
Quantum Computing 3/29/2022

Lecture 16: Input/Output Access Mechanisms and Block Encoding

Instructor: Dieter van Melkebeek Scribe: Chenhao Ye

Through quantum, people came up with algorithms with exponential speedup, some of which,
however, need the input to be represented in certain ways. In this lecture, we look at the in-
put/output mechanisms, with a case study about the recommendation problem. We then discuss
QRAM access to vectors and matrices which allow us to perform operations in sub-polynomial
time, even classically! QRAM access and several other I/O regimes for matrices in the literature
are each encapsulated by block encoding methods, which we will discuss in detail.

1 Recommendation problem

To begin, we discuss a famous motivating problem called the recommendation problem, which is
also known as the Netflix prize problem1. The setup is as follows:

1. There are M customers indexed by i ∈ [M].

2. There are N products indexed by j ∈ [N].

3. There exists an unseen true preference matrix T ∈ RM×N , whose (i, j)-th entry corresponds
to the preference of customer i for product j. The preference is often binary or constrained
to [0, 1].

4. We observe A, a collection of samples from T . An example A may look like

P1 P2 P3 P4 · · · PN−1 PN

C1 0.1 0.4 ? ? 0.85 ?
C2 ? ? 0.6 ? 0.85 ?
C3 ? ? 0.8 0.9 ? ?
...

. . .

CM ? 0.75 ? ? ? 0.2

where the ? above correspond to unknown entries of T that are not observed in A.

Given this data, the input is a row index i ∈ [M] corresponding to a customer, and the expected
output is a recommendation j ∈ [N] which is believed to be preferred for customer i.

The problem has further two associated assumptions:

◦ Low rank hypothesis: T is (close to) a matrix of small rank.

The low rank hypothesis means that there are a small number of underlying dimensions that
matter, and the customer preferences are some linear combination of those few dimensions.
The number of dimensions will be the rank of T . Two users with similar preferences are

1From 2006-2009, Netflix held a contest with a $1,000,000 dollar grand prize to attempt to find an effective solution
to this problem for their movie recommendation system.

1

https://en.wikipedia.org/wiki/Netflix_Prize

assumed to have similar combinations of those dimensions. It is equivalent to say that entries
in the matrix are highly correlated. One can feasibly predict a missing entry based on seen
entries. Without this assumption, the missing entries could be anything. This hypothesis
turns out to be fairly reasonable.

◦ Sampling hypothesis: A is obtained by picking each entry from T independently with some
probability p.

The sampling hypothesis suggests that the sampling of one entry from T has no impact of
the sampling on another entry’s sampling. This assumption is more debatable because one
could imagine a customer who gave a rating for one product may be more willing to rate
other closely related products. Here for simplicity, we assume there is no such correlation.

Given these two assumptions, the best guess of T is a low rank approximation of A/p , where p is
the probability of a given entry being observed and unknown entries of A are replaced with zeros.
Let k � min {N,M} be the assumed low rank of T .

The best rank k approximation to A in 2-norm can be computed from the singular value
decomposition (SVD) by setting all but the top k singular values equal to zero. This can be seen
as follows. Recall that the SVD writes A as A = UΣV ∗, where U ∈ CM×M and V ∈ CN×N are
unitary matrices, and Σ ∈ RM×N = diag(σ1, σ2, . . .) is a diagonal matrix with σ1 ≥ σ2 · · · ≥ 0.
Since multiplication with a unitary matrix on the left or the right does not affect the 2-norm nor
the rank of a matrix, it suffices to argue the property for the diagonal matrix Σ.

Claim. In the case of Σ, the property states that the best rank k approximation to Σ in 2-norm is
Σk

.
= diag(σ1, . . . , σk).

Proof. It suffices to consider the setting with N = M . Let B ∈ CN×N have rank at most k.
Since the null space of B has dimension N − k, it contains a nonzero vector x whose only nonzero
components lie in the first k + 1 dimensions. It follows that

‖(Σ−B)x‖2 = ‖Σx‖2 ≥ σk+1‖x‖2,

and therefore that ‖Σ−B‖2 ≥ σk+1. On the other hand, Σk is of rank k and satisfies ‖Σ−Σk‖2 =
σk+1. It follows that B = Σk is a best rank k approximation to Σ. �

Remark 1. The claim also holds for the Frobenius norm instead of the 2-norm. It again suffices
to consider the case of diagonal matrices. In the case of the Frobenius norm the case of diagonal
matrices is straightforward.

Using braket notation, we can write the SVD of A as

A = UΣV ∗ =

min(M,N)∑
j=1

σj |uj〉 〈vj | ,

where U = [|u1〉 |u2〉 . . . |uM 〉] and V = [|v1〉 |v2〉 . . . |vN 〉]. For a given customer with index i, we
can write the i-th row of A as:

Ai∗ = 〈ei|A =

min(M,N)∑
j=1

σj 〈ei|uj〉 〈vj | .

2

We obtain the i-th row of the best approximation of A of rank k by cancelling the singular values
σj for j ≥ k + 1 in the above expression. Thus, our approximation to the i-th row of T is:

Ti∗ ∼ Pi∗
.
=

1

p

k∑
j=1

σj 〈ei|uj〉 〈vj |.

It is the projection of the i-th row of A onto the top k singular value of A with a scaling factor for
normalization.

1.1 Quantum algorithm for recommendation systems

Given that we know the optimal (in 2-norm) prediction (under the two model assumptions stated
earlier), a quantum algorithm for the problem just needs to compute |Pi∗〉, a superposition of entries
in the row. Note that here we don’t need the coefficients of the superposition but only the index
of an entry that is large, i.e., corresponding to a product that customer i likes a lot. This can be
done by simply measuring the superposition.

The computation of |Pi∗〉 can be done efficiently within an error bound ε in time

O (poly log (MN/ε)) .

Notice that the classical input size of a matrix of size N ×M is already MN . To just read it in
would take Θ(MN), which is already exponentially larger than the runtime of O (poly log (MN/ε))
mentioned above. Therefore in order to perform such quick quantum computations, we need some
compressed or compact way of receiving the input.

2 Input/output access issues

The input/output access issues arise naturally when a quantum algorithm has input and/or output
that are not classical. Sometimes we can also have problems classically solvable in polynomial time
but need superposition representation to achieve super-polynomial speedups, e.g., the recommen-
dation problems above.

2.1 Input considerations

First, we may need to prepare quantum inputs from classical inputs. These could be vectors,
superpositions, matrices, or some black box data structure.

Second, many quantum algorithms require multiple trials run on the same quantum input. Due
to the no cloning theorem, we cannot just copy the input and rerun an algorithm on the copy. In
order to efficiently do these trials, we would need some extra constraints. For example, perhaps the
required input arises from some fast unitary generating process. Perhaps we only need a partial
reconstruction which we can feasibly generate. Or, if we are lucky, maybe our algorithm is non-
destructive to the state so we can re-run it without worrying about recreating the input state.
One example scenario is in phase estimation. If the state is an eigenstate, then the algorithm is
non-destructive.

Finally, we may need to reflect around a state, not just generate states. For example, Grover’s
algorithm uses two reflections: one about the bad states, and one about the initial state which is

3

the uniform superposition of states. The latter can be done using the Hadamard transform and a
reflection over |0n〉, the former is handled using phase kickback based on a blackbox for the goodness
predicate. In amplitude amplification, the initial state may be more complicated, so reflecting over
it is more of a challenge, and requires access to a unitary that produces the initial state. In general,
given a unitary generating a state, a reflection R can be realized as R = UR|0n〉U

∗, where R|0n〉
denotes the reflection about the state |0n〉.

2.2 Output considerations

It deserves special attention for using a quantum output in a classical manner. For example, in
the case of the recommendation system, the quantum superposition is a desired output as we
can simply measure it to extract what we want, while in the case of solving linear equations, the
quantum superposition may not be as helpful to produce the entire solution.

3 Vector encoding using QRAM access

Quantum Random Access Memory (QRAM) refers to a classical read/write data structure to which
we have quantum read access in the sense that we can query the data structure on a superposition.

One representation of a vector v ∈ RN is given by a classical binary tree, where each node
is labeled by the squared 2-norm of the subtree below it. The leaves are doubled up with sign
information since that is lost in the squaring of the 2-norm. More generally, if v ∈ CN , the leaves
contain the phase instead of the sign. The depth of the tree is given by n

.
= logN . An example of

the structure for a vector v = (v1, v2, v3, v4) ∈ R4 is given below.

‖v‖22

v21 + v22

v21

sgn (v1)

v22

sgn (v2)

v23 + v24

v23

sgn (v3)

v24

sgn (v4)

A nice property of this structure is that if we read nonzero components one at a time in an
online fashion, then for each component we can update our tree by just traversing up from the
corresponding leaf to the root in time O(logN). If we assume our vector v is s-sparse (it only has
s nonzero entries), then the entire tree representation of our vector can be filled classically in time
O(s logN). Provided that we can access the tree in superposition (QRAM), we can also generate
|v〉 in time O(logN).

3.1 QRAM state generation

The idea here is that each qubit can be computed using a rotation conditioned on the previous
qubit. We demonstrate it through the following example.

Suppose |v〉 = 0.4 |00〉+ 0.8 |01〉+ 0.8 |10〉+ 0.2 |11〉. Then the corresponding tree is

4

1.0

0.32

0.16 0.16

0.68

0.64 0.04

In order to prepare the state |v〉, we first perform a unitary mapping corresponding to the super-
position of the first row’s values.

|0〉 |0〉 7→ (
√

0.32 |0〉+
√

0.68 |1〉) |0〉 .

That is, we perform a rotation to get a superposition of the state of the first qubit. Next, we
perform a rotation on the second qubit conditioning on the first qubit:

(
√

0.32 |0〉+
√

0.68 |1〉)|0〉 7→
√

0.32 |0〉 1√
0.32

(√
0.16 |0〉+

√
0.16 |1〉

)
+
√

0.68 |1〉 1√
0.68

(√
0.64 |0〉+

√
0.04 |1〉

)
=
√

0.32 |0〉 1√
0.32

(0.4 |0〉+ 0.4 |1〉) +
√

0.68 |1〉 1√
0.68

(0.8 |0〉+ 0.2 |1〉)

= (0.4 |0〉 |0〉+ 0.4 |0〉 |1〉) + (0.8 |1〉 |0〉+ 0.2 |1〉 |1〉)
= 0.4 |00〉+ 0.4 |01〉+ 0.8 |10〉+ 0.2 |11〉 = |v〉

4 Matrix encoding

There are multiple ways to encode a matrix. The first is QRAM access, which uses the QRAM
vector access we just discussed.

4.1 Matrix QRAM access

QRAM access to an matrix M with rows Mi∗ indexed by i and columns M∗j indexed by j is defined
by having each of the following:

◦ vector QRAM access to each row: Mi∗,

◦ vector QRAM access to each column: M∗j ,

◦ vector QRAM access to row norms: ri
.
= ‖Mi∗‖2

◦ vector QRAM access to column norms: cj
.
= ‖M∗j‖2

4.2 Sparse matrix access

An alternative efficient accessing method is sparse access. Sparse access gives us three oracle
functions that recover a given matrix entry or indices corresponding to nonzero entries.

First, we have
OM : |i〉 |j〉 |0b〉 7→ |i〉 |j〉 |Mij〉 ,

5

which takes the input of a row index i, a column index j, and a register consisting of b qubits, and
XORs in the last register the value of the corresponding matrix entry up to b bits of accuracy. This
can be done for any matrix and we don’t exploit the spareness here.

Second, we have
Orow : |i〉 |k〉 7→ |i〉 |cik〉 ,

which replaces the value k of the second register by ci,k, the column index of the k-th nonzero entry
in queried row i. Note that the mapping from k to ci,k is injective for any fixed i, and therefore
invertible and a valid quantum operation.

Finally, we have
Ocolumn : |`〉 |j〉 7→ |r`j〉 |j〉 ,

which replaces the value ` of the first register by r`j , the row index of the `-th nonzero entry in
queried column j.

Next, we discuss a more general encoding regime called block encoding. We will see that both
QRAM and sparse encodings are special cases of block encodings.

5 Dequantization

Briefly, before we get to block encodings, there are a few interesting results about dequantization.
Once we have QRAM we have some assumptions about how input is formatted as well as the
assumption that we have random access to this special data structure. The structure may take
time to build in the first place, but once it is done, we can access it at will. This assumption can also
be exploited by classical algorithms and can even be leveraged classically to get algorithms that run,
even classically, in poly-logarithmic time. In particular, the QRAM access data structure enables
classical sampling in time O(logN) by flipping a weighted coin at each level. Since the depth of the
tree is O(logN), it only takes that many coin flips to get a sample according to some distribution.
This is interesting because it can allow sublinear-time classical algorithms to be developed based on
sampling. This has led to the dequantization of several of the machine learning and linear algebra
problems that require QRAM access. The recommendation problem can be solved this way by
subsampling the matrix A, and computing the best rank k approximation for the subsample; with
high probability this gives us a good approximation to the best rank k approximation for A (after
rescaling).

6 Block encoding

The rest of the lecture will be about the block encoding mechanism. First, recall the definition of
a block encoding.

Definition 1. A block encoding of a matrix M acting on m qubits with l ancilla qubits is a unitary
circuit A acting on l +m qubits such that

A =

[
M ∗
∗ ∗

]
When we talk about computing an efficient block encoding for a matrix M , this usually means we
can efficiently construct a small unitary circuit that realizes A.

6

Next, we review a few properties of block encodings that can help build such an efficient unitary
circuit. We have seen all of these previously, but here is a summary.

1. Given |v〉 we can compute |Mv〉. This is done by applying A to |0l〉 |v〉 and postselecting |0l〉
on the first register. Note that we may need to use amplitude amplification in order to boost
the probability of measuring the desired |0l〉.

2. Given block encodings for Mj for j ∈ [k], we have an efficient encoding of
∑

j cjMj/(
∑

j |cj |).
This is the linear combination of unitaries (LCU) method and uses an additional log k ancillas.

3. Given encodings for M1 and M2, we have an efficient encoding for M1M2 which uses l1 + l2
ancillas, where li is the number of ancillas for the block encoding of Mi.

4. Given an encoding of M , we have efficient encodings of the Chebyshev polynomials Td(M)
which was constructed using quantum walks. This used a constant number of additional
ancillas.

Remark 2. We can use properties 2 and 4 to approximate arbitrary polynomials of M using log d
ancillas where d is the degree of the polynomial.

We will look at three settings in which we want to create a block encoding of a matrix. The first
two will use a common strategy and the third will use a variation on that strategy. This strategy
is to write A as a Gram matrix. Informally, a Gram matrix is made of inner products of states.
More specifically:

Definition 2 (Gram matrix). Given collections states |ψi〉 and |φj〉, their Gram matrix G is
given by Gij

.
= 〈ψi|φj〉

Our strategy for producing an encoding of M is to specify how to generate the |ψi〉 and |φj〉. In
particular we will define maps UL : |0n〉 |i〉 7→ |ψi〉 and UR : |0n〉 |j〉 7→ |φj〉. Then the first few
columns of UL will be the |ψi〉s and the first few columns of UR will be the |φj〉 and the rest will
be garbage so

U
.
= U∗LUR

〈ψ1|
〈ψ2|
〈ψ3|

...

 [|φ1〉 |φ2〉 |φ3〉 · · ·] =

[
G ∗
∗ ∗

]

is a block encoding of Gram matrix G with l = n ancillas. All we need to do in each setting is
determine how to get appropriate UL and UR to get a block encoding for the desired matrix.

6.1 Sparse Access

Recall from above that in this setting, we have access to the matrix via the following three oracles

1. Orow : |i〉 |k〉 7→ |i〉 |cik〉, where cik is the column index of the k-th nonzero entry in row i

2. Ocolumn : |`〉 |j〉 7→ |r`j〉 |j〉, where r`j is the row index of the `-th nonzero entry in column j

3. OM : |i〉 |j〉 |0b〉 7→ |i〉 |j〉 |Mij〉

7

In this setting we will assume that M is s-sparse. Additionally, we will require that ‖M‖max
.
=

maxi,j |Mij | ≤ 1. This is not too extreme of a requirement because in order to even be able to have
a block encoding M must have 2-norm at most 1. The actual construction goes as follows.

First, we can use Orow to create UL : |0n〉 |i〉 7→ 1√
s

∑s
k=1 |i〉 |cik〉. Then we use Ocolumn to

create UR : |0n〉 |j〉 7→ 1√
s

∑s
`=1 |r`j〉 |j〉. If we consider the Gram matrix U∗LUR, notice that the

only way for an entry (U∗LUR)ij to be nonzero is if cik = j and r`j = i. In this case (U∗LUR)ij =
1/s, and 0 otherwise. Note that the only nonzero entries of M appear in positions (i, j) with
(U∗LUR)ij = 1/s. Finally, we can can use OM to apply quantum rejection sampling on extra ancilla:
|0〉 7→Mij |0〉+

√
1− |Mij |2 |1〉. This yields a block encoding of M/s using l = n+ 1 ancillas.

6.2 QRAM access

In this setting we have access to the matrix via the following two methods

1. QRAM access to row vectors Mi∗ and column vectors M∗j .

2. QRAM access to the 2-norms of these vectors: r with ri
.
= ‖Mi∗‖2 and c with cj

.
= ‖M∗j‖2.

As we will see, it will actually only be necessary to use the row accesses. For the construction we
again use the Gram matrix approach as follows.

First, we use access to Mi∗ to create

UL : |0n〉 |i〉 7→ 1

‖Mi∗‖2

∑
`

Mi` |i〉 |`〉

Then we use access to r to create

UR : |0n〉 |j〉 → 1

‖M‖F

∑
k

‖Mk∗‖2 |k〉 |j〉

where ‖ · ‖F is the Frobenius norm. To compute U∗LUR, we only need to consider ` = j and k = i.
We then have (U∗LUR)ij = (Mij/‖Mi∗‖2)(‖Mi∗‖2/‖M‖F) = Mij/‖M‖F . So this time we get a block
encoding for M/‖M‖F with m = n ancillas.

6.3 Density operator from purification

For the last setting, we will get the block encoding of a density operator from its purification. To
do this, we will use the Schmidt decomposition, which we have used before. Consider an n-qubit
density operator ρ with an (a + n)-qubit purification |ψ〉 (using a additional ancilla qubits). We
will view this as a two party system where Alice has the first a qubits and Bob has the last n.
Recall that there exist λk ∈ R and two orthonormal bases |φA,k〉 for Alice’s register and |φB,k〉 for
Bob’s register such that |ψ〉 =

∑
k λk |φA,k〉 |φB,k〉 and ρ =

∑
k λ

2
k |φB,k〉 〈φB,k|. The construction

of the block encoding is as follows.
First, we assume that we can generate the purification using a unitary U : |0a+n〉 7→ |ψ〉. Then

consider B = (U∗ ⊗ In)(Ia ⊗ S)(U ⊗ In) where S : |i〉 |j〉 7→ |j〉 |i〉 is the swap operator. Then we

8

do the dot product

〈0a+n| 〈φB,i|B |0〉a+n |φB,j〉 = 〈ψ| 〈φB,i| (Ia ⊗ S) |ψ〉 |φB,j〉

=

(∑
k

λk 〈φA,k| 〈φB,k| 〈φB,i|

)
(Ia ⊗ S)

(∑
`

λ` |φA,`〉 |φB,`〉 |φB,j〉

)

=

(∑
k

λk 〈φA,k| 〈φB,k| 〈φB,i|

)(∑
`

λ` |φA,`〉 |φB,j〉 |φB,`〉

)
= λiλjδij = 〈φB,i| ρ |φB,j〉

Since the |φB,∗〉s are a basis, this is telling us that for every i, j ∈ [N], 〈0a+n| 〈i|B |0a+n〉 |j〉 =
〈i| ρ |j〉, so B is a block encoding of ρ with m = a+ n ancillas.

9

	Recommendation problem
	Quantum algorithm for recommendation systems

	Input/output access issues
	Input considerations
	Output considerations

	Vector encoding using QRAM access
	QRAM state generation

	Matrix encoding
	Matrix QRAM access
	Sparse matrix access

	Dequantization
	Block encoding
	Sparse Access
	QRAM access
	Density operator from purification

