
Quantum Algorithms 2/21/2023

Lecture 9: Quantum Search

Instructor: Dieter van Melkebeek

In this lecture we cover quantum search. We begin with the problem statement for search
problems and then present Grover’s algorithm. Finally, we discuss a generalization of the approach
to the search problem and explore the possibility of error elimination.

1 Solution to Exercise #7

Part (a). For each i ∈ [n] such that ai = 1, include a CNOT with |xi〉 as control and |y〉 as the
target. This has the accumulated effect of mapping |x〉 |y〉 to |x〉 |y ⊕

∑n
i=1 aixi〉 = |x〉 |y ⊕ f(x)〉.

See the following figure for an example with n = 5 and a = 11001.

|x1〉 • |x1〉

|x2〉 • |x2〉

|x3〉 |x3〉

|x4〉 |x4〉

|x5〉 • |x5〉

|y〉 |y ⊕ f(x)〉

Part (b). We want to argue the following equivalence:

H • H

H H

≡
•

We will present four solutions for this part. They all boil down to the same but offer different
perspectives.

Traces. Given that both circuits are unitary, it suffices to show that they behave the same on
each of the standard basis states |00〉, |01〉, |10〉, and |11〉. There are several ways to organize this
computation and express the intermediate states. The following representation of the traces of the
circuit on the left is inspired by the third solution:

|00〉 7→ |+〉 |+〉 7→ |+〉 |+〉 7→ |00〉 |10〉 7→ |−〉 |+〉 7→ |−〉 |+〉 7→ |10〉
|01〉 7→ |+〉 |−〉 7→ |−〉 |−〉 7→ |11〉 |11〉 7→ |−〉 |−〉 7→ |+〉 |−〉 7→ |01〉
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In all four cases the net effect is that same as the CNOT gate on the right.
One can also use another basis than the standard one. See the third solution for a judicious

way of choosing the basis.

Transition matrices. Explicitly compute the transition matrices for both unitary circuits and show
that they are the same. The one for the circuit on the left is

H⊗2 · CNOT ·H⊗2 =
1√
2

[
H H
H −H

]
·
[
I 0
0 X

]
· 1√

2

[
H H
H −H

]
=

1

2

[
H2 +HXH H2 −HXH
H2 −HXH H2 +HXH

]
=

1

2

[
I + Z I − Z
I − Z I + Z

]

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


We used the fact that NOT is the same as X, that the Hadamard transform H is its own inverse
(H2 = I) and that the underlying basis change transforms an X gate (bit flip) into a Z gate (phase
flip): HXH = Z. The final transition matrix swaps |01〉 and |11〉, which is what the circuit on the
right does.

(Reverse) phase kickback. For a controlled operation like CNOT, it is generally interesting to con-
sider an eigenbasis of the operator for the controlled qubits. On an eigenvector |φ〉 with eigenvalue
λ, the effect is a noop when the control qubit is in |0〉, and a phase change given by λ when the
control qubit is in |1〉.

|0〉 |φ〉 7→ |0〉 |φ〉
|1〉 |φ〉 7→ |1〉λ |φ〉

By kicking back the phase change to the control qubit, the operation can be interpreted as leaving
the controlled qubits untouched and performing an operation (phase change) on the controlling
qubit, where the operation is determined by the state of the controlled qubits. This is exactly the
change in perspective we seek. Note that the kickback goes in the reverse direction to the one we
used last lecture.

In this case the operator is X, which has |+〉 as an eigenvector with eigenvalue λ+ = 1, and |−〉
with eigenvalue λi = −1. The effect for |+〉 on the control qubit is nothing. The effect for |−〉 on
the control qubit is that of a phase flip:

α0 |0〉+ α1 |1〉 7→ α0 |0〉 − α1 |1〉 .

Since H maps the standard basis (|0〉 , |1〉) to (|+〉 , |−〉), this shows that:

•

H X H
≡

Z

•

As the noop in the case of |+〉 can be written as H2, and the Z gate in case of |−〉 as HXH,
we have:

2



•

H X H
≡

H X H

•

Applying an Hadamard gate on the top qubit before and after yields the desired equivalence:

H • H

H X H

≡
X

•

Symmetry of controlled Z. An ad-hoc solution makes use of the fact that the effect of a controlled
Z-gate is symmetric in its arguments as it leaves each of the tree basis states other than |11〉
unaffected, and maps |11〉 to − |11〉. In combination with H2 = I and HXH = Z, this leads to the
following circuit manipulations:

H • H

H X H

≡
H • H

Z

≡
H Z H

•
≡

X

•

Part (c). Plugging in the circuit for Uf from part (a) into our circuit for learning linear functions
(without the final measurement) yields the circuit on the left in Figure ??. Inserting the noops
H2 in the bottom qubit line after each CNOT, and applying the equivalence from part (b) to each
CNOT yields the equivalent circuit on the right.

|0〉 H • H

|0〉 H • H

|0〉 H H

|0〉 H H

|0〉 H • H

|1〉 H

≡

|0〉

|0〉

|0〉

|0〉

|0〉

|1〉 • • • H

Figure 6: Alternate explanation of learning linear functions.

Note that the control bit for each of the CNOTs in the above circuit is 1, so each of the controlled
qubits gets flipped from 0 to 1. As such, the top n qubits are in state exactly |a〉 in the end (and
the last qubit in state |−〉). This gives an alternate explanation why a final measurement of the
top n qubits yields a with certainty.
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2 Search

2.1 Problem Statement

We are given access to a black-box function f : {0, 1}n → {0, 1} and want to find an input
x ∈ {0, 1}n such that f(x) = 1. We call such items “’good” and the other ones “bad.”

In this lecture, we assume that there is at least one good item and that the number of good
items t

.
= |f−1(1)| is known. Next lecture we will address the case where t is unknown and can be

zero. The overall problem can be seen as a search for good items in an unsorted list of items. The
hardest case when t > 0 is t = 1 since there is only a single good item for the algorithm to find.

2.2 Algorithms

Consider a search for a good item in a list with N = 2n items, t good items, and b = N − t bad
items. We analyze the query complexity in the three usual settings.

Deterministic setting. To give a deterministic answer, in the worst-case scenario, the algorithm
will have to go through all N−t bad items before knowing a good item, namely any of the remaining
items. Therefore, the query complexity is N − t.

Probabilistic setting. The chance of getting a good item from queries of items at random is
p = t/N . This can be viewed as a Bernoulli experiment with success probability p. The expected of
trials until the first success in a Bernoulli experiment is 1/p, and the number of trials to guarantee
success with any constant level of confidence less than 1 is Θ(N/t).

Quantum setting. For quantum algorithms, we will see that Θ(
√
N/t) queries suffices to guar-

antee success with 100%. The improvement over probabilistic algorithms is quadratic for any fixed
level of confidence less than 100%.

2.3 Applications

Although the quantum search algorithm seems useful for unsorted database search problems, it
does not offer any clear advantage over classical algorithms. To utilize quantum search algorithms,
quantum black-box functions must be constructed, and the entire database must be uploaded to
the black-box for interference and superposition to occur. Furthermore, the database is normally
sorted or can be sorted, which allows for other more efficient algorithms than a linear search, such
as binary search, to complete the task.

One useful application is the satisfiability problem, where the algorithm checks each item if
it satisfies a condition and assigns a Boolean output. In this case, the running time of classical
algorithms will be 2n. There are other more efficient classical algorithms known for this problem,
but they all still run in time O(2n) where n is the number of variables. Using quantum search, we
can improve the running time to Õ(2n/2).

3 Quantum Approach

The approach can be broken into 3 main procedures.
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1. Create a uniform superposition of all possible x

|ψ0〉 =
∑
x

αx |x〉 =
1√
N

∑
x

|x〉 (1)

1√
N

x

αx

Figure 7: The initial state of the system. Each state is equally likely to be observed if a
measurement is taken. We refer to this state as the uniform superposition.

2. Apply unitary operations to boost the weight of the good x’s.

3. Measure |ψfinal〉 and output the observed x.

The first step of the algorithm can be accomplished by applying H⊗n to |0n〉. The second step is
more complex and can be broken down into two unitary procedures. The first flips good components
about the x-axis and the second flips all components about the average.

Flip good components about the x-axis: Rbad. The goal of the Rbad operator is to flip the
sign of good items x and leave bad items invariant such that

Rbad |x〉 = (−1)f(x) |x〉 (2)

Thus, the operator Rbad flips the phase iff xi is a good item, that is f(xi) = 1. The resulting
amplitudes are shown in figure 8 assuming t = 3.

1√
N

- 1√
N

x

αx

Figure 8: The state of the system after a phase kickback on all states where f(x) = 1. In this
example, there were three states affected, which were reflected across the x-axis.

Recall from our discussion on phase kickback in the previous lecturre that this is exactly the
unitary operator Uf with an ancilla qubit in the |−〉 state.
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Flip about the average: Raverage. This operator Raverage flips all the amplitudes about the
average. Applying Raverage to figure 9 and assuming that t is small compared to N , the mean is
slightly below 1√

N
. For a good state, the operator results in an ampligude of approximately 3√

N
.

For a bad state, it results in an amplitude slightly below the mean as shown in figure 9.

1√
N

- 1√
N

x

αx

Raverage
1√
N

- 1√
N

x

αx

Figure 9: The state of the system after being reflected across the average, which is indicated by a
dotted line. Note that the states where f(x) = 1 are now more probable if a measurement is

taken.

Proposition 1. Raverage is unitary.

Proof. To prove Raverage is unitary, we must show that it is both linear and 2-norm preserving. To
show Raverage is linear, we can consider how it might be implemented. Note that reflecting about
the average is equivalent to subtracting the average, reflecting about the x-axis, and adding the
average back. Formally,

Raverage |ψ〉 = −

(
|ψ〉 −AVG (αx)

∑
x

|x〉

)
+ AVG(αx)

∑
x

|x〉 (3)

where

AVG(αx) =
1

N

∑
x

αx. (4)

This is clearly linear in ax, as AVG(αx) is simply a linear combination of the ax’s and all of the
operators are linear.

To show Raverage is 2-norm preserving, we show that all the eigenvalues of Raverage have a
magnitude of 1. First, consider what happens when we apply Raverage to the initial state shown in
figure 7. Nothing happens as the reflection across the average transforms this state to itself. Thus,
the uniform distribution is an eigenvector with an eigenvalue of 1.

Now consider the case shown in figure 10. On the left, we have a system where the average
is zero, and after applying Raverage, we have the system mirrored across the x-axis. Thus, this
state is another eigenvector and the eigenvalue is -1. All the eigenvectors orthogonal to the uniform
distribution have an average amplitude of zero, and thus are states that Raverage reflects about
the x-axis. Therefore, all eigenvalues are either 1 or -1. In fact, Raverage is a reflection about the
unique axis given by the eigenvectors corresponding to the eigenvalue 1, namely

∑
x |x〉. �
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1√
N

- 1√
N

x

αx

Raverage
1√
N

- 1√
N

x

αx

Figure 10: The state of the system before applying Raverage is on the left, and the system
afterwards is on the right. As the average is zero, the system is merely reflected across the x-axis.

The physical implementation of Raverage can be done in three steps as follows

1. Bring the average axis (dash-line) to the x-axis by applying H⊗n.

2. Flip the phase of all components about the x-axis: R|0n〉

3. Bring the average axis back from the x-axis by applying the inverse of step 1: (H⊗n)−1 = H⊗n

In summary, the flip about the average is implemented as: Raverage = H⊗nR|0n〉H
⊗n

4 Quantum Algorithm

By repeatably applying Rbad and Raverage, the amplitudes of good states can be amplified after
each iteration. However, the mean of the states will slightly decrease each iteration. As soon
as the mean reaches a negative value, applying more iterations of Rbad and Raverage will in fact
decrease the probability of finding a good item. Therefore, the number of iterations k is critical
and must be carefully determined. Note that both Rbad and Raverage are unitary operators which
can be represented as rotations. In general, repeatably applying unitary operators will result in an
approximately cyclical behavior.

The full algorithm is thus as follows:

1. Create a uniform superposition of all possible x.

|ψ0〉 = H⊗ |0n〉 =
1√
N

∑
x

|x〉 (5)

2. Apply RaverageRbad k times.

3. Measure |ψk〉 and output the observed x.

Quantum circuit. We are now ready to describe the quantum circuit that implements Grover’s
algorithm. We can repeat the combination of Rbad and Raverage as many times as desired. The full
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circuit is shown below.

Rbad Raverage repeat k times

|+〉

Uf

H

R|0n〉

H · · · x1

|+〉 H H · · · x2

|+〉 H H · · · xi

|+〉 H H · · · xn

|−〉 · · · y

Two-dimensional state representation. We now seek to determine the optimal value of k,
where k is the number of iterations of RaverageRbad. The amplitude αx of |x〉 at any point in time
depends only whether f(x) = 0 or f(x) = 1. That is, at any point in time, the amplitude of all
the bad x’s are equal and the amplitude of all the good x’s are equal. Moreover, the amplitudes
remain real throughout the computation. Thus, we can write the state after the i-th iteration as

|ψi〉 = βi |B〉+ γi |G〉 , (6)

where |B〉 .= 1√
N−t

∑
x:f(x)=0 |x〉 denotes the uniform superposition over all bad items and |G〉 .=

1√
t

∑
x:f(x)=1 |x〉 the uniform superposition over all the good items. Moreover, βi, γi ∈ R and are

constrained by
β2i + γ2i = 1. (7)

This constraint allows us to write βi and γi in terms of trigonometric functions: βi = cos(θi)
and γi = sin(θi) for some θi ∈ R, i.e.,

|ψ0〉 = cos(θ0) |B〉+ sin(θ0) |G〉 . (8)

We can thus describe the system as a two-dimensional system with parameters β and γ, where
(β, γ) lie on the unit circle, as shown in figure 11. Here we plot the initial state with β0 on the B

axis and γ0 on the G axis. We have that sin(θ0) = γ0 =
√

t
N . Note that θ0 ≥ sin(θ0) always holds,

and that θ0 ≈ sin(θ0) when t is small relative to N .

Analysis. Given some point (β, γ) on this unit circle, what will the effect of the Rbad and Raverage
operators be on this point? Since Rbad is a phase flip for the good components, it transforms (β, γ)
by

(β, γ)
Rbad−−−→ (β,−γ) (9)

which is simply a reflection across the B-axis. Raverage reflects the point across the line defined
by the origin and the point (β0, γ0). Taken together, these two reflections form a rotation of 2θ0
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B

G

(β0, γ0)

θ0

Figure 11: β and γ can be mapped on a unit circle, with β on the B axis and γ on the G axis.

counterclockwise. It follows that after i iterations,

θi = (2i+ 1)θ0,

βi = cos(θi),

γi = sin(θi).

From looking at the unit circle, the best time to make a measurement is when (β, γ) is on or
very close to the G-axis, as that is when the amplitudes of the valid states are highest. It follows
that the ideal value of k would satisfy

(2k + 1)θ0 =
π

2
(10)

which leads to

k = k∗
.
=

1

2

(
π

2θ0
− 1

)
. (11)

Note that this may not be possible because k∗ may not be an integer. We choose for k the integer
value closest to k∗:

k = dk∗c .=
⌈

1

2

(
π

2θ0
− 1

)⌋
(12)
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We claim that this choice of k guarantees that

Pr
[
measure x ∈ f−1(1)

]
≥ 1

2
. (13)

We know this as k must bring us to a point within the top quarter of the unit circle, as illustrated
in Figure 12. The figure shows an example where we have applied RaverageRbad twice, which brings
us into the shaded part the of unit circle. Each application of RaverageRbad rotates us by 2θ0
counterclockwise, and there is no value of θ0 < π/2 that will allow us to completely jump over the
shaded area when applying RaverageRbad. The advantage of being in the shaded area is that, in
terms of absolute value, the amplitudes of the good states exceed the amplitudes of the bad states
in absolute value, thus giving us a probability of at least 1/2 of finding a good x when taking a
measurement.

5θ0

3θ0

θ0
B

G

Figure 12: Optimal choice of k.

Given that θ0 ≥ sin(θ0) =
√

t
N , it follows that some

k = Θ

(√
N

t

)
(14)

iterations guarantee a probability of success of at least 1/2, and we know the value of k provided
we know t.
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5 Generalization

In the previous section, we considered a search problem starting from a uniform superposition of
states and discussed Grover’s algorithm. In this section, we generalize the search problem where
we start from a superposition state |ψ〉 which is not necessarily uniform but can be generated by
applying a unitary A to the basis state |0n〉.

Problem statement. We are again given access to a black-box function f : {0, 1}n → {0, 1}.
We are now provided with a unitary A on n qubits such that |ψ0〉 = A |0n〉 has amplitude αx > 0
for some good x. Finally, we assume for now that the weight p of the good x’s is given where
p =

∑
x:f(x)=1 |αx|2.

Our goal is the same as before and we would like to find some x ∈ {0, 1}n such that f(x) = 1.
Note that the previous problem statement was a special case of this new statement where A = H⊗n

Algorithm. For the algorithm construction, we start with the initial state |ψ0〉 = A |0n〉 and
apply k iterations of RaverageRbad.

The generalized Raverage, however, must be adapted to our generalized case. We can generalize
the Raverage from the special case where A = H⊗n to get

Raverage = AR|0n〉A
−1 (15)

The quantum circuit for this general case is given by

Rbad Raverage repeat k times

|0〉

A

Uf

A−1 R|0n〉 A

· · · x1

|0〉 · · · x2

|0〉 · · · xi

|0〉 · · · xn

|−〉 · · ·

If A = H⊗n, the circuit is identical to the circuit in section 4.

Analysis. To determine the optimum k iterations, we must consider the initial angle θ0. We
know that the probablity of measuring a good item in |ψ0〉 is p. Therefore,

sin(θ0) =
√
p (16)

Following the derivation in the previous section, the optimum number of iterations is k = dk∗c .=
d12( π

2θ0
− 1)c = O( 1√

p). After exactly that many iterations, we get the same guarantee shown in

(13), and we can compute the number provided we know p.
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6 Error Elimination

To eliminate all errors after applying k = dk∗c iterations of RaverageRbad, the final state must be
positioned exactly at π

2 . This happens if and only if k∗ ∈ Z. The idea to arrive at this situation

in general is to slightly manipulate the angle θ0 to θ̃0 such that after about k∗ iterations, the final
state lands exactly at π

2 . This can be achieved by using an additional ancilla qubit to reduce the

probability of measuring a good item slightly from p to p̃, where p̃ yields an integral value for k̃∗

as shown in figure 13. The new good states are the ones where the ancilla qubit is in state |1〉.

5θ0
3θ0
θ0

B

G

5θ̃0
3θ̃0
θ̃0

B

G

Figure 13: The left figure shows the starting state, θ0 =
√
p, and the state after first iteration and

second iterations. Note that the final state is not exactly at the ideal stopping point of π
2 . In the

right figure, by slightly decreasing θ0 to θ̃0, the final state is exactly at π
2 .

Exercise #8. Work out a way to eliminate the error in quantum search using the above ideas,
without increasing the number of queries by more than one. Hint: Use the generalization shown in
section 5 with Ã = U ⊗A for some U .
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