
Quantum Computing 4/12/2022

Lecture 20: Finding a Hidden Subgroup

Instructor: Dieter van Melkebeek Scribe: Austen Fan

The lecture today is on the Hidden Subgroup Problem (HSP). The HSP is a generalization of
the problem of finding a hidden XOR-shift. It makes use of the Fourier transform over more general
groups than the ones we have already considered.

First, we go over the solution to the exercise from the last lecture. Second, we discuss the
quantum Fourier transform which differs from the classical Fourier transform by acting on quantum
superpositions. There are some interesting situations where the quantum Fourier transform plays
a critical role, such as integer factorization, which is discussed later on in the course. Next, we
introduce the HSP in its generality, and present a number of its instantiations. We see that pretty
much every elementary problem that we have discussed so far, for which we came up with an efficient
algorithm, can be viewed as an instantiation of the HSP. Then we discuss quantum algorithms for
this HSP, in particular for finite Abelian groups.

1 Solution to Last Lecture’s Exercise

Exercise 1. Consider functions f : G → C that can be written as a linear combination of the
characters χ:

f =
1√
|G|

∑
χ

f̂(χ)χ (1)

(a) Show that if f and g can be written in the form (1), then so can f ∗g : x 7→
∑

y∈G f(y)g(x−y).

(b) Show that f̂ ∗ g(χ) = c(G) · f̂(χ) · ĝ(χ).

(c) Determine c(G).

Solution We start with the convolution of f and g at x which is equal to the sum over all y’s of
f(y) times g(z) where z = x− y

(f ∗ g)(x)
.
=
∑
y∈G

f(y)g(x− y).

By rewriting f and g as a linear combination of the characters, the RHS becomes

1

|G|
∑
y∈G

(∑
χ1

f̂(χ1) · χ1(y)

)
·

(∑
χ2

ĝ(χ2) · χ2(x− y)

)
.

Note that we introduce a normalization factor of 1√
G

for both terms and combine them to 1
|G| .

Next, we can rewrite χ2(x − y) using the properties of characters. Namely, that the character of
a sum equals the product of the character values. Additionally, applying a character to −y is the
same as taking the inverse, but since all characters are on the unit sphere, taking the inverse is

1

the same as taking the complex conjugate. So, χ2(x − y) = χ2(x) · χ2(y) and taking the complex
conjugate of the whole thing leaves us with:

1

|G|
∑
y∈G

(∑
χ1

f̂(χ1) · χ1(y)

)
·

(∑
χ2

ĝ(χ2) · χ2(x) · χ2(y)

)
.

Then after rearranging terms:

1

|G|
∑
χ1,χ2

f̂(χ1) · ĝ(χ2) · χ2(x) ·
∑
y∈G

χ2(y) · χ1(y).

We then notice that
∑

y∈G χ2(y) · χ1(y) is exactly our definition of the inner product:

=
1

|G|
∑
χ1,χ2

f̂(χ1) · ĝ(χ2) · χ2(x) · (χ2, χ1).

Finally, we notice that whenever χ2 differs from χ1 then (χ2, χ1) = 0, therefore the sum is only
nonzero when χ2 = χ1 and we can then simply sum over χ. Furthermore, when χ1 = χ2 then
(χ2, χ1) = |G| which cancels with 1

|G| and all that’s left is to rewrite the answer to match the given
form. ∑

χ

f̂(χ) · ĝ(χ) · χ(x)
.
=

1√
|G|

∑
χ

f̂ ∗ g(χ) · χ(x)

so f̂ ∗ g(χ) = c(G) · f̂(χ) · ĝ(χ) where c(G) =
√
|G|.

2 Quantum Fourier Transform

Fourier Transform for a group G We defined the Fourier transform last lecture as a trans-
formation on f : G 7→ C that is linear, unitary, and turns convolutions into point-wise products.
Such a transformation exists for many G, including all finite G and (R, +). In the case of finite
Abelian groups, the transformation exists and is unique up to a permutation of the components;
the normalized characters χ of G form the Fourier basis.

Quantum Fourier Transform for a group G The classical Fourier transform is applied to a
vector with one component for every element of G and outputs the same number of components.
However, the quantum Fourier transform is instead applied to a superposition on log |G| qubits.
The quantum subroutine transforms input

∑
x∈G α(x)|x〉 into output

∑
x∈G α̂(x)|x〉, where α̂ is the

Fourier transform of α. These transformations can be realized by unitary circuits of size poly log |G|
for every finite Abelian G (and some other groups). This has applications to things like integer
factorization. For the special case of Zn2 under addition (+), we already know the way to realize
the quantum Fourier transform, namely to apply H⊗n. For the other special case of ZN , under
addition (+), we will see next lecture.

3 Hidden Subgroup Problem – Statement

The HSP is a generalization of finding a hidden XOR-shift as we have discussed before. We start
with formalizing the computational problem.

2

Input A blackbox f : G→ R for some group G and set R such that for some subgroup H of G:

f(x1) = f(x2)⇔ Hx1 = Hx2

where Hx
.
= {h · x : h ∈ H} is the right coset of x modulo H, and · denotes the group operation in

multiplicative notation. An equivalent statement to the one above would be:

f(x1) = f(x2)⇔ x1 · x−12 ∈ H.

In summary, the value that our blackbox takes on an element x of the group only depends on which
right coset x belongs to, and it takes distinct values on distinct cosets.

Output A set S of generators for H, i.e., S ⊆ G such that H = 〈S〉 .= {s1 ·s2 . . . sk : s1, s2 . . . , sk ∈
S, k ∈ N} There always exists a set of generators of a size at most log2(|H|). Since H is a subset
of G and |G| can be at most exponential in the number n of qubits, there is hope for a quantum
algorithm running in time polynomial in n.

4 Hidden Subgroup Problem – Instantiations

Recall that our blackbox f has the following property:

f(x1) = f(x2)⇔ Hx1 = Hx2 ⇔ x1 · x−12 ∈ H.

Problems we have already seen

Constant vs balanced for n = 1 We are given a function f from 1 bit to 1 bit, and we want to
know whether f is constant or balanced.

f : {0, 1} → {0, 1}

We claim that this can be viewed as an instantiation of the Hidden Subgroup Problem. Indeed, if
we consider G = Z2 under addition, then H = G in the constant case, and H = {0} in the balanced
case.

Learning linear functions We are given a Boolean function that maps n bits to 1 bit of the form:

f : {0, 1}n → {0, 1} : x 7→ a · x for some a ∈ {0, 1}n.

Our output is simply a. To cast this as an instantiation of the HSP we write:

f(x1) = f(x2)⇔ a · x1 = a · x2 ⇔ a · (x1 − x2) = 0⇔ x1 − x2 ∈ a⊥.

Therefore we can cast learning linear functions as an instatiation of the HSP where the group is
G = Zn2 under component-wise addition and the hidden subgroup H = a⊥. The solution to the
HSP gives us a set of generators for a⊥, but we want a, not a set of generators for a⊥. To get a,
we solve the homogeneous system linear equations of the form a · y = 0 where y are the generators
for a⊥; the solution to these equations will give us a.

3

Finding a hidden XOR-shift For this hidden XOR-shift problem, we are given some function
f : {0, 1}n → {0, 1}n such that for some nonzero shift s ∈ {0, 1}n:

f(x1) = f(x2)⇔ x1 = x2 ∨ x1 = x2 ⊕ s

with a goal of finding s. To frame it as an instantiation of the HSP, we write:

f(x1) = f(x2)⇔ x1 − x2 ∈ {0, s}.

The group for this problem is G = Zn2 under component-wise addition, with H = {0, s}.

Problems we have not yet seen

Period finding We have a function f : Z→ Z such that for some nonzero p ∈ N:

f(x1) = f(x2)⇔ x1 − x2 is a multiple of p, or equivalently, equals 0 modulo p.

The goal is to output p. Specifically, for this problem we require that there are no identical values
within the period p. All values must be unique. We can cast this as an instantiation of the HSP for
group G = Z under addition, with H = 〈p〉. Integer factorization reduces to this problem of period
finding, and even to the special case of finding the order of an integer a modulo another integer
µ (that is relatively prime to a). So, if we can efficiently solve period finding or order finding, we
know that we can efficiently factor integers. In fact this is the key ingredient in Shor’s algorithm
for integer factorization.

Discrete log It is a fact that for prime p, the multiplicative group:

Z×p
.
= {x ∈ Zp : gcd(x, p) = 1} = {1, 2, . . . , p− 1}

is cyclic. Therefore, there exists a single element which can generate every element in the group.
Given a prime p, a generator g for Z×p , and an arbitrary element a ∈ Z×p , our goal is to output the

unique ` ∈ Zp−1 such that g` = a. We know this is possible because a belongs to Z×p and that g is
a generator for the cyclic group Z×p . To cast this problem as a HSP requires some ingenuity. We
make use of the following function:

f : Zp−1 × Zp−1 → Zp : (x, y) 7→ axgy mod p.

We want to know when the pair (x1, y1) and (x2, y2) map to the same value under f :

f(x1, y1) = f(x2, y2)⇔ ax1gy1 = ax2gy2 mod p.

We know that a can be written as g` so we have:

⇔ g`x1+y1 = g`x2 + y2 mod p.

Since g is a generator, the two powers of g are the same if and only if the exponents are the same
modulo p− 1

⇔ `x1 + y1 = `x2 + y2 mod (p− 1).

4

Now rearranging terms:

⇔ `(x1 − x2) = y2 − y1 mod (p− 1).

Simply writing in a different format:

⇔ (x1 − x2, y1 − y2) ∈ 〈(1,−`)〉 in (Z2
p−1,+).

Thus, the function f defines a HSP over additive group Zp−1×Zp−1 with H = 〈(1,−`)〉. A solution
to this HSP will give us a set of generators for H that allows us to find `; any set of generators of
H will allow us to efficiently retrieve `.

Graph automorphism and isomorphism An automorphism is an isomorphism of an object to itself.
It is a well-known fact that a permutation σ ∈ Sn is an automorphism of a (simple) graph A iff
the adjacency matrix of A is invariant under permuting the rows and columns by σ, where n is the
number of vertices of the graph. The adjacency matrix is a square matrix (n rows, n columns) where
the (i, j)-entry is 1 if the vertex i and j are adjacent, and 0 otherwise. The set of automorphisms,
Aut(A), is a group under composition. We now cast the question of determining Aut(A) into HSP.
Consider the function:

f : Sn → {0, 1}n×n

σ 7→ σ(A)

where we identify the graph A with its adjecency matrix, which is fixed. We can then see when
permutations map to the same value:

f(σ1) = f(σ2)⇔ σ1(A) = σ2(A)⇔ σ−11 ◦ σ2 ∈ Aut(A).

Thus, finding generators for Aut(A) is an instantiation of the HSP over (Sn, ◦). Observe that two
connected graphs A1 and A2 are isomorphic iff the disjoint union A

.
= A1tA2 has an automorphism

that maps a vertex from A1 to A2, which is the case iff at least one element in any generating set
of Aut(A) maps A1 to A2. Furthermore, isomorphism of arbitrary graphs reduces to isomorphism
of connected graphs by adding to each of the two graphs a special vertex that is connected to all
the vertices of the graph and is made unique such that any isomorphism between A1 and A2 needs
to map the special vertex of A1 to the special vertex of A2. The latter can be done by adding a
second new vertex to each graph that is only connected to the first special vertex.

5 Hidden Subgroup Problem – Algorithms

Finite Abelian groups If the underlying group is a finite Abelian group, then we can efficiently
solve the HSP. The algorithm is essentially a generalization of the algorithm that we have seen for
finding a hidden XOR-shift. This algorithm works efficiently, provided we know the decomposition
of the underling group G as a direct product of cyclic groups. We develop the algorithm in the
next section. We will assume for now an efficient quantum Fourier transform over additive group
ZN , which will be developed in the next lectures.

Other groups

5

Integers under addition Integers under addition is a non-finite Abelian group. The HSP over this
group is equivalent to period finding. With an efficient algorithm for this HSP, we can efficiently
perform integer factorization, which allows us to break crypto-systems like RSA.

Symmetric group Graph isomorphism reduces to the HSP over the symmetric group. Even though
we can efficiently compute the quantum Fourier transform over the symmetric group, we do not
know how to efficiently solve the HSP over the symmetric group, and an efficient quantum algorithm
for graph isomorphism remains open.

Dihedral group The dihedral group (symmetries of regular N -gon, rotations and reflections) is a
non-Abelian group and efficiently solving the HSP in this group is also still open. If it can be done,
it would break cryptography systems based on the shortest lattice vector problem.

6 Hidden Subgroup Problem – Algorithm over Finite Abelian
Groups

We now develop an efficient quantum algorithm for the Hidden Subgroup Problem (HSP) over
finite Abelian groups. More precisely, we establish the result for groups that are the direct product
of cyclic groups.

Theorem 1. Consider the group

G = ZN1 × ZN2 × · · · × ZNk
(2)

under component-wise addition, where N1, N2, . . . , Nk ∈ N, and suppose that the prime factoriza-
tions of the numbers Nj for j ∈ [k] are given. There exists a quantum algorithm that solves the
hidden subgroup problem over G with error bounded by ε, runs in time O(poly log(|G|/ε)), and
makes O(log(|G|) + log(1/ε)) queries to the black-box. If the size of the hidden subgroup H is also
given, then the algorithm is exact, runs in time O(poly log |G|), and makes O(log(|G|/|H|)) queries
to the black-box.

Theorem 1 applies to all of the instantiations of the HSP over the additive group Zn2 that we
discussed: distinguishing constant and balanced functions for n = 1, learning linear functions, and
finding a hidden XOR-shift. There is one more instantiation of HSP over finite Abelian groups
that we discussed, namely the discrete log problem over Zp for prime p. As the underlying group
is G = Zp−1 × Zp−1 under addition, Theorem 1 yields a quantum algorithm that runs in time
O(poly log p) once we apply the polynomial-time quantum algorithm for factoring integers to the
integer p− 1. A similar combination of Theorem 1 and the algorithm for factoring integers yields
an efficient algorithm for the HSP over more complicated finite Abelian groups provided we can
efficiently compute an isomorphism with a product of cyclic groups (2). The existence of an
isomorphism is guaranteed by the Structure Theorem for finite Abelian groups; the isomorphism
may or may not be efficiently computable.

The algorithm of Theorem 1 generalizes the one we developed for finding a hidden XOR-shift.
It consists of two parts:

6

◦ An exact quantum subroutine A that outputs a uniform element of H⊥, where

H⊥
.
= {g ∈ G : (∀h ∈ H)χh(g) = 1}.

The subroutine consists of Fourier sampling. It hinges on an efficient algorithm for the
quantum Fourier transform over the finite Abelian group G, which we already know for the
case G = Zn2 (the n-fold Hadamard transform), and which we will develop in full generality
for groups of the form (2) in the next lectures.

◦ A classical part which uses the quantum subroutine A to construct a set S of generators
for H. In the case of finding a hidden XOR-shift we ran A a number of times to find a
set of generators of H⊥, and then solved the system of linear equations they define in the
components of the hidden shift s. In the general case, the process will similarly first find
a set of generators for H⊥, and then solve several systems of modular equations, each one
yielding an element of a generating set S for H. More precisely, the process runs the quantum
subroutine O(log |G|+ log(1/ε)) times to obtain a generating set for H⊥ with probability at
least 1− ε. Like in the special case of finding a hidden XOR-shift, an exact algorithm when
|H| is known can be obtained by amplitude amplification.

6.1 Quantum subroutine - Fourier Sampling

Let F denote the quantum Fourier transform over G. We use the Fourier transform over G because
it interacts nicely with the symmetries captured by the group G. Recall the Fourier transform
f 7→ f̂ for a finite Abelian group G is uniquely given by the following formula:

f̂(y) =
1√
|G|

∑
x∈G

f(x)χy(x)

where χy denotes the characters of G for y ∈ G. The corresponding quantum Fourier transform is
the quantum subroutine which transforms the input

∑
x∈G α(x) |x〉 into the output

∑
y∈G α̂(y) |y〉.

It can be realized by unitary circuit of size poly log |G| for every finite Abelian group G (and some
others).

Consider a (right) coset state |Hg〉, which is the uniform superposition of all elements of the
coset Hg,

|Hg〉 .= 1√
|H|

∑
h∈H
|hg〉 .

The (quantum) Fourier transform of |Hg〉 is given by the following formula:

F |Hg〉 =
1√
|H|

∑
h∈H

1√
|G|

∑
y∈G

χy(hg) |y〉

=
1√
|H||G|

∑
y∈G

χy(g)

(∑
h∈H

χy(h)

)
|y〉 . (3)

Exercise 2. Show that ∑
h∈H

χy(h) =

{
|H| if y ∈ H⊥
0 otherwise.

(4)

7

Plugging in Equation (4) into Equation (3) gives us:

F |Hg〉 =

√
|H|
|G|

∑
y∈H⊥

χy(g) |y〉 . (5)

Thus, the Fourier transform of the coset state |Hg〉 yields an equally weighted superposition
over H⊥. In particular, if g = 0 we get a uniform superposition over H⊥.

The quantum subroutine acts on a system with two registers, where the first register contains
elements of the domain G of the black-box function f : G → R, and the second register contains
elements of the range R. We start with the first register in a uniform superposition over G and the
second one in the basis state |0〉, i.e. the initial state

1√
|G|

∑
g∈G
|g〉 |0〉 .

By applying our blackbox f via Uf , we obtain the transformed state

1√
|G|

∑
g∈G
|g〉 |f(g)〉 =

√
|H|
|G|

∑
cosets

|Hg〉 |f(Hg)〉 ,

where we used the fact that f(g) only depends on the coset Hg. Next, we apply the Fourier
transform F to the first register, which by Equation (5) gives us the resulting quantum state√

|H|
|G|

∑
cosets

F |Hg〉 |f(Hg)〉 =
|H|
|G|

∑
cosets

∑
y∈H⊥

χy(g) |y〉 |f(Hg)〉 .

As distinct cosets have distinct values under f and |χy(g)| = 1 for every g ∈ G, measuring the first
register yields a y uniformly at random from H⊥.

6.2 Use of the quantum subroutine

Running the quantum subroutine O(log(|H⊥|) + log(1/ε)) = O(log(|G|) + log(1/ε)) times and
collecting all elements s′ yields a generating set S′ for H⊥ with error bounded by ε. In order to
construct a generating set S for H out of S′, we make use of the fact that (H⊥)⊥ = H. The fact
can be argued as follows.

Exercise 3. Show that

1. The quotient group G/H is isomorphic to H⊥.

2. |G| = |H| · |H⊥|.

3. (H⊥)⊥ = H.

We can efficiently construct a generating set S for (H⊥)⊥ out of a generating set S′ for H⊥

in the following way, with bounded error. The elements s ∈ (H⊥)⊥ are exactly those that satisfy
χs′(s) = 1 for all s′ ∈ S′. Recall that G is of the form (2), so we can write s = (s1, s2, . . . , sk)

8

and s′ = (s′1, s
′
2, . . . , s

′
k) where sj , s

′
j ∈ ZNj for each j ∈ [k]. Using the formula we derived for the

characters of additive groups of the form (2), we have that

χs′(s) =
k∏
j=1

exp
(
2πis′jsj/Nj

)
= exp

2πi
k∑
j=1

s′jsj/Nj

 .

Thus, χs′(s) = 1 iff
∑k

j=1 s
′
jsj/Nj ∈ Z, which is equivalent to the integral modular equation

k∑
j=1

M

Nj
s′j · sj = 0 mod M, (6)

where M
.
= lcm(N1, N2, . . . , Nk).

Theorem 2. Given the prime decomposition of M , we can classically do both of the following in
time poly(n, logM) for a system of at most n linear equations in at most n variables over ZM :

(a) Deterministically compute the number of solutions and, in particular, decide whether the
system is solvable.

(b) If a solution exists, deterministically compute one as well as generate a solution chosen uni-
formly at random among all solutions.

Proof. We use the Chinese remainder theorem to independently solve the system modulo p
ej
j where

M =
∏
j p

ej
j is the prime factorization of M , and combine those solutions into solutions to the

original system. The total number of solutions equals the product of the solutions modulo each
p
ej
j , and a uniform solution is obtained by combining independent uniform solutions modulo each

p
ej
j .

To achieve (a) and (b) for a system of linear equations in n variables modulo pe, we employ the
following reduction:

◦ If there is a coefficient that is not divisible by p, say the coefficient of variable xk in equation∑n
j=1 cjxj = b mod pe, use it to express xk as a linear combination of the other variables:

xk = c−1k

b− n∑
k 6=j=1

cjxj

 mod pe, (7)

where (ck)
−1 denotes the inverse of ck modulo pe, which exists because gcd(ck, p

e) = 1, and can
be computed efficiently using the extended Euclidean algorithm. Then use (7) to eliminate xk
from the system. The reduced system has one variable less, the number of solutions remains
the same, and a uniform solution to the full system is obtained from a uniform solution of
the reduced system by extending it via (7).

◦ If every coefficient and every right-hand side is divisible by p, then replace every equation∑n
j=1 cjxj = b mod pe by the equation

∑n
j=1 c

′
jx
′
j = b′ mod pe−1, where cj = p·c′j and b = p·b′.

There is a bijective relationship between solutions x to the original system on the one hand,
and solutions x′ to the reduced system combined with choices li ∈ Zp for each i ∈ [n] on the

9

other; the connection is given by xi = x′i + li · pe−1. It follows that the number of solutions
to the original system equals the number of solutions to the reduced system times pn, and
a uniform solution to the original system is obtained by picking a uniform solution of the
reduced system combined with independent uniform choices for li ∈ Zp.

◦ If every coefficient is divisible by p but not every right-hand side is, then the system has no
solution.1

We apply part (b) of Theorem 2 to generate O(log |H| + log(1/ε)) independent uniformly dis-
tributed samples of the solutions to the system of equations (6). With probability at least 1 − ε,
the resulting set S generates (H⊥)⊥ = H.

In case |H| is known, we also know |H⊥| = |G|/|H⊥| by part (b) of Exercise 3. In that case, we
can make use of amplitude amplifications with known success probability to obtain, with certainty,
a generating set S′ for H⊥ in time poly log |G| using a number of black-box queries bounded by
O(log |H⊥|) = O(log(|G|/|H|)). We construct the set S′ element by element. In each step we
obtain, with certainty, an element s′ ∈ H⊥ that is not in the set generated by the current S′.2

Once we have the generating set S′ for H⊥, we can similarly find a generating set S for H with
certainty in the stated time and query complexity. �

Note that the proof of Theorem 1 uses the fact that the underlying group G is finite Abelian
in two ways:

◦ A small number of Fourier samples contains enough information to determine generators for
the hidden subgroup H of G (and H can be retrieved efficiently from the samples).

◦ The quantum Fourier transform over G can be computed efficiently.

The first item hinges on the homomorphic properties of the Fourier basis, and breaks down for
more general groups. In particular, for the symmetric group Sn, even though the quantum Fourier
transform can be computed efficiently, one needs an exponential number of queries in n in order to
obtain a significant statistical distance between the distributions of positive and negative instances
of graph isomorphism.

1This case cannot happen for the homogenous system consisting of the equations (6), but the exact algorithm uses
another application of the claim, in which the right-hand sides are not all zero.

2This makes use of Theorem 2 with right-hand side s′j modulo Nj .

10

	Solution to Last Lecture's Exercise
	Quantum Fourier Transform
	Hidden Subgroup Problem – Statement
	Hidden Subgroup Problem – Instantiations
	Hidden Subgroup Problem – Algorithms
	Hidden Subgroup Problem – Algorithm over Finite Abelian Groups
	Quantum subroutine - Fourier Sampling
	Use of the quantum subroutine

