
Quantum Algorithms 2/23/2023

Lecture 10: Amplitude Amplification

Instructor: Dieter van Melkebeek

In this lecture, we generalize the principles of the previous lecture on quantum search and
present amplitude amplification – a basic paradigm in quantum algorithms. We start by defining
the problem and then present an algorithm with bounded error. We discuss how to eliminate error
and how to relax the requirement that the total weight of “good” items is known ahead of time.

1 Amplitude Amplification

1.1 Problem Statement

The problem setup for amplitude amplification is similar to that of Grover’s search algorithm
discussed previously. In particular, we are given:

◦ A black-box Boolean function f : {0, 1}n → {0, 1} which maps “good” inputs x to 1 and
“bad” inputs to 0,

◦ A unitary circuit A operating on n qubits such that A |0n〉 =
∑

x αx |x〉 produces nonzero
amplitude αx on at least one x with f(x) = 1,

◦ The total weight p =̇
∑

x:f(x)=1 |αx|2 of the good inputs.

The second assumption implies that p > 0. In Section 3 we relax the requirement that the total
weight of “good” inputs p is known ahead of time.

The state A |0n〉 =
∑

x αx |x〉 can be written as a superposition of the “good” states |G〉 =
1√
p

∑
x:f(x)=1 αx |x〉 and “bad” states |B〉 = 1√

1−p
∑

x:f(x)=0 αx |x〉:

A |0n〉 =
√

1− p |B〉+
√
p |G〉 . (1)

The goal of amplitude amplification is to output |G〉 in (1) with probability greater than or equal
to 1/2 along with a success indicator (a bit which is 1 if |G〉 is the output and 0 otherwise). As
was the case for quantum search, the high level idea is to amplify the weight of |G〉 while reducing
the weight of |B〉.

Remark 1. The problem statement for amplitude amplification differs from that of quantum
search in subtle yet distinct ways. In particular, for quantum search, the goal was to identify
a single x such that f(x) = 1 by amplifying the weights αx for “good” inputs x and then per-
forming a measurement. Thus, the output of quantum search is classical. In this lecture, however,
the output is instead the superposition of “good” states |G〉 itself. This means that amplitude
amplification is actually a quantum subroutine, which can be used as a building block for larger
quantum algorithms.

A second consequence of the difference in outputs is that for amplitude amplification we care
about the individual coefficients in the state |G〉, not just that the weight of the “good” state is
amplified so that a measurement yields a good one with high probability. In particular, amplitude

1

amplification should proceed without affecting the relative weight between good inputs – the ratio
of the amplitudes αx and αx′ of good states should not change; only the ratio of the amplitudes of
good versus bad states can change. While the algorithm we presented for quantum search satisfies
this requirement, it is not important for quantum search in general, so long as a “good” x ends up
with a high probability after measurement.

Finally, note that quantum search as discussed in the previous lecture can simply be viewed
as a special case of amplitude amplification with a measurement at the end. The specific case of
A = H⊗n is also noteworthy as it produces a uniform superposition over all x.

1.2 Algorithm

The algorithm for amplitude amplification proceeds in a similar fashion to the search algorithm
discussed last lecture. The main difference comes when it is time to extract the output. As described
in Algorithm 1, we start from the state A |0n〉 then apply the following k times: we first apply a
phase flip on all “good” x using Rbad (which requires using the quantum version of the black-box
function) and then reflect around the start state using Rinitial.

Algorithm 1 Amplitude Amplification.

Start with A |0n〉
for k times do

Apply Rbad (using Uf): Phase flip on all |x〉 with f(x) = 1
Apply Rinitial

.
= AR|0n〉A

−1: Reflection about the start state

Two-dimensional state analysis. The iterative procedure involved in amplitude amplification
can be analyzed geometrically in two-dimensional space as done in the previous lecture. We sum-
marize the idea here for completeness. First we express the state of the system after k iterations as
|ψk〉 = βk |B〉+ γk |G〉 = cos θk |B〉+ sin θk |G〉. As such, the system corresponds to a point on the
unit circle as shown in Figure 1. Initially we have that β0 =

√
1− p = cos θ0 and γ0 =

√
p = sin θ0.

Then each iteration applies Rbad followed by Rinitial. Geometrically, Rbad consists of a reflection
about the |B〉 axis (as it flips the phase of all “good” states x). In the two-dimensional |B〉-|G〉
plane, Rinitial corresponds to a reflection about A |0n〉. The combined result of the two operations
is a counterclockwise rotation over 2θ0 for each iteration as shown in Figure 1.

Extracting |G〉. Recall that the goal of amplitude amplification is to output |G〉. After k itera-
tions of the algorithm, we can do so as follows: We introduce a fresh ancilla qubit initially set to |0〉
creating the state

∑
x α

(k)
x |x〉 |0〉, with α

(k)
x the final amplitude for basis state |x〉 after the k-step

amplification process. We then apply the black box function Uf to the quantum state resulting in

the state
∑

x α
(k)
x |x〉 |f(x)〉. The final step is to measure the ancilla qubit. If we observe 1 then

the remaining quantum state collapses to those which are consistent with the measurement, i.e.,
states that satisfy f(x) = 1. This is exactly the state |G〉. Likewise if we observe 0 for the ancilla
qubit then the remaining state is |B〉. Notice that the ancilla qubit is exactly the success indicator
desired in our problem statement.

2

|B〉

|G〉

A |0n〉

θ0

θ1
2θ0

π/43π/4

Figure 1: Depiction of amplitude amplification interation process in two-dimensional plane. The
initial state starts with angle θ0. Each iteration rotates the state in the |B〉-|G〉 plane by 2θ0. If
the angle after k iterations θk is between [π/4, 3π/4] then the probability of extracting |G〉 is at

least 1/2.

Number of iterations and error bound. In order to ensure that the probability of outputting
|G〉 is greater than or equal to 1/2 we must ensure that after k iterations γ2k ≥ β2k. In other words,
in the two-dimensional state view, we wish for the final angle θk after k iterations to end up as close
to plus or minus π/2 as possible (Figure 1). This can be done by choosing k as described in the
previous lecture. Ideally θk = (2k+ 1)θ0 = π

2 . This implies that k should be set to k∗ =̇ 1
2(π

2θ0
− 1).

In general, k∗ is non-integral (in the case that it is an integer, then |G〉 can be extracted with
probability 1). We take the number of iterations k to be bk∗e, the closest integer to k∗. This
ensures that θk ∈ [π4 ,

3π
4] and thus that the probability of extracting |G〉 rather than |B〉 is greater

than or equal to 1/2. Recall also that setting k in this manner results in O(1√
p) iterations (and

thus black-box queries) because k∗ = Θ(1/θ0) = Θ(1/
√
p) since sin θ0 =

√
p and sin θ ≤ θ for all

nonnegative θ.

2 Error Elimination

In this section we discuss how to eliminate the error in amplitude amplification, i.e., how to ensure
we can produce |G〉 with certainty rather than just with probability greater than or equal to 1/2
(and a success indicator). This constitutes the solution to Exercise #8 posed in the previous lecture.

Idea. The problem with amplitude amplification as described above is that it is often impossible
to rotate the initial angle θ0 to π/2 using an integral number k of angle 2θ0 rotations. Thus

3

we are unable to produce a final state |G〉, and are instead only able to produce a superposition
|ψk〉 = βk |B〉+ γk |G〉 with γ2k ≥ β2k. To alleviate this issue, the key idea is to tweak θ0 a little bit
to θ̃0 such that it is possible to end up exactly at π/2 after a integer sequence of iterations. We
can reduce the angle by making use of an additional ancilla qubit.

|B〉

|G〉

θ0
θk θ̃0

θ̃k

Figure 2: Depiction of the key idea in amplitude amplification error elimination: By reducing θ0
to θ̃0 we can move θk > π/2 to θ̃k = π/2 and ensure that |G〉 is extracted with certainty.

Solution. Recall that we defined the quantity k∗ such that after k∗ rotations over 2θ0, starting

from an angle θ0, we arrive exactly at π/2: k∗
.
= 1

2

(
π
2θ0
− 1
)

. In general, k∗ is non-integral. Last

lecture we rounded k∗ to the closest integer: k = dk∗c. Now, consider rounding up k∗: k = dk∗e.
Then we know that after k iterations θk ≥ π/2. In other words, we may overshoot |G〉 in the
two-dimensional |B〉-|G〉 plane. Following the key idea above, we aim to lower θ0 down to θ̃0 such
that after k iterations, instead of overshooting, we get exactly θk = π/2. Lowering θ0 to θ̃0 means
that θ̃0 ≤ θ0 and implies that p̃ =̇ sin2 (θ̃0) ≤ sin2 (θ0) = p. Concretely, we wish to choose θ̃0 such
that (2k + 1)θ̃0 = π

2 . The geometric interpretation is shown in Figure 2.

Lowering θ0 down to θ̃0 means lowering the weight of the good inputs from p down to p̃. We
do this by extending each input with an additional bit, giving the extension with 1 relative weight
p̃′/p, and only considering the extensions with 1 as “good.” We then apply amplitude amplification
to the extended system. As the weight of the good inputs is now exactly p′, k iterations yield
success with certainty. Moreover, as the ratios of the amplitudes of good states |x〉 before and after
extension is the same, the state of the extended system upon success is |G〉 extended with |1〉.

To implement the reduction from p to p̃, we introduce an additional ancilla to capture the
extension bit, start if from the basis state |0〉, and apply a unitary U to it such that U |0〉 =̇ α0 |0〉+

4

α1 |1〉 with |α1|2 = p̃/p. We use the matrix

U =

[
α0 α1

α1 −α0

]
(2)

with α1 =
√
p̃/p and α0 =

√
1− p̃/p. Since p̃ ≤ p, α1 ≤ 1 and we can chose α0 ∈ R such that

the first column of U has 2-norm one. The second column is chosen to be orthogonal to the first
without consequence, as we are only interested in the application of U to |0〉.

We apply amplitude amplification to a system with n+1 qubits and unitary operator Ã = U⊗A.
For convenience in drawing the resulting circuit, we put the extension ancilla in front. After
expanding the size of the system from n to n+ 1 qubits, we must also “expand” the function f to
operate on n+1 bits rather than n bits. We define f̃(bx) = b ·f(x), where b is the additional ancilla
bit. “Good” inputs are now those that have f̃(bx) = 1. These are the inputs for which f(x) = 1
and b = 1. Our new superposition of “good” inputs is now |G̃〉 = |1〉 |G〉, and the weight of |G̃〉 is
p̃ = p · |α1|2. Note that since k = dk∗e ≤ dk∗c+ 1, the number of iterations and queries went up by
at most 1. The final state is |1〉 |G〉. We can return the ancilla to it original state of |0〉 and discard
it if needed.

The only remaining issue is that the amplitude amplification procedure now needs the blackbox
Uf̃ instead of Uf . We need to efficiently simulate Uf̃ using Uf as a blackbox. Note that Uf̃ is
equivalent to a controlled Uf gate, where the extension qubit acts as the control: For x ∈ {0, 1}n
and y ∈ {0, 1}:

|0〉 |x〉 |y〉 7→ |0〉 |x〉 |y〉 = |0〉 I(|x〉 |y〉)
|1〉 |x〉 |y〉 7→ |1〉 |x〉 |y ⊕ f(x)〉 = |1〉Uf (|x〉 |y〉).

Since the only use of the blackbox in amplitude amplification is for the purposes of phase kickbacks,
we only need to run Uf̃ when the last qubit is in state |−〉. Recall that Uf maps |x〉 |−〉 to

(−1)f(x) |x〉 |−〉, and leaves |x〉 |+〉 unaffected. Thus, we can simulate the controlled Uf gate when
the last qubit is in |−〉 as follows: If the control qubit is in |0〉, then apply a basis transformation
to the last qubit that maps |−〉 to |+〉, apply Uf to the controlled qubits, and revert the basis
transformation. If the control qubit is in |1〉, we just apply Uf , without a basis transformation
before and after. A unitary that realizes the desired basis transformation (and its inverse) is the
Z gate. Thus, we can simulate Uf̃ with the last qubit in state |−〉 by applying Uf to all but the
first qubit, preceded and followed by a controlled Z-gate where the first qubit acts at the control
and the last qubit as the target. See Figure 3 for the resulting circuitry, where the controls with
the unfilled circles indicate that the control is active when the qubit is 0.

|b〉

Uf
|x〉

|−〉 Z Z |−〉

 ≡

|b〉

Uf̃|x〉

|−〉 |−〉

Figure 3: Simulating phase kickback for f̃ using Uf

The above solution uses two ancillas: one for the phase kickbacks in the applications of Uf to
effect Rbad, and one for reducing the weight from p to p̃ in the applications of U . In fact, we can get

5

by with a single ancilla that plays both roles. After the initialization, the ancilla is in state U |0〉.
Each time we want to apply Rbad, we apply H to the ancilla so as to switch from the standard
basis (|0〉 , |1〉) to the Hadamard basis (|+〉 , |−〉), apply Uf with the ancilla as the last qubit, and
apply H to switch back to the standard basis. The effect of the three steps is:

|x〉 |0〉 7→ |x〉 |+〉 7→ |x〉 |+〉 7→ |x〉 |0〉
|x〉 |1〉 7→ |x〉 |−〉 7→ (−1)f(x) |x〉 |−〉 7→ (−1)f(x) |x〉 |1〉 .

This results in the circuit of Figure 4 for the overall process. Note that the ancilla, which starts in
state |0〉, ends in state |1〉; if we want, we can return it to the initial state by applying an X gate.

Rbad Raverage repeat k times

|0〉

A

Uf

A−1

R|0n+1〉

A

· · ·

|0〉 · · ·

|0〉 · · ·

|0〉 · · ·

|0〉 U H H U−1 U · · · |1〉

Figure 4: Final circuit for error-less amplitude amplification

Remark 2. Note that if all inputs x are “good”, then amplitude amplification requires zero itera-
tions. Amplitude amplification only requires one iteration if p ≥ 1/4. In this case p will be reduced
to p̃ = 1/4 meaning θ̃0 = π/6. With one iteration, π/6 will then rotate to 3π/6 = π/2.

3 Amplitude Amplification with Unknown Initial Weight

We now discuss how to perform amplitude amplification when the total weight of “good” inputs
p =

∑
x:f(x)=1 |αx|2 is unknown (p is still assumed to be larger than 0). The rest of the problem

setup remains the same as before. Additionally, rather than focus on the number of black-box
function calls required to output |G〉 with probability ≥ 1/2, we now focus on the expected number
of black-box function queries required to output |G〉. The two quantities differ by at most a factor of
two: One direction follows because the expected number of trials required for success in a Bernoulli
experiment with probability 1/2 is two. The other direction follows from Markov’s inequality.

We develop the algorithm for amplitude amplification with unknown weight p in a series of
stages that tweak the algorithm presented above. Later in the course we will see how the final
algorithm emerges more naturally. Note that we can still use p in the analysis of the algorithm.
We cannot, however, use it in the algorithm itself, e.g., to determine the number of iterations k∗

as done previously.

6

3.1 First Attempt

Since p is unknown, we are unable to compute the number of iterations k∗ as described in Section 1.2
(unknown p means unknown θ0). A natural first attempt then, consists of trying k = 0, 1, 2, 3 . . .
iterations until there is a success (recall we have a success bit indicating when we extracted |G〉).
For each value of k we must first reset the system to A |0n〉 and then perform the sequence of
iterations (see the remark below).

To count the number of expected black-box queries required for this algorithm attempt, we can
split the trial values of k into those that are less than and those that are at least k∗ (even though
k∗ is unknown, it can still be used for analysis). The number of queries for each trial is k + 1 (k
for the iterations, 1 for the ancilla qubit introduced to extract |G〉). Thus, the number of queries
for the trials of all values of k up to k∗ is:

k∗∑
k=0

(k + 1) = Θ((k∗)2) = Θ((1/
√
p)2) = Θ(1/p). (3)

The first equality follows from evaluating the sum, while the second results from the fact that
k∗ = Θ(1/θo) = Θ(1/

√
p) as mentioned in Section 1.2.

While the algorithm may succeed in outputting |G〉 before reaching k∗, it turns about that
the above upper bound is not too far from reality and is correct within constant factors (see the
exercise below). Notice that this attempt has lost the square root quantum speed up even before
k reaches k∗: the query complexity is Θ(1/p) rather than Θ(1/

√
p). The former is the same as

the classical setting. In this case we have gained no performance improvement by using amplitude
amplification: If the initial state has a probability p of being in |G〉 then we can simply try to
extract |G〉 from the initial superposition, and will succeed with probability p. Viewing this as a
Bernoulli experiment, we can expect to succeed after 1/p trials.

Remark 3. Retrying for different values of k, and more generally restarting in quantum algo-
rithms, can be non-trivial. In general, algorithms can’t go back to their initial quantum superpo-
sitions after a measurement has been made (in amplitude amplification the measurement happens
to check success). This is one reason why quantum algorithms that have superpositions as inputs,
often require that those superpositions can be generated by running a given unitary circuit A on the
basis state |0n〉. In the case of amplitude amplification, there is another reason for this assumption:
A is needed to effect the reflection Rinitial.

Exercise (intended for theory students only). Show that Pr[k∗ is reached] = Ω(1). This
means that the probability we must try values of k up to k∗ is a constant value and thus that (3)
gives a lower bound for the query complexity up to a constant factor.

3.2 Second Attempt

The problem with the above attempt that leads to Ω(1/p) query complexity is that the algorithm
spends significant effort trying small values of k < k∗ which have small probabilities of success
in extracting |G〉. A simple approach to mitigate this issue is to use a geometric sequence of k
values rather than an arithmetic sequence. In particular, we can try doubling k each time until
we successfully extract |G〉: k = b2ic with i = −1, 0, 1, 2, . . . Additionally, by only doubling k
each time, we can actually ensure that we will not overshoot the region of the |B〉-|G〉 plane that

7

measures |G〉 with probability at least 1/2. In other words, some value of k will have θk ∈ [π4 ,
3π
4].

To see why this is true, recall from Section 1.2 that θk = (2k + 1)θ0. Thus if we double k to 2k,
θ2k ≤ 2θk. This implies that any θk < π/4 will not result in a θ2k > 3π/4, and thus the high
probability region [π4 ,

3π
4] is not skipped over.

We can analyze the number of queries to the blackbox function for this attempt as done above.
The number of queries for values of k up to k∗ is:

log(k∗)∑
i=−1

(b2ic+ 1) = O(k∗ ·
∑
i≥0

1

b2ic
) = O(k∗) = O(1/

√
p). (4)

While this attempt results in the desired query complexity for k < k∗, there still remains an issue
for k ≥ k∗. If k∗ is exceeded, then the number of queries in subsequent attempts grows very rapidly
above our desired bound, so we need to control the probability of this happening. Note that the
probability of success once k∗ is exceeded, can go down. For example, consider the case where
θ0 = π/3. Then for k = 0 we have a success probability of 75%, so k∗ = 0. With a probability of
25%, we fail and run the trial for k = 1. In this case θk = θ1 = π, resulting in a zero probability of
success!

3.3 Third Attempt

From the second attempt above, we know that a geometric sequence for trial values of k leads
to O(1/

√
p) black-box queries while k < k∗. For these successive values of k, the probability

of success increases (θk approaches the region [π4 ,
3π
4]). However, we also know that if we fail to

extract |G〉 before k > k∗ then the probability of success can drop considerably. How can we handle
this problem? One solution is to view the geometric sequence as an upper bound on the number
of amplitude amplification iterations for each successive trial, rather than the exact number of
iterations itself. To that end, in this attempt, we pick the actual number of iterations k for each
trial to be uniformly from {0, 1, 2, . . . b2ic } with i = −1, 0, 1, 2, . . . and continue increasing i until
the first success. The intuition here is that, once b2ic has reached k∗, then the probability of
picking a number of iterations so that the final state has weight at least 1/2 on |G〉 is at least some
constant. For this attempt, as i goes up in increments of 1, we continue to double the maximum
number of iterations (the “bound”) between successive trials.

From the above analysis, we know that the total number of blackbox queries before b2ic exceeds
k∗ is O(k∗) = O(1/

√
p) (the uniform sampling can only lower the number of blackbox queries and

does not change the overall scaling). Thus, we focus the analysis here on the case where b2ic > k∗

(i.e., we have not yet had success before b2ic reaches k∗). Asymptotically, once b2ic > k∗, at least
half of the range from which we uniformly sample the number of iterations lies in the “good region,”
i.e., in [π4 ,

3π
4] or [5π4 ,

7π
4] modulo 2π. Since in this region the probability of measuring |G〉 is at

least half, the probability of success for each trial with b2ic > k∗ is asymptotically: Pr[k in good
region] · Pr[success | in good region] ≥ 1

2 ·
1
2 = 1

4 .
Thus, every trial with b2ic > k∗ is like a Bernoulli experiment with success probability at least

1/4. To analyze the expected number of blackbox queries after the bound b2ic > k∗, we introduce
i′ to count the number of trials for which b2ic > k∗. In other words, i = i∗ + i′ with 2i

∗
= k∗. The

expected number of blackbox queries after the bound b2ic > k∗ is then the probability of requiring
a certain number of trials i′ (the probability that all previous trials i′ = 0, 1, 2, . . . failed) times the

8

number of queries for that specific value of i′. This is order:∑
i′≥0

(
3

4
)i
′ · (2i) =

∑
i′≥0

(
3

4
)i
′ · (k∗ · 2i′) = k∗

∑
i′≥0

(
3

2
)i
′
. (5)

We would like this complexity to be O(k∗) = O(1/
√
p), in which case the whole algorithm would be

O(1/
√
p) (by combining the complexities before and after k∗). Unfortunately, the above geometric

series diverges since 3/2 > 1.

3.4 Final Attempt

Our final attempt for amplitude amplification with unknown initial weight p (unknown k∗) consists
of tweaking attempt three to ensure that the series for the number of queries after the bound
b2ic > k∗ converges. The idea is to change from doubling the bound in each successive trial to
some other multiplicative constant factor. Assume that the bound on the number of iterations
increases by a constant factor λ > 1 (it must be larger than 1 for the bound to increase). I.e.,
we pick the number of iterations k for each trial to be uniformly from {0, 1, 2, . . . bλic } with
i = −1, 0, 1, 2... and continue until the first success. Using a similar analysis as above in attempt
three results in the expected number of blackbox queries after the bound bλic > k∗ to be given by:∑

i′≥0
(
3

4
)i
′ · (k∗ · λi′) = k∗

∑
i′≥0

(
3λ

4
)i
′
. (6)

This series converges for 3λ/4 < 1. Thus we have that the number of applications of the blackbox
is O(k∗) = O(1/

√
p) for 1 < λ < 3/4. This final attempt results in an amplitude amplification

algorithm with square root speed up even when the total weight p of the “good” inputs x is
unknown.

9

	Amplitude Amplification
	Problem Statement
	Algorithm

	Error Elimination
	Amplitude Amplification with Unknown Initial Weight
	First Attempt
	Second Attempt
	Third Attempt
	Final Attempt

