
Quantum Computing 4/7/2022

Lecture 19: Fourier Transform

Instructor: Dieter van Melkebeek Scribe: Yang Gao

Last time we talked about Fourier Sampling that is based on the Fourier Transform, and we’ve
seen Fourier Transform over Zn2 . In this lecture we discuss in more general about Fourier Transforms
and solve the exercise on Fourier Sampling from last lecture. There is not a lot of quantum in this
lecture, and the focus is on Fourier Transforms over finite Abelian group.

1 Fourier Sampling Exercise

We begin with the solution to the exercise from the last lecture, which posed the following question:

Exercise 1. Given: Black-box access to one-to-one functions f, g : {0, 1}n → {0, 1}n where g(x) =
f(x⊕ s) for some s ∈ {0, 1}n. Find s, with certainty, using O(n) queries.

Solution

One natural thing to try is to have two registers. However this way two computations will evolve
independently, but f and g need to interact somehow.

We use the Fourier sampling technique we discussed in the solution to Simon’s problem. We
begin with the initial superposition

1√
N

∑
x∈{0,1}n

|x〉 |0n〉

where N = 2n as usual.
In order to allow interference between the output of f and g, we introduce an additional control

qubit which we use to select whether to apply Uf or Ug. To implement this, consider the function
h : {0, 1}n+1 → {0, 1}n where h(x, 0) = f(x) and h(x, 1) = g(x) for x ∈ {0, 1}n. The controlled
application of Uf and Ug is achieved by Uh.

We now have state
1√
N

∑
x∈{0,1}n

|x〉 |0〉 |0n〉

and, after applying H to the control qubit, we have

1√
2N

∑
x∈{0,1}n

|x〉 (|0〉+ |1〉) |0n〉 .

We now perform the controlled application of Uf and Ug; we get

1√
2N

∑
x∈{0,1}n

|x〉 (|0〉 |f(x)〉+ |1〉 |g(x)〉)

=
1√
2N

∑
x∈{0,1}n

|x〉 (|0〉 |f(x)〉+ |1〉 |f(x⊕ s)〉).
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This is similar to last lecture about finding a hidden XOR shift in that there are two ways the
tag can have a given value. We follow the same strategy as last time, applying the Hadamard gate
H⊗n to the first register. Recall that

H⊗n |x〉 =
1√
N

∑
y∈{0,1}n

(−1)x·y |y〉 .

Our state is now

1√
2N

∑
x,y∈{0,1}n

(−1)x·y |y〉 (|0〉 |f(x)〉+ |1〉 |f(x⊕ s)〉).

Reparametrizing x in the components where the control qubit is 1 yields

1

2N

∑
x,y∈{0,1}n

|y〉 ((−1)x·y |0〉+ (−1)(x⊕s)·y |1〉) |f(x)〉

=
1

2N

∑
x,y∈{0,1}n

(−1)x·y |y〉 (|0〉+ (−1)s·y |1〉) |f(x)〉

Applying H to the control bit yields the following state:

1

2N

∑
x,y∈{0,1}n

(−1)x·y(1 + (−1)s·y) |y〉 |0〉 |f(x)〉

+
1

2N

∑
x,y∈{0,1}n

(−1)x·y(1− (−1)s·y) |y〉 |1〉 |f(x)〉

If s 6= 0n, due to the inference, observing the first register and control bit yields:

◦ With probability 1/2: |y〉 |0〉 for uniform y ∈ s⊥

◦ With probability 1/2: |y〉 |1〉 for uniform y /∈ s⊥

Note that |s⊥| = |{0, 1}n − s⊥|, so we observe |y〉 |y · s mod 2〉 for y chosen uniformly at random
from {0, 1}n.

If s = 0n, we measure |y〉 |0〉 for y chosen uniformly at random from {0, 1}n.
Hence in all cases where y is distributed uniformly over {0, 1}n, we observe |y〉 |y · s mod 2〉.
We repeat the process until we have obtained n linearly independent such y. By using amplitude

amplification with error elimination in the same way as discussed in Simon’s problem, we can ensure
that each time we repeat the process, we obtain a y that is linearly independent from the previously
obtained y’s using 3 applications of Uh. Once we have obtained n such y, which we can do with
certainty in n iterations and 3n applications of Uh, we may solve the resulting system for s.
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2 Standard Fourier Transform

Definition 1. Let f : R → C such that
∫
x |f(x)|2 dx < ∞. Then its Fourier transform f̂ is

a function from R to C such that f̂(ω) =
∫
x f(x)e2πiωx dx for all ω ∈ R. The inverse Fourier

transform of f̂ is f(x) =
∫
ω f̂(ω)e−2πiωx dω.

Where ω denotes the frequency, and e2πiωx = cos(2πωx) + i sin(2πωx)

Properties of the Fourier Transform

Note that the Fourier transform is a linear transformation: ̂af + bg = af̂+bĝ. The Fourier tranform
is also unitary; we can see this property using several equivalent definitions of the unitary property.
A unitary transformation can be viewed as one that preserves the 2-norm or one that transforms
an orthonormal basis of its domain into an orthonormal basis. Another important definition, which
we have used heavily in this class, is that a transform is unitary when its inverse is equal to its
adjoint.

First, consider the a unitary transformation as one which preserves inner products. If we
consider the inner product space of functions from R to C with inner product (f, g) =

∫
x f(x)g(x) dx,

then the Fourier transform preserves inner products, i.e., (f̂ , ĝ) = (f, g), and is hence a unitary
transformation.

Now, recall that the inverse Fourier transform is

f(x) =

∫
ω
f̂(ω)e−2πiωx dω.

As e−2πiωx is the conjugate of e2πiωx, we can see that the inverse Fourier transform is the conjugate
transpose, or the adjoint, of the standard Fourier transform, which is thus unitary.

Another way to see that the Fourier transform is unitary as it tranforms the standard orthonor-
mal basis (consisting of the Dirac delta functions) into an orthonormal basis, which is referred to
as the Fourier basis consisting of the harmonics,

e2πiωx = cos(2πωx) + i sin(2πωx).

Functions in the standard basis are referred to as being in the time domain, and functions in
the Fourier basis are referred to as being in the frequency domain.

Definition 2. The convolution of f : R→ C with g : R→ C is f ∗ g : R→ C where

(f ∗ g)(x) =

∫
y
f(x)g(x− y) dy.

One particularly important property of the Fourier transform is that convolution in the time

domain is equivalent to point-wise product in the frequency domain, i.e., that f̂ ∗ g(ω) = f̂(ω)ĝ(ω)
for all ω ∈ R.

Next we discuss the more general form of the Fourier transform including over finite Abelian
groups of size N , which is of particular interest in developing quantum algorithms. This form is also
the one most commonly used in the practical applications which rely on the O(N logN) complexity
of the fast Fourier tranform, an efficient algorithm to compute the discrete Fourier transform on
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the group ZN . Due to the convolution property of the Fourier transform, the fast Fourier transform
makes it possible to perform convolutions in time O(N logN) which would take O(N2) if done in
the time domain instead. For this reason, the Fourier transform is heavily used in fields such as
digital signal processing, computer vision, and statistics.

3 General Fourier Transform

In order to apply the Fourier Transform to quantum algorithms, we need to generalize it to a
transformation of functions whose domain is a more general group; a Fourier transform exists for
many important groups (for example, R under addition as above), though not for all groups. We
show in this lecture that it is guaranteed to exist for an important class of groups, finite Abelian
groups; the Fourier Transform is also unique (up to permutations of the basis elements) for this
class of groups.

Definition 3. Let G be a group. A Fourier Transform on G is a transformation on the space of
functions {f : G→ C}, mapping f to f̂ , that is:

◦ linear

◦ unitary

◦ turns convolutions into point-wise products: f̂ ∗ g(x) = f̂(x)ĝ(x) for f, g : G→ C and x ∈ G.

The convolution of f and g on a finite group G is defined as (f ∗ g)(x) =
∑

y f(y)g(x− y). The
group operation is used in the subtraction x− y; the other operations are in C.

3.1 Characters of a Group

In constructing the Fourier Transform for finite Abelian G, characters take the place of harmonics.

Definition 4. A character of a group G is a homomorphism from G to the multiplicative group C,
or equivalently, a mapping χ : G→ C such that χ(x+ y) = χ(x) · χ(y).

The properties of characters χ, χ′ of a finite group G include the following (proofs follow):

1. Roots of Unity All members of the range of a character of G are roots of unity and, in
particular, |G|-th roots of unity, i.e., χ(x)|G| = 1 for all x ∈ G.

2. Orthogonality Distinct charaters of G are orthogonal to each other:

if χ 6= χ′, then (χ, χ′) = 0 where the inner product of f, g : G→ C is defined as

(f, g) =
∑
x∈G

f(x)g(x).

Notation: if x is a member of a group with operation + and n is a positive integer, we write
n · x to represent x+ x+ · · ·+ x where x appears n times.
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Figure 1: The sixth roots of unity

3.1.1 Roots of Unity Property

In the reals, the only roots of unity (i.e., of 1) are 1 and -1 (for integers k with even powers).
However, given some positive integer n, there are n roots of unity in C: specifically e2kπi/n for
0 ≤ k < n. Visualizing them in the complex plane, these values form the vertices of a regular n-gon
inscribed in the unit circle, with the point 1 as one of the vertices : see Figure 1 for an example
with n = 6.

We wish to show that χ(x) is a |G|-th root of unity for every character χ of a finite group G.

Proof. First, we show that χ(0) = 1, which follows from the homomorphism property of χ. We have
that χ(0) = χ(0 + 0) = χ(0)2. Since χ(0), an element of the multaplicative group C, is invertible,
we must have χ(0) = 1.

Suppose that x ∈ G. We wish to show that χ(x)|G| = 1, i.e., that x is a |G|-th root of unity.
Let 〈x〉 = {x, x+ x, x+ x+ x, . . . } = {1 · x, 2 · x, 3 · x, . . . } be the subgroup of G generated by x.

As |G| is finite, |〈x〉| ≤ |G| is finite as well, so we have some positive integer k such that k ·x = 0.
Take the smallest such k, which we call the order of x (and which equals |〈x〉|), and consider χ(x)k.

As χ is a homomorphism, χ(x)k = χ(k · x) = χ(0) = 1. Now, from group theory we have that
the order of a subgroup of a finite group divides the size of the group, so k divides |G|. Hence,
χ(x)|G| = 1. �

3.1.2 Orthogonality Property

We now wish to show that distinct characters of a group G are orthogonal.

Proof. Suppose that a ∈ G. As a is invertible, we have that x = y if and only if a + x = a + y.
Now, as G is closed under addition, we have that∑

x∈G
χ(x) =

∑
a+x∈G

χ(a+ x)

=
∑
x∈G

χ(a+ x)

=
∑
x∈G

χ(a)χ(x)

= χ(a)
∑
x∈G

χ(x)

as χ is a homomorphism.
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Hence, we have either that
∑

x∈G χ(x) = 0 or χ(a) = 1 for all a ∈ G.
Noting that the conjugate of a root of unity is its inverse, we have, by the property shown

above, that χ = χ−1 for all characters χ of G.
Suppose that χ1, χ2 are distinct characters of G. Now, let χ = χ1 · χ2. As the conjugate of a

character and the product of two characters both satisfy the homomorphism properties, they are
also characters of G, and consequently, χ is a character of G. If χ is identically equal to 1, then we
must have that χ2 = χ−11 , and, by the above, that χ1 = χ2, a contradiction.

Thus, we must instead have

0 =
∑
x∈G

χ(x)

=
∑
x∈G

χ1(x)χ2(x)

= (χ1, χ2)

and we are done. �

From the fact that χ(x)χ(x) = 1 for all x ∈ G and characters χ of G we immediately derive the
following corollary.

Corollary 1. The normalized characters 1√
|G|
χ are orthonormal.

3.2 Properties of the General Fourier Transform

If f : G→ C can be written as

f =
1√
|G|

∑
χ

f̂(χ)χ (1)

for some f̂ , then f̂ is our candidate Fourier Transform of f .

3.2.1 Unitary Property

The linearity property of the Fourier transform is clearly satisfied; consider the unitary property.
We now show that the unitary property is satisfied. Suppose that f and g can be written in the
form (1).

Then, by the orthogonality property of the characters χ, and the fact that (χ, χ) = |G| for all
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characters χ of G we must have that

(f, g) =
1

|G|
∑
x∈G

∑
χ1,χ2

f̂(χ1)χ1(x)ĝ(χ2)χ2(x)

=
1

|G|
∑
χ1,χ2

∑
x∈G

f̂(χ1)ĝ(χ2)χ1(x)χ2(x)

=
1

|G|
∑
χ1,χ2

f̂(χ1)ĝ(χ2)
∑
x∈G

χ1(x)χ2(x)

=
1

|G|
∑
χ1,χ2

f̂(χ1)ĝ(χ2)(χ1, χ2)

=
∑
χ

f̂(χ)ĝ(χ)

= (f̂ , ĝ)

and so our candidate Fourier Transform preserves inner products (and thus the 2-norm) and is
unitary.

We can also show that our candidate Fourier Transform is unitary by showing that its inverse is
equal to its adjoint. By the orthogonality of the characters χ, we must also have that our candidate
Fourier Transform satisfies

f̂(χ) = (f, χ) =
1√
|G|

∑
x∈G

f(x)χ(x) (2)

Recall that the mapping f → f̂ is given by equation (1). From equation (2), we can see that the
inverse mapping f̂ → f is the conjugate transpose, or adjoint, of the forward mapping, showing
again that our candidate Fourier Transform is unitary.

3.2.2 Exercise: Convolutional Property

Exercise 2. Show that our candidate Fourier Transform satisfies the convolution property of the
Fourier Transform, i.e., that it transforms convolutions into point-wise products.

1. Show that if f and g can be written in the form (1), then so can f ∗ g : G → C, defined by
(f ∗ g)(x) =

∑
y∈G f(y)g(x− y).

2. Show that f̂ ∗ g(χ) = c(G) · f̂(χ) · ĝ(χ).

3. Determine c(G).

We have now shown that our candidate Fourier Transform satisfies the basic properties of a
Fourier Transform. It remains to be shown that all f : G→ C can be written in form (1), i.e., that
the characters of G form a basis for {f : G→ C}.

We show that this holds for finite Abelian G, and thus that the Fourier Transform exists for
those groups. This follows from the fact that the number of characters equals the size of the domain
G.
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3.2.3 Uniqueness of Fourier Basis

Theorem 2. If the characters of a group G span the space of all functions f : G → C then the
normalized characters form the unique Fourier basis up to a permutation of the basis elements and
global phase.

Proof. We have already shown above that, if the characters span the space of all functions f : G→ C
that they form a Fourier basis; it remains to show uniqueness.

Suppose that χ1 and χ2 are characters of G. From the convolution property,

χ̂1 ∗ χ2 = c(G) · χ̂1 · χ̂2.

By the definition of convolutions of f : G→ C and the homomorphism properties of χ2

(χ1 ∗ χ2)(x) =
∑
y∈G

χ1(y)χ2(x− y)

=
∑
y∈G

χ1(y)χ2(x)χ2(y)

= (χ1, χ2) · χ2(x)

as χ2(−y) = χ2(y)−1 = χ2(y).
Hence, if χ1 6= χ2, then we have

c(G) · χ̂1 · χ̂2 = χ̂1 ∗ χ2 = (χ1, χ2) · χ̂2 = 0

and so supp(χ̂1) ∩ supp(χ̂2) = ∅.
As the vector space of functions f : G → C is |G|-dimensional, and as the characters span the

set of all such functions, we must have at least |G| characters. Furthermore, because the characters
are orthogonal by the above, we can have no more than |G| characters and thus there exist exactly
|G| distinct characters of G. Since χ̂(χ) = (χ, χ) = |G| 6= 0 for all characters of G, we have
| sup(χ̂)| ≥ 1 for all χ and hence

|G| ≤
∑
χ

| sup(χ̂)|.

But as, by the above, the supports of distinct χ1 and χ2 are disjoint, we must also have that∑
χ

| sup χ̂| ≤ |G| = | ∪χ supp(χ̂)|.

Hence,
∑

χ | sup χ̂| = |G| and we must have | sup(χ̂)| = 1 for all χ.

For any function f : GC, |supp(f̂)| equals the number of the Fourier basis that are needed to
express f as a linear combination of them. Thus, |supp(χ̂)| = 1 means that χ is itself an element
of the Fourier basis, up to a scalar. As the Fourier basis is orthonormal, χ√

|G|
must, in particular,

be a member of the basis up to global phase. Consequently, the Fourier basis consisting of the
normalized characters is unique up to a permutation of the basis elements and global phase. �
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Figure 2: The sixth roots of unity

3.3 Characters of Finite Abelian Groups

We now use the following result from group theory:

Theorem 3 (Structure Theorem). Every finite Abelian group is isomorphic to

ZN1 × ZN2 × ZN3 × · · · × ZNk

under component-wise addition for some N1, N2, . . . , Nk ∈ N.

By our previous result it suffices to find |G| distinct characters. We first find N characters for ZN
for N ∈ N and then find |G1| · |G2| characters of G1 × G2 where G1 and G2 have |G1| and |G2|
characters, respectively.

3.3.1 Characters of Modular Addition

We simply construct the following N distinct characters. Recall that the range of the characters
of G is the set of N -th roots of unity (see Figure 2 for an example for N = 6). For each element
y ∈ ZN , we construct a unique character that maps 1 to exp(2πiy/N).

Explicitly, for y ∈ ZN , let χy : ZN → C such that χy(1) = (e2πi/N )y = e2πiy/N and χy(x) =
χy(1)x = e2πixy/N for x ∈ ZN . As χy is a homomorphism and distinct for each y ∈ ZN , we are
done.

For the special case of N = 2, the simple group with only two elements:
χy(x) = (−1)xy

χ0(x) ≡ 1 and χ1(x) = (−1)x

3.3.2 Characters of Direct Product

We construct the following |G1| · |G2| characters. For y1 ∈ G1 and y2 ∈ G2 let

χy1,y2(x1, x2) = χ(G1)
y1 (x1) · χ(G2)

y2 (x2).

As we have given a distinct χ
(G1)
y1 for each y1 ∈ G1 and similarly forG2, we have |G1|·|G2| = |G1×G2|

of these, which are distinct because the χ
(G1)
y1 and χ

(G2)
y2 are.

To show this, note that, where 01 and 02 are the identities of G1 and G2, respectively, we have

that χy1,y2(01, x2) = χ
(G2)
y2 (x2) and χy1,y2(x1, 02) = χ

(G1)
y1 (x1) since homomorphisms map identities

to identities (in this case, to 1). If (y1, y2) 6= (y′1, y
′
2) it follows that χy1,y2 and χy′1,y′2 will disagree

on some point. It remains to show that they are characters, i.e., that they are homomorphisms.
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Proof. By the definition of χy1,y2 and as χ
(G1)
y1 and χ

(G2)
y2 are homomorphisms,

χy1,y2(x1 + z1, x2 + z2) = χ(G1)
y1 (x1 + z1) · χ(G2)

y2 (x2 + z2)

= (χ(G1)
y1 (x1)χ

(G1)
y1 (z1)) · (χ(G2)

y2 (x2)χ
(G2)
y2 (z2))

= (χ(G1)
y1 (x1)χ

(G2)
y2 (x2)) · (χ(G1)

y1 (z1)χ
(G2)
y2 (z2))

= χy1,y2(x1, x2) · χy1,y2(z1, z2). �

As we have constructed N distinct characters for each ZN for all N ∈ N, the result which we
have just shown that the direct product of groups G1 and G2 with |G1| and |G2| distinct characters
has |G1| · |G2| characters allows us to show by induction that all groups of the form

ZN1 × ZN2 × ZN3 × · · · × ZNk

for N1, N2, . . . , Nk ∈ N have

N1 ·N2 · · · · ·Nk = |ZN1 × ZN2 × ZN3 × · · · × ZNk
|

distinct characters.
By the Structure Theorem, all finite Abelian groups are isomorphic to such a group, and hence

have a unique Fourier transform, up to a permutation of the basis elements and global phase.
For the case of G = (Z2)

n, we know what the characters are for Z2. The n-fold product of this
group is obtained by taking n independent copies:

χy(x) = Πjχyj (xj)) = Πj(−1)xjyj = (−1)x·y

3.3.3 Putting Things Together

We reviewed the classical Fourier Transform, and extracted 3 important properties of it:

1. Linear transformation

2. Is unitary

3. Transforms convolutions into point wise products.

We defined Fourier Transform over general group as any transformation that has these three
properties. We showed that in the case of finite Abelian groups, the Fourier Transform exists and
is unique.
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