
Quantum Algorithms 3/7/2023

Lecture 13: Quantum Walk Search

Instructor: Dieter van Melkebeek

In this lecture we establish the quadratic speed-up that quantum walks offer over random walks
for hitting a good vertex. We first establish a fast forwarding procedure for an unconstrained
walk in the block encoding framework and then apply it to an unconstrained walk that mimics the
hitting constraint by interpolating between the original walk and its absorbing variant. Technical
ingredients include Chebyshev expansions and a method known as Linear Combination of Unitaries
(LCU).

1 Recap

We review the paradigm of a quantum walk and the notion of a block encoding. We start with the
latter.

1.1 Block encoding

Definition 1. A block encoding of a matrix M acting on m qubits is a unitary (circuit) A acting
on `+m qubits such that

A =

[
M ∗
∗ ∗

]
The block encoding can be used as a probabilistic encoding of M with a success indicator as

follows:

1. Apply A to state |0`〉 |ψ〉 representing 0 in all ancillas and |ψ〉 being the state to which we
want to apply M .

2. Measure the first register (first ` qubits).

3. If the outcome is 0`, the second register is in the state M |ψ〉 /||M |ψ〉 ||2. For this encoding
to be useful, ||M |ψ〉 ||22, the probability of observing 0`, should be sufficiently large.

1.2 From random to quantum walks

Consider a graph G = (V,E) with positive edge weights and no vertices of degree 0. In the classical
setting, we start from a vertex chosen from an initial distribution σ. In each step, when at vertex
u, we move to vertex v with probability proportional to the weight of the corresponding edge. This
can be modeled as a Markov chain with transition matrix T , where:

Tvu = Pr[move to v|at u]

There is a unique stationary distribution π provided that G is connected, and convergence to the
distribution is guaranteed provided G is connected and non-bipartite.

1

We can use a random walk to find a good vertex, i.e., a vertex v such that f(x) = 1, where
f : V 7→ {0, 1} is given as a black-box. There can be several good vertices. The hitting time
H(T, f) is the expected number of steps needed to hit a good vertex when the initial vertex is
picked according to the stationary distribution π. In case there is no good vertex, H(T, f) =∞.

In a quantum walk, we act on directed edges, namely |u, v〉 where u represents the previous or
next vertex and v represents the current one. Each step of the quantum walk can be decomposed
into two parts: a coin flip C, where we decide the next vertex to go to, and a swap, where we
actually “move” from one vertex to the next. While there are several choices for the coin flip, the
Grover coin leads to the quadratic speed-up for search. Specifically, the two steps can be formalized
as:

◦ Grover coin C: Reflect the first component of |u, v〉 about |Nv〉
.
=
∑

u′

√
Tu′v |u′〉. Assuming

a unitary U such that U : |0n〉 |v〉 7→ |Nv〉 |v〉, C can be effectuated as C = UR|0n∗〉U
∗.

◦ Swap S: Swap vertex u and v to realize |u, v〉 7→ |v, u〉.
In contrast to random walks, the asymptotic behavior of quantum walks can depend on the

start state. For the quadratic speed-up result for search, we start from the following invariant
state:

|Π〉 .=
∑
v

√
πv |Nv〉 |v〉 =

∑
u

√
πu |u〉 |Nu〉 , (1)

where |Nv〉
.
=
∑

u

√
Tuv |u〉.

We focus on three contributions to the cost of a quantum walk algorithm for search:

◦ Setup cost s: the cost to create the state |Π〉. This can be done by first creating the pure
state |

√
π〉 .=

∑
v

√
πv |v〉 and then applying U to |0n〉 |

√
π〉.

◦ Update cost u: the cost of a (controlled) application of the walk operator SC, where C is the
Grover coin. That is, the cost of SUR|0n∗〉U

∗ (or a controlled version).

◦ Check cost c: the cost of an application of Uf .

The above costs reflect a natural way of casting quantum walk algorithms in terms of three black-
boxes (setup, update, and check) but ignore other quantum gates that the algorithm may use (and
are typically independent of T and f).

With the above notation, we are ready to state the result that is the main topic of this lecture.

Theorem 1. There exists a quantum algorithm that, for any random walk with transition matrix
T on a graph G = (V,E) with positive edge weights and no vertices of degree zero, and for any
f : V → {0, 1}, outputs v ∈ V with f(v) = 1 in expected cost Õ(s+

√
H(T, f)(u+ c)).

Here is the proof outline in the case of a symmetric T :

◦ We construct a block encoding of a matrix M that is close to T t using only O(
√
t) steps of

the quantum walk. This process is referred to as fast forwarding.

◦ We use the block encoding of M to approximately compute and measure T t |B〉 for a random
t ∈ [O(

√
H(T, f))], where |B〉 denotes the normalized projection of |π〉 onto the bad compo-

nents. We do this in case an initial check for a good vertex in the second register fails, in
which case the system is in state U |0n〉 |B〉.

◦ We replace T by an interpolation between T and the absorbing version of T to guarantee
good success probability.

2

2 Fast Forwarding

In general, the fast forwarding property refers to the geometric symmetrization T̃ of T rather than
T itself. Recall T̃uv

.
=
√
Tuv · Tvu. Note that when T is symmetric, T̃ = T .

Lemma 2 (Fast Forwarding Lemma). There exists a quantum algorithm that, for any random
walk with transition matrix T , t ∈ N, and ε > 0, realizes a block encoding of a matrix M with
‖T̃ t −M‖2 ≤ ε and the following complexity:

◦ q = O(
√
t · log(1/ε)) controlled applications of the quantum walk operator SC with coin C =

UR|0n∗〉U
∗, where U is a unitary mapping |0n〉 |v〉 to |Nv〉 |v〉

.
=
∑

u

√
Tuv |u〉 |v〉.

◦ One more application of U and U∗ each.

◦ ` = O(log q) ancillas for the block encoding.

◦ O(q` log(1/ε)) elementary quantum gates, the parameters of which can be computed classically
in time poly(q, log(1/ε)).

The lemma roughly says that we can approximately simulate t steps of the random walk with
only about O(

√
t) steps of the quantum walk. The proof consists of three steps.

1. The transition matrix for d steps of the quantum walk, (SC)d, block encodes Td(T̃) (up to a
basis change by U), where Td denotes the Chebyshev polynomial of degree d.

2. T̃ t can be closely approximated by a linear combination of Td(T̃) for d around Θ(
√
t). This

follows from well-known properties of the Chebyshev polynomials.

3. An efficient method to block encode a linear combination of unitaries, known as the LCU
method.

2.1 Iterates of the quantum walk operator as block encodings

The block encoding perspective enters the analysis of the iterates of SC naturally. Recall that the
quantum walk acts on two registers of vertices, with basis states of the form |u〉 |v〉. In the end,
we are interested in the weight distribution induced by the second register; the first register we
introduced in order to make the simulation of a random walk on a quantum computer possible. For
each basis state |v〉 of the second register, we start the first register in the state |Nv〉. As the coin
operator C reflects about that very state, the state is invariant under C. It therefore makes sense
to analyze what happens in the subspace spanned by the states |Nv〉 |v〉. Since |Nv〉 |v〉 = U |0n〉 |v〉,
this means analyzing the quantities

(U |0n〉 |u〉)(SC)d(U |0n〉 |v〉 = 〈0n| 〈u| (U∗(SC)dU) |0n〉 |v〉 ,

i.e., the N ×N matrix that U∗(SC)dU block encodes.

3

Single step. Let us start with d = 1. Since C = UR|0n∗〉U
∗, we have that U∗(SC)U =

U∗SUR|0n∗〉, which acts the same as U∗SU on |0n∗〉. Note that, as S is a reflection, so is U∗SU .
We denote the latter reflection as

R
.
= U∗SU

and compute its top left corner.

R0nu,0nv = 〈0n| 〈u|R |0n〉 |v〉
= 〈0n| 〈u|U∗SU |0n〉 |v〉 (definition of R)

= (U |0n〉 |u〉)∗S(U |0n〉 |v〉) (rearranging terms)

= (|Nu〉 |u〉)∗S(|Nv〉 |v〉) (defining property of U)

= (|Nu〉 |u〉)∗(|v〉 |Nv〉) (S : |u, v〉 7→ |v, u〉)

=
√
Tvu ·

√
Tuv (definition of Nu and Nv)

= T̃uv (definition of T̃)

We conclude:

Fact 3. R block encodes T̃ , and so does RR|0n〉 = U∗(SC)U .

In other words, up to a basis transformation by the unitary U , one step of the quantum walk block
encodes the geometric symmetrization of T .

More steps. Let Md denote the N ×N matrix that (RR|0n∗〉)
d block encodes, i.e.,

(RR|0n∗〉)
d =

[
Md ∗
∗ ∗

]
.

In terms of such block matrices, we can write P|0n∗〉 =

[
1 0
0 0

]
, R|0n∗〉 =

[
1 0
0 −1

]
and

P|0n∗〉(RR|0n∗〉)
dP|0n∗〉 =

[
Md 0
0 0

]
.

We have

P|0n∗〉(RR|0n∗〉)
d+1P|0n∗〉

= P|0n∗〉
(
R(2P|0n∗〉 − I)

)
(RR|0n∗〉)

dP|0n∗〉

= 2(P|0n∗〉RP|0n∗〉)
(

(RR|0n∗〉)
dP|0n∗〉

)
−
(
P|0n∗〉(RR)R|0n∗〉

) (
(RR|0n∗〉)

d−1P|0n∗〉

)
= 2

[
M1 0
0 0

] [
Md 0
∗ 0

]
−
[
1 0
0 0

] [
Md−1 0
∗ 0

]
=

[
2M1Md −Md−1 0

0 0

]
,

4

where the first line follows from writing R|0n∗〉 = 2P|0n∗〉 − I, the second from linearity and rear-
ranging, and the third from Fact 3 and that, as a reflection, R is its own inverse. Thus, we have
the recurrence

Md+1 = 2 ·M1 ·Md −Md−1

for d ≥ 1, where M0 = I. A similar recurrence defines the Chebyshev polynomials Td(x) ∈ R[x]:

T0(x) = 1

T1(x) = x (2)

Td+1(x) = 2 · x · Td(x)− Td−1(x) for d ≥ 1.

We conclude that Md = Td(M1). The above derivation is valid in more general settings where the
number of ancillas of the block encoding can differ from the number of qubits on which the encoded
matrix is acting. For future reference, we state the more general result.

Lemma 4. If a reflection R block encodes a matrix M , then for every d ∈ N, the unitary (RR|0`∗〉)
d

block encodes Td(M) with the same number of ancillas, where Td denotes the Chebyshev polynomial
of degree d.

Combining the generic lemma with Fact 3, we have shown that d steps of our quantum walk block
encode Td applied to the geometric symmetrization of T up to a basis change with U .

Corollary 5. For every d ∈ N, U∗(SC)dU block encodes Td(T̃).

2.2 Chebyshev polynomials

Chebyshev polynomials have many interesting properties, some of which can be used as alternate
definitions. We derive the ones that we need based on our definition (2), and state a few more.
First of all, induction on d shows that Td is indeed a polynomial of degree d. Second, Td is the
polynomial that expresses cos(dθ) as a function of cos(θ).

Fact 6. cos(dθ) = Td(cos(θ)) for all θ ∈ R.

Proof. This property also follows by induction on d. For d = 0, cos(0 · θ) = cos(0) = 1 = T0(cos θ),
and the case d = 1 holds because T1 is the identity function. For d ≥ 1 we have

Td+1(cos (θ)) = 2 cos (θ)Td(cos (θ))− Td−1(cos (θ)) (recurrence for Td)

= 2 cos (θ) cos (dθ)− cos ((d− 1)θ) (inductive hypothesis)

= 2 cos (θ) cos (dθ)− (cos (dθ) cos (θ) + sin (dθ) sin (θ)) (trigonometric identity)

= cos (θ) cos (dθ)− sin (dθ) sin (θ) (rearranging)

= cos ((d+ 1)θ) (trigonometric identity),

where we twice used the trigonometric identity cos(α+ β) = cos(α) cos(β)− sin(α) sin(β). �

Based on Fact 6, an explicit expression for Td(x) can be obtained from de Moivre’s formula

cos(dθ) + i sin(dθ) = eidθ = (eiθ)d = (cos(θ) + i sin(θ))d.

5

−1 −0.5 0 0.5 1

−2

−1

0

1

2
T0(x)

T1(x)

T2(x)

T3(x)

T4(x)

T5(x)

Figure 1: Plot of the first few Chebyshev polynomials

Applying the binomial theorem, rewriting sin2(θ) as 1− cos2(θ), and taking the real parts on both
sides yields

Td(x) =

bd/2c∑
k=0

(
d

2k

)
(−1)k(1− x2)kxd−2k.

Fact 6 implies that Td(x) ∈ [−1, 1] for x ∈ [−1, 1]. Among all polynomials of degree d whose
graph is contained within the box [−1, 1]× [−1, 1], Td is extremal in several respects. For example,
Td achieves the largest maximum derivative in absolute value over [−1, 1], as well as the largest
absolute value at any point x ∈ R outside of [−1, 1]. The plot in Figure 1 illustrates these properties.

Chebyshev approximations. Any polynomial of degree t can be expressed exactly as a linear
combination of the Chebyshev polynomials of degree up to t. We are particularly interested in the
Chebyshev expansion of xt. Using the convention that T−d

.
= Td for positive integers d, we can

write the expansion as follows.

Fact 7. For every t ∈ N,
xt = Est [Tst(x)], (3)

where st is the sum of t independent uniform ±1 random variables.

Proof. Rearranging the recurrence (2), we have that

xTd(x) =
1

2
(Td+1(x) + Td−1(x)) = E∆[Td+∆(x)], (4)

where ∆ ∈u ±1. The relationship holds for integers d ≥ 1 by the recurrence. It extends to d < 0 by
the convention that Td

.
= T−d, and also holds for d = 0 because T0(x) = 1 and T−1(x) = T1(x) = x.

Thus, the relationship holds for all integers d.
The expansion (3) then follows by induction on t. The base case t = 0 holds because s0 = 0

and T0(x) = x0. For the induction step we have for t ≥ 0

xt+1 = x · xt = x · Est [Tst(x)] = Est [xTst(x)] = Est [E∆[Tst+∆(x)]] = Est+1 [Tst+1(x)],

6

where the second equality follows from the induction hypothesis, the third from linearity of ex-
pectation, the fourth from (4), and the last one because st + ∆ is a sum of t + 1 independent ±1
random variables. �

Note that the right-hand side of (3) is a linear combination of Td(x) where d ranges over the
integers with |d| ≤ t, namely

∑t
d=−t qt,dTd(x), where

qt,d
.
= Pr[st = d] = Pr[sum of t independent uniform± 1 random variables equals d]. (5)

By concentration of measure, most of the weight in the expansion (3) lies on degree d up to Θ(
√
t).

This allows us to approximate xt closely as a linear combination of Chebyshev polynomials of degree
at most a = Θ(

√
t), namely as the truncated Chebyshev expansion

pt,a(x)
.
=
∑
|d|<a

qt,dTd(x). (6)

We can bound the error of the approximation as follows for x ∈ [−1, 1]:

|xt − pt,a(x)| = |
∑
|d|≥a

qt,dTd(x)|

≤
∑
|d|≥a

qt,d|Td(x)| (triangle inequality)

≤
∑
|d|≥a

qt,d (|Td(x)| ≤ 1 for x ∈ [−1, 1])

= Pr[|st| ≥ a] (equation (5))

≤ 2 · exp (−a2/(2t)) (Chernoff bound).

We conclude:

Fact 8. For any a ≥
√

2t · ln(2/ε), |xt − pt,a(x)| ≤ ε for every x ∈ [−1, 1], where pt,a is defined by
(6) and (5).

Polynomial approximations to scalars generically extend to matrices that have a full basis of
eigenvectors as long as the eigenvalues fall within the domain of the approximation. If the basis is
orthonormal, the error in 2-norm of the matrix approximation is bounded by the error in the scalar
approximation.

Fact 9. Suppose that M ∈ CN×N has a full orthonormal basis of eigenvectors, and p, q ∈ C[z]. If
|p(λ)− q(λ)| ≤ ε for every eigenvalue λ of M , then ‖p(M)− q(M)‖2 ≤ ε.

Proof. Let V ∈ CN×N be a unitary matrix such that the columns of V form an orthonormal
eigenbasis for M : M = V ∗Diag(λ)V , where we use Diag(λ) as a shorthand for Diag(λ1, . . . , λN),
the diagonal matrix with the eigenvalues of M on the diagonal. Note that p(M) and q(M) share

7

the eigenbasis V with M .

‖p(M)− q(M)‖2 = ‖V ∗p(Diag(λ))V − V ∗q(Diag(λ))V ‖2 (shared eigenbasis)

= ‖V ∗(p− q)(Diag(λ))V ‖ (linearity)

= ‖(p− q)(Diag(λ))‖2 (unitary invariance of 2-norm)

= ‖Diag((p− q)(λ1), . . . , (p− q)(λN)‖2 (polynomial of diagonal matrix)

= max
1≤j≤N

|p(λj)− q(λj)| (2-norm of diagonal matrix)

≤ ε (hypothesis) �

Consider a matrix M that is block encoded by a reflection R. Since R is Hermitian, so is M . Thus,
M has a full orthonormal basis of eigenvectors and all its eigenvalues are real. Moreover, as a block
encoded matrix, all its eigenvalues have absolute value at most 1. Hermitian matrices always have
a full orthonormal basis of eigenvectors and all their eigenvalues are real. By Lemma 4, Fact 8, and
linearity we conclude:

Lemma 10. If a reflection R block encodes a matrix M , then for every t ∈ N, ε > 0 and a ≥√
2t · ln(2/ε),

∑
|d|<a qt,d(RR|0`∗〉)

d block encodes a matrix M ′ such that ‖M t −M ′‖2 ≤ ε, where
qt,d is given by (5).

In combination with Fact 3, we obtain:

Corollary 11. For any t ∈ N, ε > 0, and a ≥
√

2t · ln(2/ε), U∗
(∑

|d|<a qt,d(SC)d
)
U block encodes

a matrix M such that ‖T̃ t −M‖2 ≤ ε, where qt,d is given by (5).

2.3 Linear Combination of Unitaries

Corollary 11 gives us a linear combination L
.
=
∑
|d|<a qt,d(SC)d of unitaries such that U∗LU block

encodes a good approximation M to T t. We have a unitary circuit for each of the constituting
unitaries (SC)d, namely as (SUR|0n∗〉U

∗)d. If we were able to efficiently construct a block encoding
A for L, we would be home free: (I ⊗ U∗)A(I ⊗ U) then block encodes M .

Next lecture we will develop a technique to obtain a block encoding for a generic linear com-
bination of unitaries. The technique is known as the Linear Combination of Unitaries method, or
LCU for short. It comes at the cost of ` = O(log a) additional ancillas and only provides a block en-
coding for the linear combination up to a scalar. The resulting unitary circuit for A uses q = O(a)
controlled applications of the quantum walk operator SC, and O(a` log(1/ε)) other elementary
quantum gates, the parameters of which can be computed classically in time poly(a, log(1/ε)).
This way we achieve complexity bounds stated in the Fast Forwarding Lemma.

The LCU construction and proof will be presented in the next lecture. In preparation, solve
the following special case.

Exercise #10: Construct a block encoding for the sum U1 +U2 of two unitaries on n qubits, up
to some scalar. You can assume access to a selector operator U on n + 1 qubits, where the first
qubit selects which of U1 or U2 to apply: U |b〉 |ψ〉 = |b〉Ub+1 |ψ〉. Aim for a number of ancillas that
is as small as possible, and a scalar that is as large as possible.

8

3 Interpolating Walks

To find a good vertex using a random walk, we start from a vertex chosen from the initial distri-
bution σ = π, and keep walking until we hit a good vertex. This means that we check f before
each step of the walk. The underlying transition matrix is an absorbing version Tf of the transition
matrix T of the unconstrained random walk, obtained by replacing the columns in T corresponding
to good vertices (f(v) = 1) by the point distribution at that vertex.

In an attempt to speed up the process on a quantum computer, we could run the quantum walk
starting from |Π〉, evaluate the success predicate in every step by applying Uf on the second register
and a clean ancilla, measure the ancilla, and measure the second register when the measurement
of the ancilla indicates success. This approach mimics the classical process closely. The Fast
Forwarding Lemma does not apply, though, as the Markov chain Tf is not reversible.

The approach we follows is to create |0n〉 |
√
π〉 and perform the initial success check as above,

but in case of failure apply the block encoding from the Fast Forwarding Lemma to the state
|0n〉 |B〉, where |B〉 is the normalized projection of |

√
π〉 onto the bad vertices. The initial check

takes care of cases where the weight of |
√
π〉 on the good vertices is fair, so in the rest of the analysis

we only need to worry about cases where the weight is small, or equivalently, when the component
of |B〉 along |

√
π〉 is fair. As the component along |

√
π〉 is invariant under T̃ , this means that

‖T̃ t |B〉 ‖2 remains fair for any t, so the application of the block encoding of M to |B〉 has a fair
probability of success.

The question is what t we should use. By the definition of the hitting time H and Markov’s
inequality, with probability of at least 50%, the classical process ends within the first 2H steps. The
Fast Forwarding Lemma suggests we should not set t higher than Θ(

√
H), but the precise choice

matters and is unclear. Similar to our version of Grover search with unknown initial weight, we
could pick t uniformly at random between 0 and an upper bound of Θ(

√
H). This works provided

there are many values of t in that range where the second register of the quantum system has a
fair amount of weight on the good vertices. This may not be the case for the Markov chain defined
by T , but can be obtained by adequately interpolating between T and the absorbing version Tf .

Interpolating walks. We consider the Markov chain with transition matrix T (a)
.
= (1− a)T +

aTf , where a ranges over [0, 1]. For any parameter setting other than a = 1, T (a) is reversible.
Indeed, T (a) corresponds to a random walk on the original weighted graph G = (V,E) but with
an additional self-loop of weight c · w(v) at every good vertex v, where c = a

1−a . The effect in the
quantum walk shows up in the the operator U , which now also depends on the parameter a.

Exercise: Show how to efficiently implement U(a) for a ∈ [0, 1) using two applications of Uf and
a controlled application of U .

The higher a, the longer the walk stays at a good vertex once reached, and the more choices of
t ∈ Θ(

√
H) result in fair success for the quantum walk to hit a good vertex. On the other hand,

higher values of a result in the stationary distribution π(a) having more weight on the good vertices
and less on the bad vertices, and therefore the component of |B〉 along |

√
π(a)〉 being smaller, and

thus the success probability ‖T̃ (a)
t
|B〉 ‖22 of the application of the block encoding being smaller.

Adequate values of a balance between these two effects. A detailed analysis shows that we can pick
a at random from a small range and ensure a decent probability of choosing a value that achieves
both goals and therefore guarantees overall success with a pair probability.

9

Lemma 12. If µ
.
= Prv π[f(v) = 1] ≤ 1

10 , then for any integer τ ∈ Ω(
√
H), the expected weight

of T̃ (a)
t
|B〉 on the vertices v with f(v) = 1 is Ω(1

log (τ)), where a
.
= 1 − 1

2r , r ∈u [O(log (τ))] and

t ∈u [τ].

4 Algorithm

Taken together, we have designed the following subroutine for quantum walk search.

1. Create the superposition |π〉 .=
∑

v

√
πv |v〉.

2. Evaluate goodness in a fresh ancilla by running Uf on the register and the ancilla, and
measuring the ancilla. If we measure 1, we measure the register, output the result and stop.
Otherwise the register is in state |B〉.

3. Pick a and t for τ as in Lemma 12.

4. Run fast forwarding for the random walk with transition matrix T (a). This yields a block
encoding A of a matrix M .

5. Apply A to |0n〉 |B〉.

6. Evaluate goodness as above. of the ancilla again. If we measure 1, measure the second
register,, and output the result. Otherwise, we report failure.

We set τ = Θ(
√
H). A single run of the subroutine costs O(s +

√
H(u + c)) and has a suc-

cess probability of at least min(1
10 ,Ω(1

log (H))). Using amplitude amplification, we can boost the

confidence to 2/3 at a multiplicative cost of
√

log (H). This gives the complexity bounds from
Theorem 1 and completes our discussion of how a quantum walk can perform search for a good
item in a number of steps that is roughly only the square root of the classical hitting time.

10

	Recap
	Block encoding
	From random to quantum walks

	Fast Forwarding
	Iterates of the quantum walk operator as block encodings
	Chebyshev polynomials
	Linear Combination of Unitaries

	Interpolating Walks
	Algorithm

