
Quantum Computing 3/31/2022

Lecture 17: Qubitization and Quantum Signal Processing

Instructor: Dieter van Melkebeek Scribe: Mingrui Liu, Ilay Raz

Last lecture, we took a detour and looked into input and output mechanisms for linear algebra
routines that give exponential speedup compared to classical algorithms. We stated some caveats
for these results, and talked about block encodings of matrices as a convenient way to describe large
matrices with small quantum circuits. We will be using that today as well, when we pick up our
discussion from where we left off in our discussion of Hamiltonian simulation using the additional
ingredient of quantum signal processing.

We begin today by talking about the problem of eigenvalue transformation, which we saw in the
lecture on Hamiltonian simulation as evaluating matrix functions on block encodings of Hermitian
matrices. Then, to introduce quantum signal processing, we must first describe the process of
qubitization which can be viewed as an advanced (reverse) version of phase kickback that we first
saw in lecture 8. Finally, we state the main result that allows quantum signal processing as well
as mention some applications of this paradigm and a further extension, namely singular value
transformations.

1 Eigenvalue Transformation

The problem of eigenvalue transformation takes as input a function f and a block encoding of a

n-qubit Hermitian matrix M , namely an (` + n)-qubit unitary A =

[
M ∗
∗ ∗

]
. It then outputs a

block encoding of f(M)/c where f(M) is the matrix with the same eigenvectors as M , only with
eigenvalues mapped by f(x), and c is as small as possible.

Note that the unitarity of the input and output block encodings implies that ‖M‖2 ≤ 1 and
‖f(M)/c‖2 ≤ 1. Thus, we can only hope to achieve c = 1 if |f(x)| ≤ 1 for all x ∈ [−1, 1]. The latter
condition is satisfied when f is a Chebyshev polynomial or when f(x) = exp(ixt) for t ∈ R, as in
the setting of Hamiltonian simulation. Indeed, in both of those settings we came up with efficient
algorithms that achieved c = 1 and c very close to 1, respectively.

Here is an overview of the approaches that we have seen and will see for solving (instantiations
of) the eigenvalue transformation problem:

1. Our first attempt at matrix inversion in lecture 15 used eigenvalue estimation and then
quantum rejection sampling on f(x) = 1/x. This was not very efficient because eigenvalue
estimation is not very accurate, as a bits of accuracy require an exponentially large number,
2a, applications of the underlying unitary. Also, quantum rejection sampling can be slow if
the probability of success is low, which was the case when the condition number was high.

2. We improved this by using quantum walks and then linear combination of unitaries. This
approach relied on Chebyshev polynomials which approximated the function well; for matrix
inversion we we able to reduce the dependency on the accuracy from exponential to polyno-
mial. In Hamiltonian simulation the approach led to an algorithm that takes O(t log(1/ε))
time and O(log(t) + log log(1/ε)) extra ancillas.

1

3. Using quantum signal processing we will obtain an algorithm for Hamiltonian simulation that
runs in time O(t+ log(1/ε)) and only needs O(1) extra ancillas.

2 Recap of Prior Approach

We begin with a recap of the quantum walks approach mentioned above, because our process will
be quite similar.

The first step used quantum walks to realize the Chebyshev polynomials. In order to do so,
we needed to first transform the block encoding A into another block encoding S̃ for M satisfying
S̃2 = I, and could do this using only a single extra ancilla qubit, so ` + 1 ancillas in total. Then
a quantum walk for d steps effectuates (S̃R)d and block encodes Td(M), where R is the reflection
over |0`+1∗〉, the subspace that fixes the first `+ 1 coordinates to be 0.

Then, we used linear combination of unitaries to approximate f(M) by using the Chebyshev
expansion of degree d of f(x) To be precise, we aim to approximate f(x) by g(x) =

∑d
k=0 ckTk(x).

To get a block encoding of g(M)/c for c
.
=
∑d

k=0 |ck| we calculate

(C∗ ⊗ I)V (C ⊗ I)

where C is a unitary mapping |0log d〉 to
∑d

k=0

√
ck/c |k〉, and V a unitary “multiplexer” mapping

|k〉 |ψ〉 to |k〉 (S̃R)k |ψ〉. This process requires O(d) applications of S̃R, one of C, one of C∗, and
log d extra ancillas. We can view this as the following circuit for U

.
= S̃R:

C

•

C∗ |0blog dc〉


|0blog dc〉

•
•

...
•

U1 U2 U4 Ud

|0`+1〉

|0`+1〉

...

|ψ〉

Figure 1: A circuit implementation of prior approach

Note that the output of the last register is g(M) |ψ〉 when the postselection operations (the
curved elements in the upper and middle right) succeed. In order to achieve the improvement that
we stated, we will avoid the use of LCU as it induces extra ancillas and the additional postselection
on the top of Figure 1. This might have a low success probability due to a large value of c. For
Hamiltonian simulation, we saw that d = Ω(t + log(1/ε)) was sufficient to get a close enough
approximation, and the value of c converged to et, leading to a low probability of success except
for small t.

2

Note that if g(x) happens to be Td(x), we don’t need LCU – the native random walk approach
already does the job. Instead of combining random walks of different lengths up to d as happens
in the LCU approach, we’ll modify the random walk process of length d by interjecting additional
operations between every two successive steps of the random walk, where the additional operations
are time dependent but do not make use of the blackbox. It turns out that unitary diagonal
operations on a single ancilla qubit are sufficient to achieve our goal.

3 Qubitization

Similar to Grover’s iterate, the random walk iterate S̃R is qubitized in the sense that its effect on
the entire system can be analyzed through one-qubit subsystems. This qubitization can be viewed
as an advanced version of phase kickback in reverse. Phase kickback allows us to interpret an action
on a single ancilla qubit as an operation on the actual system. Qubitization allows us to interpret
the operation on the system as an action on a single qubit.

As we will see next, qubitization of the quantum walk follows from the fact that S̃ is self-
inverse. For that reason, the process we saw earlier to transform a given block encoding A of M
into a self-inverse block encoding S̃ of M , is often referred to as qubitization.

Self-inverse vs qubitized block encoding Consider an eigenvector |ψ〉 of M with correspond-
ing eigenvalue x ∈ [−1, 1]: M |ψ〉 = x |ψ〉. This means that the block encoding S̃ acts on |0`+1〉 |ψ〉
by acting as M |ψ〉 = x |ψ〉 on one corner, and then some other perpendicular part. In other words
we have for some |ξ〉 ⊥ |0`+1∗〉

S̃ |0`+1〉 |ψ〉 = x |0`+1〉 |ψ〉+
√

1− x2 |ξ〉 , (1)

where the amplitude
√

1− x2 comes from the fact that S̃ is unitary so the squared amplitudes must
sum up to 1. Note that the state |ξ〉 is not well-defined if |x| = 1. In that case, |0`+1〉 |ψ〉 is an
eigenvector of S̃, and the action is simple to analyze. We assume |x| < 1 from now on.

Multiplying both sides of (1) by S̃ from the left and using the fact that S̃2 = I, we obtain

|0`+1〉 |ψ〉 = xS̃ |0`+1〉 |ψ〉+
√

1− x2S̃ |ξ〉 ,

which together with (1) shows that S̃ |ξ〉 can be expressed as a linear combination of |0`+1〉 |ψ〉
and |ξ〉. It follows that the plane span(|0`+1〉 |ψ〉 , |ξ〉) is invariant under S̃. Thus, the condition
S̃2 = I implies that the action of S̃ on |0`+1∗〉 is qubitized. A more careful analysis of the argument
establishes that qubitization of the block encoding S̃ of M is equivalent to the top left corner of S̃2

of the same dimension as M being the identity I.
As S̃ is a self-inverse unitary, it is a reflection overall, and acts as a reflection in the invari-

ant plane span(|0`+1〉 |ψ〉 , |ξ〉). Working out the above calculations shows that the reflection is
equivalent to the matrix

W (x)
.
=

[
x

√
1− x2√

1− x2 −x

]
=

[
cos θ sin θ
sin θ − cos θ

]
, (2)

where we wrote x ∈ [−1, 1] as x
.
= cos(θ), and

√
1− x2 = sin(θ). The plane span(|0`+1〉 |ψ〉 , |ξ〉) is

also invariant under the overall reflection R: |0`+1〉 |ψ〉 is an eigenvector with eigenvalue 1, and |ξ〉

3

an eigenvector with eigenvalue -1. In Figure 2, the effect of R is a reflection about the horizontal
axis, equivalent to the matrix [

1 0
0 −1

]
.

The combined effect of S̃R is a rotation over θ counter-clockwise, equivalent to the matrix

W (x)

[
1 0
0 −1

]
=

[
cos θ − sin θ
sin θ cos θ

]
.

θ

S̃R |0`+1〉 |ψ〉

|0`+1〉 |ψ〉

|ξ〉

Figure 2: The effect of S̃ and S̃R on |0`+1〉 |ψ〉

The above perspective clarifies a couple of points that we made earlier:

◦ The tight connection between Grover and quantum walks. In particular, both are qubitized,
and in a very similar way.

◦ The fact that d steps of the quantum walk yield a block encoding of Td(M). Indeed, d
rotations over θ are equivalent to a rotation over dθ, and Td(x) = Td(cos θ)

.
= cos(dθ).

Implementation To facilitate the transition to quantum signal processing, we introduce in the
qubitized quantum walk circuit an actual qubit on which the reflection R acts, and make the action
of R on that qubit explicit. We initialize the new ancilla qubit to |0〉, and implement each reflection
R as in Figure 3. The top qubit is the new ancilla, the unfilled dots represent that the NOT is
conditioned on the ` + 1 existing ancilla qubits being in state |0〉 rather |1〉 (as would be denoted
with the usual filled dot), and G denotes the one-qubit gate

G =

[
−1 0
0 1

]
. (3)

The first controlled NOT splits off those basis states on the `+ 1 +n existing qubits whose first
`+ 1 qubits are in state |0`+1〉, and tags them with a value of |1〉 for the new ancilla, whereas the

4

|0〉 G

...
...

`+ 1 qubits

...
...

n qubits

Figure 3: A circuit implementing the reflection R

|0〉 G

S̃

...
...

`+ 1 qubits

...
...

n qubits︸ ︷︷ ︸
repeated d times

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4: A circuit implementing (S̃R)d via qubitization

others remain tagged with |0〉. The gate G add a phase flip to those tagged with |0〉, and leaves
the others untouched. The last controlled NOT undoes the tagging, which ensures the new ancilla
qubit returns to state |0〉. The net effect is that those basis states on the `+ 1 + n existing qubits
whose first ` + 1 qubits are in a state other than |0`+1〉, have their amplitudes multiplied by -1,
while the new ancilla qubit remains in state |0〉. Thus, R is properly implemented while the new
ancilla acts merely as a catalyst.

By incorporating S̃, we can use this circuit to implement (S̃R)
d
, as shown in figure 4.

4 Quantum Signal Processing

Quantum signal processing is a technique that involves varying the gate G applied to the first qubit
in Figure 4. Let us denote by Gk the gate G that is applied in the k-th step. On input of a state
|0`+2〉 |ψ〉 with M |ψ〉 = x |ψ〉, the circuit outputs

|0〉V
[
|0`+1〉 |ψ〉
|ξ〉

]
,

where |ξ〉 is defined by (1), and

V
.
= W (x)GdW (x)Gd−1 . . . G2W (x)G1, (4)

5

with W (x) given by (2). If the top left corner of the (2 × 2)-matrix V equals g(x) for every
x ∈ [−1, 1], we know that the circuit represents a block encoding of g(M).

There is an elegant characterization of exactly which (2 × 2)-matrices V can be realized when
the gates Gk are exponentials of the Pauli operator Z and an additional such gate is allowed at the
end. Recall that

Z
.
=

[
1 0
0 −1

]
and eiφZ =

[
eiφ 0
0 e−iφ

]
.

Lemma 1. Fix d ∈ N. There exist φk ∈ R for k ∈ [d+ 1] such that for all x ∈ [−1, 1]

eiφd+1ZW (x)eiφdZ . . . eiφ2ZW (x)eiφ1Z =

[
P (x) Q(x)

√
1− x2

(−1)d−1Q∗(x)
√

1− x2 (−1)dP ∗(x)

]
(5)

iff P (x), Q(x) ∈ C[x] are such that:

(a) deg(P) ≤ d and deg(Q) ≤ d− 1,

(b) P has parity d mod 2 and Q the opposite parity, and

(c) |P (x)|2 + (1− x2)|Q(x)|2 = 1 for all x ∈ [−1, 1].

Moreover, the phases φk can be found to within ε in time poly(d, log 1
ε).

In the first requirement for d = 0, deg(Q) = −1 means that Q ≡ 0. In the second requirement, we
say that a function f(x) has parity 0 if it is even, i.e., if f(x) = f(−x) for every input x; we say that
it has parity 1 if it is odd, i.e., f(x) = −f(−x) for every input x. An even polynomial P (x) is a
polynomial that only contains even powers of x; an odd polynomial P (x) is one that only contains
odd powers of x. The third requirement simply expresses that the matrix on the right-hand side
of (5) is unitary.

Proof. We give a proof by induction on d. The base case d = 0 follows because a polynomial P of
degree 0 satisfies (c) with Q ≡ 0 iff P is of the form P ≡ eiφ1 for some φ1 ∈ R. For the induction
step from d− 1 to d for integers d ≥ 1, we argue the two direction ⇒ and ⇐ separately.

For the direction⇒, by the induction hypothesis it suffices to prove that for every P̃ (x), Q̃(x) ∈
C[x] satisfying (a)-(c) for d − 1, and for every φd+1 ∈ R, there exist P (x), Q(x) ∈ C[x] satisfying
(a)-(c) for d such that

eiφd+1ZW (x)

[
P̃ (x) Q̃(x)

√
1− x2

(−1)dQ̃∗(x)
√

1− x2 (−1)d−1P̃ ∗(x)

]
=

[
P (x) Q(x)

√
1− x2

(−1)d−1Q∗(x)
√

1− x2 (−1)dP ∗(x)

]
.

(6)
The (2× 2)-matrix equation (6) is equivalent to four equations over C. The equations for the two
top entries can be written as follows:

e−iφd+1P (x) = xP̃ (x) + (−1)d(1− x2)Q̃∗(x)

e−iφd+1Q(x) = (−1)d−1P̃ ∗(x) + xQ̃(x)
(7)

The equations corresponding to the bottom elements are the complex conjugates of the equations
in (7). Thus, (7) is equivalent to (6).

6

The equations (7) show that (a)-(b) carry over from P̃ (x) and Q̃(x) for d− 1 to P (x) and Q(x)
for d. That (c) carries over follows from the fact that the matrices eiφd+1Z and W (x) are unitary.

For the direction⇐, by the induction hypothesis it suffices to prove that for every P (x), Q(x) ∈
C[x] satisfying (a)-(c) for d, there exist φd+1 ∈ R and P̃ (x), Q̃(x) ∈ C[x] satisfying (a)-(c) for d− 1
such that (6) holds. We have shown that (6) is equivalent to (7), which can be rewritten as

P̃ (x) = e−iφd+1xP (x) + (−1)d−1eiφd+1(1− x2)Q∗(x)

Q̃(x) = (−1)deiφd+1P ∗(x) + e−iφd+1xQ(x)
(8)

Property (c) carries over for the same reason as in the direction ⇒. The equations (8) show that
(b) carries over for every choice of φd+1 ∈ R, and that (a) carries over with d replaced by d − 1
modulo one issue: If deg(P) = d or deg(Q) = d − 1, then P̃ may be of degree d + 1 instead of
at most d − 1, and Q̃ may be of degree d instead of at most d − 2. However, (8) shows that the
coefficient of degree d+ 1 of P̃ as well as the coefficient of degree d of (−1)dQ are given by

e−iφd+1pd + (−1)deiφd+1qd1 , (9)

where pd denotes the coefficient of degree d of P , and qd−1 the coefficient of degree d − 1 of Q.
Property (c) of P and Q can be written as

P (x)P ∗(x) + (1− x2)Q(x)Q∗(x) = 1 for all x ∈ [−1, 1]. (10)

The left-hand side of (10) is a polynomial of degree at most 2d with coefficient of degree 2d equal
to pdp

∗
d − qd−1q∗d−1 = |pd|2 − |qd−1|2. Since the right-hand side of (10) is the constant polynomial

1, and d ≥ 1, the coefficient of degree 2d of the left-hand side must vanish, which happens iff
|pd| = |qd−1|. In that case, we can choose φd+1 ∈ R such that (9) vanishes, namely any value in
case pd = qd−1 = 0, and a value such that e2iφd+1 = (−1)d−1pd/qd−1 otherwise. The latter equation
allows us to compute the phase φd+1 and by (8) the coefficients of P̃ and Q̃ up to an absolute error
of at most ε in time polynomial in d and log(1/ε) given the coefficients of P and Q, which suffices
to achieve the efficiency stated in the theorem. �

To connect Lemma 1 to (4) for the case where the gates Gk are diagonal, note that every unitary
diagonal G can be written as

G =

[
eiα 0
0 eiβ

]
= ei(α+β)/2

[
ei(α−β)/2 0

0 e−i(α−β)/2

]
= ei(α+β)/2 · eiφZ

for α, β ∈ R and φ
.
= (α− β)/2. It follows that up to a global phase and an extra diagonal unitary

Gd+1, the expressions on the right-hand side of (4) are equivalent to those on the left-hand side
of (5) in Lemma 1. Noting that the lemma provides a necessary and sufficient condition, it fully
characterizes the types of operations we can express with quantum signal processing and states that,
for operations which can be expressed in this way, the phases φk can be approximated efficiently.

From the perspective of block encoding, we only care about the top left corner of the (2 × 2)-
matrix (5), i.e., about P (x). The question is for which polynomials P (x) ∈ C[x] we can (efficiently)
find a polynomial Q(x) ∈ C[x] such that conditions (a)-(c) in Lemma 1 are met. The conditions
imply the following necessary properties on P :

(a’) deg(P) ≤ d.

7

(b’) P has parity d mod 2.

(c’) |P (x)| ≤ 1 for allx ∈ [−1, 1].

In case P has real coefficients, these conditions turn out to be essentially sufficient, as well.

Lemma 2. Fix d ∈ N, and let P (x) ∈ R[x] be a polynomial satisfying conditions (a’)-(c’). There
exist φk ∈ R for k ∈ [d+ 1] such that for all x ∈ [−1, 1] the top left corner of

eiφd+1ZW (x)eiφdZ . . . eiφ2ZW (x)eiφ1Z (11)

has P (x) as its real part. Moreover, the phases φk can be found to within ε in time poly(d, log 1
ε)

and the time needed to find the roots of a real polynomial of degree at most 2d to within poly(ε).

Proof. Consider the multiset S of roots of the real polynomial M(x) = 1 − |P (x)|2 = 1 − P (x)2.
Since M(x) is an even real polynomial, for any root s ∈ S we must have −s ∈ S and s∗ ∈ S. Define
the following subsets of S:

S0 = {s ∈ S : s = 0}
S(0,1) = {s ∈ S : s ∈ (0, 1)}
S[1,∞) = {s ∈ S : s ∈ [1,∞)}

SI = {s ∈ S : <(s) = 0 and =(s) 6= 0}
SC = {s ∈ S : <(s) 6= 0 and =(s) 6= 0}

(12)

For some scaling factor k ∈ R+ we have

M(x) = k2x|S0|
∏

s∈S(0,1)

(x2−s2)
∏

s∈S[1,∞)

(s2−x2)
∏
s∈SI

(x2+|s|2)
∏

(a+bi)=s∈SC

(x4+2x2(b2−a2)+(a2+b2)2)

(13)
Rearrange the terms to

s2 − x2 = (s2 − 1)x2 + s2(1− x2) = |
√
s2 − 1x+ is

√
1− x2|2 = |Rs(x)|2

x2 + |s|2 = (|s|2 + 1)x2 + |s|2(1− x2) = |
√
|s|2 + 1x+ i|s|

√
1− x2|2 = |Ps(x)|2

x4 + 2x2(b2 − a2) + (a2 + b2)2 = |(cx2 − a2 − b2) + i
√
c2 − 1x

√
1− x2|2 = |Q(a,b)(x)|2

(14)

where c = a2 + b2 +
√

2(a2 + 1)b2 + (a2 − 1)2 + b4. Note that c ∈ [1,∞) as c is real and c ≥
a2 + |a1 − 1| ≥ 1.

Define

W (x) = kx|S0|/2
∏

s∈S(0,1)

√
x2 − s2

∏
s∈S[1,∞)

Rs(x)
∏
s∈SI

Ps(x)
∏

(a+bi)=s∈SC

Q(a,b)(x) (15)

Note that x|S0|/2∏
s∈S(0,1)

√
x2 − s2 is a polynomial since every root in S0 and S(0,1) has even

multiplicity as M(x) ≥ 0 for x ∈ (−1, 1). Also note that W (x) is a product of expressions of the
form B′(x) + i

√
1− x2C ′(x) where B′ and C ′ are polynomials with real coefficients of opposite

parities, thus W (x) can also be written in a similar form as W (x) = B(x) + i
√

1− x2C(x).

8

Now observe that M(x) = |W (x)|2 = B(x)2 + (1 − x2)C(x)2. If B(x) has the same parity as
P (x), we set B̃(x) = B(x) and C̃(x) = C(x). If B(x) does not have the same parity as P (x), we
know deg(M) ≤ 2d− 2. Then we can use M(x) = |W (x)(x+ i

√
1− x2)|2 = B̃(x) + (1− x2)C̃(x)2

where B̃(x) and C̃(x) are polynomials with real coeffcients; this way, B̃(x) has again the same
parity as P (x).

Define P̃ (x)
.
= P (x) + iB̃(x), and Q̃(x)

.
= C̃(x). We have constructed P̃ (x), Q̃(x) ∈ C[x] that

satisfy the conditions (a)-(c) in Lemma 1, and such that the real part of P̃ (x) equals P (x). �

Putting everything together, we can perform eigenvalue transformation by any polynomial
P (x) ∈ C[x] with a circuit similar to the one in Figure 4 under very mild condition on P (x).

Theorem 3. Let P (x) ∈ C[x] be a polynomial of degree d that satisfies one of the following condi-
tions:

◦ P (x) ∈ R(x), has parity d mod 2, and satisfies |P (x)| ≤ 1 for all x ∈ [−1, 1].

◦ P (x) ∈ R(x) or has parity d mod 2, and satisfies |P (x)| ≤ 1/2 for all x ∈ [−1, 1].

◦ |P (x)| ≤ 1/4 for all x ∈ [−1, 1].

Given a block encoding A for a Hermitian matrix M with ` ancillas, we can compute a block
encoding for P (M) with `+O(1) ancillas that involves d applications of A and A∗, one controlled
application of A, and O(`d) other quantum gates. The block encoding can be computed to within an
absolute error of ε in time poly(d, log 1

ε) and the time needed to find the roots of a real polynomial
of degree at most 2d to within poly(ε).

Proof. We start with the first bullet. By qubitization, Lemma 1 and Lemma 2 we can compute
phases φk for k ∈ [d + 1] such that the circuit in Figure 4 corresponding to (4) with Gk = eiφkX

is a block encoding of e−iφd+1P̃ (M), where P (M) = 1
2(P̃ (M) + P̃ (M)∗). The complex conjugate

transpose of this block encoding for P̃ (M) gives us a block encoding for eiφd+1P̃ (M)∗. Using the
LCU method, we can combine the two block encodings into one for P (M) of the stated complexity.

For the last bullet, we separate the even/odd and real/imaginary parts of P (x):

P (even)(x) = P (x) + P (−x)

P (odd)(x) = P (x)− P (−x)

P
(even)
< (x) = P (even)(x) + P ∗(even)

P
(even)
= (x) = (P (even)(x)− P ∗(even)(x))/i

P
(odd)
< (x) = P (odd)(x) + P ∗(odd)(x)

P
(odd)
= (x) = (P (odd)(x)− P ∗(odd)(x))/i

Each of the last four polynomials satisfy the conditions of first bullet. As

P (x) =
1

4
(P

(even)
< (x) + P

(odd)
< (x) + iP

(even)
= (x) + iP

(odd)
= (x)),

we can combine the block encodings corresponding to each of the four parts using the LCU method
into one for P (M) of the stated complexity.

A similar argument established the middle bullet, where we only need to consider two parts.�

9

Application to Hamiltonian simulation There exists a black-box algorithm that takes a
block encoding of a Hermitian M with ` ancilla qubits, t ∈ [0,∞), and ε ∈ (0,∞), and produces a
block encoding of a matrix Q such that ||Q − exp(iHt)||2 ≤ ε, using q = O(t + log(1ε)) controlled
applications of the black-box and its inverse, O(`q) other quantum gates, and ` + O(1) ancilla
qubits.

5 Conclusion

Quantum signal processing represents a powerful tool for eigenvalue transformation of Hermitian
matrices. The question of applicability boils down to how easily the transformation function f(x)
can be approximated by low-degree polynomial P (x). The sufficient condition for P is that |P (x)| ≤
1/4 for every x ∈ [−1, 1]. The approach extends to any matrix M that has a full orthonormal basis
of eigenvectors. Such matrices are known as normal, and are characterized by the equation MM∗ =
M∗M . They include Hermitian matrices, unitary matrices, and many more, but not all matrices.
The approach can be further extended to quantum singular value transformation [GSLW19], which
applies to all matrices M .

This technique of eigen (or singular) value transformation captures many of the techniques
and speedups we have discussed. There is a strong connection between these techniques and
Grover’s algorithm, amplitude amplification, and quantum walks, which also act by performing
rotations expressed by two reflections across some states in a plane. In particular, the application
of Chebyshev polynomials and fast forwarding of random walks follows directly from this framework.
In addition to those techniques, which can achieve a quadratic speedup compared to classical results,
the quantum signal processing framework can also be used to achieve exponential improvements
by expressing the exponential functions used in Hamiltonian simulation and the inversion used in
solving systems of linear equations. The functions used to solve the recommender system can also
be expressed in this framework.

Among the techniques not captured by this framework are those obtained by phase estimation,
such as factoring integers and solving the discrete log and hidden subgroup problems; in these cases,
applying phase estimation is efficient because running the underlying unitary the large number of
required times (O(1ε) for error bound ε) can be made efficient (e.g., by using iterated squaring to
perform modular exponentiation efficiently in Shor’s algorithm).

References

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular
value transformation and beyond: Exponential improvements for quantum matrix arith-
metics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, page 193–204, New York, NY, USA, 2019. Association for
Computing Machinery.

10

	Eigenvalue Transformation
	Recap of Prior Approach
	Qubitization
	Quantum Signal Processing
	Conclusion

