2.6 Chebyshev Approximation to xt

Expansion property For every t ∈ N, xt = Edt [Tdt(x)] where dt is the sum of t independent
uniform ±1 random variables.

Chernoff bound For each a ∈ (0,∞),Pr[dt ≥ a] ≤ exp (−a2/(2t)).
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Truncated expansion To achieve an approximation for a given accuracy at degree a:
Let pt,a(x)

.
= Σ|d|<aqt,dTd(x) where qt,d

.
= Pr[dt = d].

We have an error of

|xt − pt,a(x)| = |Σ|d|≥aqt,dTd(x)|
≤ Σ|d|≥aqt,d|Td(x)| , through triangle inequality

≤ Σ|d|≥aqt,d for x ∈ [−1, 1]

= Pr[|dt| ≥ a]

≤ 2 exp (−a2/(2t))

≤ η provided a ∈ Ω(
√
t log (1/η).

2.7 Chebyshev Approximation to T t

We can now use what we have proved to approximate T t. Symmetric transition matrix T has a
full orthonormal basis of eigenvectors |ψi〉, i ∈ [N ]: T |ψi〉 = λi |ψi〉.
Then T t |ψi〉 = λti |ψi〉 and pt,a(T ) |ψi〉 = pt,a(λi) |ψi〉.

To see how close our approximation, pt,a(T ), is, we use;

||(T t − pt,a(T )) |ψi〉 ||2 = |λti − pt,a(λi)| ≤ η as λi ∈ [−1, 1]

We now have a full orthonormal basis of eigenvectors. To find the difference, we use the
decomposition:

For arbitrary |ψ〉 .= Σi∈[N ]αi |ψi〉
||(T t − pt,a(T )) |ψ〉 ||22 = ||Σi∈Nαi(T

t − pt,a(T )) |ψi〉 ||22
= ||Σi∈Nαi(λ

t
i − pt,a(λi)) |ψi〉 ||22, because of eigenvalues

= Σi∈N ||αi(λti − pt,a(λi)) |ψi〉 ||22, due to Pythagorean Theorem

≤ Σi∈[N ]|αi|2η2 = η2, as each term is at most η

∴ ||(T t − pt,a(T ))||2 ≤ η

If you recall, U∗(SC)dU block encodes Td(T ) for each d ∈ N. We then have the next part
towards proving Lemma 2:

Lemma 4. For a ∈ Ω(
√
t log (1/η)), Σ|d|<aqt,dU

∗(SC)dU block encodes some matrix M such that
||T t −M ||2 ≤ η.

With the block encoding for unitaries, we then need a block encoding for the entire linear
combination. This becomes the last component for our fast forwarding proof.

2.8 Linear Combination of Unitaries

Given unitaries Ui on n qubits, for qi ∈ C, we need a block encoding of linear combination L
.
=

ΣiqiUi. However, it is difficult to get a block encoding of L as we cannot grow the vectors in our
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unitaries by some factor qi.
Instead, we may also settle for L/q, for small q (q being too large decreases our probability of
success) using the unitary (and as a multiplexor) V : |i〉 |ψ〉 7→ |i〉Ui |ψ〉.

Without loss of generality, we can assume qi ∈ (0,∞) by dropping zero terms and incorporating
the phases into the unitaries Ui.

Algorithm We create the superposition |q〉 .= 1√
Σiqi

Σi
√
qi |i〉

Then we apply the multiplexer V |q〉 |ψ〉 = 1√
Σiqi

Σi |i〉
√
qiUi |ψ〉

We project on that superposition,

〈q| 〈φ|V |q〉 |ψ〉 =
1

Σiqi
Σi
√
qi
√
qi 〈φ|Ui |ψ〉 , by application of 〈q| to the previous multiplexor application

=
1

Σiqi
〈φ|L |ψ〉 , by the previous definition of L

Lemma 5. Let Ũ be a unitary such that Ũ : |0m〉 7→ |q〉. Then Ũ∗V Ũ block encodes L/Σiqi

In summary, given the block encodings for unitaries, we can find a block encoding for a linear
combination of them. If you recall Lemma 2, we now know there is a fast forwarding algorithm
in time O(

√
tlog(1/η)U). We can use this to measure how close our approximation to classical

walks are after t steps, measuring renormalized M |π〉 to yield distributions close to renormalized
T − t |π〉. We have reached a good vertex if we measure π, or a bad superposition if we measure
0. Additionally, random walks for t = H steps from any start distribution has a probability of at
least 0.5 of visiting a good vertex.

2.9 Interpolating Walks

However, for Lemma 2, another issue arises. The block encoding is a probabilistic method of
realizing T t, so if ||T t |pi〉 ||2 is small, there is a small probability of success. Additionally, we
cannot measure success after each step and thus do not know how many steps are needed for fast
forwarding. We handle this by observing the differences between the actual walk and the absorbing
walk:

Absorbing walk This walk stops when we reach a good vertex. As we are using a Markov chain
with transition matrix Tabs, there is no time reversibility and this is not a random walk on a graph
as we do not leave the good vertex.

Interpolating walks For some parameter a ∈ [0, 1], we then observe the difference between
the actual random walk T and the absorbing walk using the Markov chain with transition matrix
T (a)

.
= (1 − a) · T + a · Tabs. If a = 1, we get the absorbing walk, otherwise we get valid random

walks that we can fast forward.
With the following lemma, we then know that we won’t get small probabilities when block

encoding and reach a good number of steps with good probability.

Lemma 6. If ε
.
= Prv π[goodv] < 1

10 , then for any integer τ ∈ Ω(H), E[||PgoodT (a)t |B〉 ||22] =
Ω( 1

log (τ)) for a
.
= 1− 1

2r when r ∈u [O(log (τ))] and τ ∈u [τ ]
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We can then use the following algorithm to find how many steps of fast forwarding are needed
to find a block encoding for Chebyshev approximations of a matrix.

Quantum Walk Search Algorithm First create a superposition |π〉 based on the uniform
distribution. Then evaluate the goodness in the ancilla once. If we are successful, we stop here and
measure the register and output the result. Otherwise we are in |B〉. Then pick a and t for τ steps,
by Lemma 6. We then run fast forwarding for the random walk with transition matrix T (a) and
apply the resulting matrix A to |B〉. We evaluate the goodness of the ancilla again. If successful,
we measure the register and output the result, otherwise we report a failure.

Analysis for τ = Θ(H) A single run costs O(S +
√
H(U + C)) and has a success probability of

min( 1
10 ,Ω( 1

log (H))), due to t, which is bound by the hitting time. Using amplitude amplification to

boost confidence yields an additional factor of
√

log (H) because we only need a quantum walk of
roughly

√
t steps by the Chebyshev polynomial.

Conclusion In summary, we can complete a quantum walk in a quadratically fewer amount of
steps when compared to the classical hitting time of a random walk.
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