
Quantum Algorithms 3/9/2023

Lecture 14: Hamiltonian Simulation

Instructor: Dieter van Melkebeek

This lecture focuses primarily on Hamiltonian simulation. Simulating the quantum Hamilto-
nian was one of the initial motivations behind the quantum computer. Today we show that it is
possible to efficiently simulate a Hamiltonian evolution with a quantum computer. We begin by
giving some physics background, and formalize the Hamiltonian simulation in the block encoding
framework. We then go on to develop an efficient algorithm, which in this case happens to be
optimal. Afterwards, we mention some further related results.

We start by finishing the discussion on the LCU method from last lecture. The method will be
an important ingredient in Hamiltonian simulation, as well.

1 Linear Combination of Unitaries

Let us first present a solution to Exercise #10, where we consider the special case of the sum of
two n-qubit unitaries U1 and U2. The goal is to construct a block encoding for 1

q (U1 + U2) for q
as large as possible and with as few ancillas as possible, given access to a unitary U on n+ 1 such
that U |b〉 |ψ〉 = |b〉Ub+1 |ψ〉.

Note that we cannot hope to do better than q = 2. This is because in the case where U1 = U2,
the sum U1 + U2 has two-norm 2 and thus needs to be reduced by a factor at least 2 in order to
appear as the top left corner of another unitary matrix.

The given unitary is U equals [
U1 0
0 U2

]
.

We’d like to transform it into a matrix that, up to a scalar, looks like[
U1 + U2 ∗
∗ ∗

]
.

Adding the top right block to the top left block and the bottom left blocks to the top left block
achieves the goal: [

I I
∗ ∗

] [
U0 0
0 U1

] [
I ∗
I ∗

]
=

[
U0 + U1 ∗
∗ ∗

]
.

These partially specified operations cannot be extended to unitary operations, but they can if we
scale both with a factor of 1/

√
2. A natural extension for both is the Hadamard operator at the

block level, which yields the desired block encoding with q = 2:

(H ⊗ I)U(H ⊗ I) =

[
1
2(U0 + U1) ∗

∗ ∗

]
.

The block encoding uses no additional ancillas (beyond the one for U).
This completes the solution for the special case of the sum of two unitaries. We can generalize the

construction for the general case of a linear combination
∑k

i=1 qiUi, where U1, . . . , Uk are unitaries

1

on n qubits, and qi ∈ C for i ∈ [k]. Like in the special case, we assume a uniform way of accessing
the unitaries in the form of a selector operator U on ` = log k additional qubits that maps |i〉 |ψ〉
to |i〉Ui |ψ〉.

For simplicity, let us assume that qi ∈ (0,∞). This situation can be obtained by dropping
the terms with qi = 0 and incorporating the phases of each nonzero qi into the corresponding
Ui. Because of the case of identical Ui’s, as before, the best we can hope for is to block encode
1
q

∑k
i=1 qiUi, where q =

∑k
i=1 qi.

Consider replacing the first block row in U by a linear combination of the block rows with a
coefficient vector |α〉 .=

∑k
i=1 αi |i〉 of 2-norm 1, and similarly the block columns and a coefficient

vector |β〉 .=
∑k

i=1 βi |i〉. We have that

(〈α| ⊗ I)U(|β〉 ⊗ I) = (〈α| ⊗ I)

U1 0 . . .
0 U2 . . .
...

...
. . .

 (|β〉 ⊗ I) =
∑
i

αiβiUi

and want αiβi = qi/c for some scalar c that is as small as possible, ideally c = q. Note that
〈α|β〉 = q

c , so the smallest c is obtained when the inner product 〈α|β〉 is largest. This happens

when |α〉 and |β〉 are parallel. Thus, we set αi = βi =
√

qi
q and this way achieve c = q. Note that

the square roots are well-defined as we made sure that qi ∈ (0,∞). Instead of incorporating the
phases of the qi into the corresponding unitaries Ui, we can leave them as are and define

√
exp(iθ)r

for θ ∈ [0, frm−eπ) and r ∈ (0,∞) as exp(iθ/2)
√
r (where in the last two expressions. i denotes

the imaginary unit rather than an index).
The resulting block encoding uses ` = log k ancillas. To state the general result, in addition

to the selection operator U , we assume access to a preparation operator V on ` qubits with the

property that V |0`〉 =
∑k

i=1

√
qi
q |i〉, where q =

∑k
i=1 |qi|. The block encoding can then be written

as
(V ∗ ⊗ I)U(V ⊗ I). (1)

Lemma 1 (LCU method). Let U1, . . . , Uk be unitaries on n qubits and q1, . . . , qj ∈ C. Let U be
a unitary on ` = log k additional qubits such that U |i〉 |ψ〉 = |i〉Ui |ψ〉 for i ∈ [k], and V a unitary

on ` qubits such that V |0`〉 =
∑k

i=1

√
qi
q |i〉, where q

.
=
∑k

i=1 |qi|. There exists a block encoding of∑k
i=1 for 1

q

∑k
i=1 qiUi using ` ancillas that consists of one application of U , V , and V ∗.

The block encoding can then be written as

(V ∗ ⊗ I)U(V ⊗ I). (2)

Note that if all Ui are Hermitian, then so is U as well as the block encoding (2). As we have already
seen and will see more of later on, Hermitian block encodings have interesting properties and often
simplify constructions. As we’re working with unitary operators, being Hermitian is equivalent to
being a reflection. This is because unitary operators only have eigenvalues of absolute value 1,
Hermitian ones only have real eigenvalues, and reflections only have eigenvalues ±1.

2

2 A Little Bit of Physics Background

At any given time, we can describe the state of a quantum system by a state vector |ψ(t)〉. Inter-
actions within the system are characterised by a Hermitian matrix H known as the Hamiltonian,
whose eigenvalue we will later see correspond to the possible energy levels of the system. A quantum
system will evolve in accordance with the Schrödinger equation:

i~
d |ψ(t)〉
dt

= H |ψ(t)〉 , (3)

where i denotes the imaginary unit, ~ is the reduced Planck’s constant, and H is the Hamiltonian.
For the rest of this lecture, we will set ~ = 1, as it is just a constant real number (i.e., we can
measure time in the unit of ~). In general, H could depend on t, but we restrict our attention to
the cases where H is time independent.

Before solving (3), let’s first consider an analogous one-dimensional equation f ′(t) = λf(t). The
solution is f(t) = f(0)eλt. One might notice that the Schrödinger equation is of this form, except
replacing λ with H and f by a vector valued function, so we would expect the Schrödinger equation
to be solved using a similar method. Indeed, (3)’s solution is in terms of the matrix exponential as
follows:

|ψ(t)〉 = Ut |ψ(0)〉 where Ut
.
= exp(−iHt/~), (4)

where the matrix exponential can be defined in terms of the usual exponential. We first explain
how this can be done and then verify later that (4) is indeed the solution of (3).

3 Matrix Functions

Consider a function f : C → C. In the case that f is a polynomial, then f(A) is well-defined for
any square matrix A ∈ CN×N , by replacing every instance of xn with An. In the more general case,
suppose f has a Taylor expansion

f(z) =
∞∑
k=0

ckz
k (5)

that converges absolutely for every z ∈ C with |z| < r, where r is the radius of convergence. Then,
f(A) is well-defined for every square matrix A ∈ CN×N with ‖A‖ < r for any sub-multiplicative
matrix norm (i.e., ‖AB‖ ≤ ‖A‖‖B‖). We can show this using the absolute convergence; if ‖A‖ < r,
then ‖Ak‖ < rk, and thus ∥∥∥∥∥

∞∑
k=`

ckA
k

∥∥∥∥∥ ≤
∞∑
k=`

‖ckAk‖ ≤
∞∑
k=`

|ck|‖A‖k (6)

Since ‖A‖ < r, by the absolute convergence, the right-hand side converges to 0 for ` → ∞ and so
does the left-hand side.

The case that A has a full basis of eigenvectors can alternately be handled as follows. Say
A = V DV −1 where D

.
= Diag(λ1, .., λN). We can then define

f(A) = V Diag(f(λ1), .., f(λN))V −1. (7)

As the matrices that we are interested in all can be diagonalized, this is the definition we will
adopt. To see that it is consistent to the above definitions in case where both apply, consider what

3

happens when we take An. We have that An = V DV −1V DV −1 . . . V DV −1. All of the V ’s and
V −1’s in the middle cancel out, leaving us An = V DnV −1, which is simply V Diag(λn1 , .., λ

n
N)V −1.

This extends by linearity to arbitrary polynomials, and to absolutely convergent power series.
By our definition of matrix functions, the following approximation property from last lecture

immediately carries over from polynomials to arbitrary functions.

Fact 2. Suppose that M ∈ CN×N has a full orthonormal basis of eigenvectors, and f, g : C → C.
If |f(λ)− g(λ)| ≤ ε for every eigenvalue λ of M , then ‖f(M)− g(M)‖2 ≤ ε.

Exercise. Recall the Pauli operators X, Y , and Z, and the notation ~a · ~σ .
= axX + ayY + azZ

for ~a = (ax, ay, az) ∈ C3. Show that for every ~a ∈ R3 with ‖~a‖2 = 1, and θ ∈ R

exp(iθ~a · ~σ) = cos(θ) I + i sin(θ)~a · ~σ.

In particular,

exp(iθZ) =

[
eiθ 0
0 e−iθ

]
and exp(iθX) =

[
cos θ i sin θ
i sin θ cos θ

]
.

Evolution operator under time-independent Hamiltonian We now get back to the specific
question of defining the matrix exponential. As an aside, note that scalar exponential has a Taylor
expansion that converges absolutely everywhere:

exp(z) =
∞∑
k=0

1

k!
zk for every z ∈ C. (8)

The 1
k! is decreasing very quickly, which is something that we use in later results. Thus, we can

plug in any matrix A into this series and get

exp(A) =
∞∑
k=0

1

k!
Ak for every A ∈ CN×N . (9)

In the case of the evolution operator U
.
= exp(−iHt/~), the matrix H is Hermitian and therefore

has a full orthonormal basis of eigenvectors: H = V Diag(λ)V ∗ where V ∗V = I. Here, we use
Diag(f(λ)) as a shorthand for Diag(f(λ1), . . . , f(λN)). By definition, U = V Diag(exp(−iλt/~)V ∗.

Note that U is unitary. This has to be the case as U maps pure states to pure states, but can
also be seen as follows:

U∗U = (V Diag(exp(iλt/~)V ∗)(V Diag(exp(−iλt/~)V ∗)

= V Diag (exp(iλt/~) · exp(−iλt/~))V ∗ = I.

To argue that U |ψ(0)〉 solves (3), we need to show that i~ d
dt(U |ψ(0)〉) = H(U |ψ(0)〉). This

4

follows because

d

dt
(U) = V Diag(

d

dt
(exp(−iλt/~))V ∗

= V Diag(
−iλ
~
· exp(−iλt/~)V ∗

=
−i
~
V Diag(λ) Diag(exp(−iλt/~)V ∗

=
−i
~

(V Diag(λ)V ∗)(V Diag(exp(−iλt/~)V ∗)

=
−i
~
HU.

Thus, the evolution operator U solves the Schrödinger equation. From here, we can move on to the
problem of computing U , which we will do in the block encoding framework.

4 Block Hamiltonian Simulation

Recall the definition of a block encoding:

Definition 1. A block encoding of a matrix M acting on n qubits with m ancilla qubits is a unitary
A acting on m+ n qubits such that

A =

[
M ∗
∗ ∗

]
(10)

The rest of this lecture will be focused on the main algorithm described in the below theorem,
about finding a block encoding of the matrix exponential:

Theorem 3. There is a black-box algorithm that takes a block encoding of a Hermitian H with `
ancilla qubits, t ∈ [0,∞), and ε ∈ (0,∞), and produces a block encoding of a matrix M such that
‖M − exp(iHt)‖2 ≤ ε, using q = O(t + log(1/ε)) controlled applications of the black-box and its
inverse, Õ(q`) other quantum gates, and `+O(1) ancilla qubits.

Note that the block encoding of H presupposes ‖H‖2 ≤ 1. This can be achieved by rescaling
the Hamiltonian by 1/‖H‖2 and the time t by ‖H‖2.

Theorem 3 solves the Hamiltonian simulation problem, and it solves that in a very strong way,
namely in the block encoding framework. In addition, it can be shown that the number q of
applications of the black-box is optimal up to a constant factor.

The block encoding in Theorem 3 allows approximating |ψ(t)〉 to within ε in 2-norm, namely
as M |ψ(0)〉, with probability 1− 2ε and success indicator. The success indicator comes using the
block encoding in a similar way as in the last lecture, where we need to observe |0`〉 in the first
` registers (the ancilla registers) in order for the rest of the qubits to be in state M |ψ(0)〉. The
probability of this happening equals ‖M |ψ(0)〉 ‖22 ≥ (1− ε)2 ≥ 1− 2ε.

In the next section, we will directly construct a less efficient Hamiltonian simulation algorithm
which uses q = O(t log(t/ε)) queries, Õ(q) other gates, and O(log q) extra ancilla qubits. Further
improvement to the efficiency of Theorem 3 can be achieved with Quantum Signal Processing,
which will be covered in a later lecture.

5

5 Algorithm

We now develop the algorithm for block Hamiltonian simulation.

5.1 Approach

Our approach makes use of a polynomial approximation of the exponential function obtained by
truncating the Taylor expansion. We instantiate Fact 2 with f(z) = exp(z) and g(z) =

∑d
k=0

1
k!z

k

the Taylor series of exp(z) truncated after degree d: If for all eigenvalues λ of H,∣∣∣∣∣exp (iλt)−
d∑

k=0

1

k!
(iλt)k

∣∣∣∣∣ ≤ ε (11)

then ∥∥∥∥∥exp (iHt)−
d∑

k=0

1

k!
(iHt)k

∥∥∥∥∥
2

≤ ε. (12)

From (12), we see that our goal is to find a block encoding of a linear combination of powers
of a matrix. Powering in the block encoding formalism can be done efficiently. Also, a linear
combination of easy unitaries can be done efficiently using the LCU method (at the cost of some
additional ancillas and a possible reduction in scalar). Hence our apporach is first to find block
encodings for each power of H, and then use the LCU method to combine those block encodings
into a block encoding of g(iHT) =

∑d
k=0

1
k!(iHt)

k.

5.2 Approximating the exponential function

We first determine a small value of d that guarantees (11). Since all eigenvalues λ of the Hermitian
matrix H are real, and |λ| ≤ ‖H‖2 ≤ 1, it suffices to ensure that

∀λ ∈ [−1, 1],

∣∣∣∣∣exp (iλt)−
d∑

k=0

1

k!
(iλt)k

∣∣∣∣∣ ≤ ε. (13)

By applying the Taylor series expansion of the exponential function, we get∣∣∣∣∣exp (iλt)−
d∑

k=0

1

k!
(iλt)k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=d+1

1

k!
(iλt)k

∣∣∣∣∣ . (14)

Using the triangle inequality, that λ ≤ 1, and t ≥ 0, we get that∣∣∣∣∣
∞∑

k=d+1

1

k!
(iλt)k

∣∣∣∣∣ ≤
∞∑

k=d+1

|λt|k

k!
≤

∞∑
k=d+1

tk

k!
. (15)

For all positive integer k,

kk

k!
≤
∞∑
`=0

kl

`!
= ek (16)

6

Therefore,
(
k
e

)k ≤ k! for every positive integer k, so

∞∑
k=d+1

tk

k!
≤

∞∑
k=d+1

(
et

k

)k
. (17)

If d ≥ 2et, we get that
∞∑

k=d+1

(
et

k

)k
≤

∞∑
k=d+1

(
1

2

)k
=

(
1

2

)d
, (18)

where in the last step, we used the fact that
∑∞

`=1

(
1
2

)`
= 1. If d ≥ log2

(
1
ε

)
, we get(

1

2

)d
≤ ε. (19)

Thus, altogether, we have that for d ≥ max(2et, log2
(
1
ε

)
) = Θ(t + log(1/ε)), (13) holds, and

therefore

‖ exp (iHt)−
d∑

k=0

1

k!
(iHt)k‖2 ≤ ε. (20)

5.3 Powering in the block encoding framework

We now explain how to efficiently obtain block encodings of powers of H. We start with an
elementary approach for the square.

Elementary approach. Suppose that we have (n + `)-qubit block encoding A of an n-qubit

matrix H where A =

[
H X
Y Z

]
for some X,Y, Z. We would like to perform operations on A to yield

a block encoding for H2. Notice that A2 does not work for that purpose as

A2 =

[
H X
Y Z

] [
H X
Y Z

]
=

[
H2 +XY ∗
∗ ∗

]
,

and we have H2 + XY in the top left sector rather than the H2 we want. Instead, consider
(I ⊗A)(A⊗ I):

(I ⊗A)(A⊗ I) =


H X 0 0
Y Z 0 0
0 0 H X
0 0 Y Z



H 0 X 0
0 H 0 X
Y 0 Z 0
0 Y 0 Z

 =


H2 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 . (21)

Thus, (I ⊗ A)(A ⊗ I) is a block encoding for H2 that uses 2` ancillas. Generally, the natural
extension of this technique can be used to produce a block encoding of Hk for any k, and requires
O(k) queries to the original block encoding, A, and O(k`) ancillas qubits. O(k`) ancillas qubits
is very costly, so it is important to find a method that requires fewer ancillas. A method that
accomplishes this is explored next.

7

Improved approach. We can make use of the results on quantum walks to block encode the k-th
power of H using just `+ O(log k) ancillas and still only need O(k) queries to the block encoding
for H. The method requires a Hermitian block encoding R of H, or equivalently, a block encoding
R of H that is a reflection. If we can find such R, then we can make use of the following lemma
proved in the previous lecture:

Lemma 4. If R is a Hermitian block encoding of a matrixM , then (RR|0`∗〉)
k block encodes Tk(M)

with the same number of ancillas for every k ∈ N, where Tk denotes the Chebyshev polynomial of
degree k.

We next explain how to obtain a Hermitian block encoding.

Constructing a Hermitian block encoding of a Hermitian matrix. Given a block encoding
A of H, we can construct a Hermitian block encoding as follows. First consider

A′=̇

[
0 A
A∗ 0

]
, (22)

which acts on one more qubit than A does. Note that A′ is unitary (because A is) and Hermitian
(by construction). By our analysis of the solution to Exercise #10,

R
.
= (Had⊗ I)A′(Had⊗ I)

block encodes 1
2(A+ A∗), where we write Had for the Hadamard gate in order to avoid confusion

with the Hermitian H that we are considering. As A block encodes H, A∗ block encodes H∗. Since
H is Hermitian, this means that 1

2(A+A∗) block encodes H, and therefore so does R.
Note that the Hermitian block encoding R uses one more ancilla than the original block encoding

A, and that R involves a controlled A and a controlled A∗ operation.

5.4 Linear Combination of Unitaries (LCU)

In order to obtain a block encoding for Hk, we can write Hk as a linear combination of Tj(H)
for j ≤ k, and apply the LCU method. However, as we are ultimately interested in the linear
combination

M
.
=

d∑
k=0

1

k!
(iHt)k = sumd

k=0

(it)k

k!
Hk (23)

of those powers, we write M as a linear combination
∑d

k=0 ckTk(H) of Tk(H) for k ≤ d, and directly
apply the LCU method to get a block encoding of M . It was shown in the previous lecture that
Hk = Esk [Tsk(H)] where sk is the sum of k independent uniform ±1 values. This means that the

coefficient (it)k

k! on the right-hand side of (23) gets distributed over the coefficients c0, . . . , cd. It
follows that

d∑
k=0

|ck| ≤
d∑

k=0

|(it)
k

k!
| =

d∑
k=0

tk

k!
. (24)

As shown above, we can use a Hermitian block encoding R for H to compute a block encoding
of Tk(H) as (RR|0`∗〉)

k. Put together, this means that the top left corner of

d∑
k=0

ck(RR|0`∗〉)
k (25)

8

equals M . Thus, it suffices to find a block encoding for (25) to obtain a block encoding of M . We
use the LCU method, which actually gives us a block encoding of M/q where q =

∑d
k=0 |ck|. As M

is close to unitary, the success probability of the block encoding is about 1/q2. Since the right-hand
side of (24) converges to et for d → ∞, we can guarantee that the success probability is at least
about e−2t.

In summary, the resulting algorithm has the following characteristics:

◦ O(d) queries and Õ(d) other quantum gates.

◦ O(log (d)) additional ancillas.

◦ Success probability of about e−2t.

Note that the success guarantee quickly goes to 0 for large t. That being the case, we’ll use this
approach for t = 1, and obtain the result for times larger than t = 1 by computing the t-th power
of the one for t = 1.

5.5 Complete algorithm

Our complete Hamiltonian simulation algorithm is as follows. First, use the linear combination of
unitaries approach described above for t = 1 and with error bound ε

t . We choose error bound ε
t

because we will later raise our block encoding from the linear combination of unitaries approach to
the power t, so the total approximation error will be less than or equal to t · εt = ε. Our simulation
for t = 1 has the following characteristics:

◦ O(log (tε)) queries and Õ(log (tε)) other quantum gates.

◦ O(log log (tε)) additional ancilla qubits.

◦ Success probability of at least e−2.

Now, since M=̇
∑d

k=0
1
k!(iHt)

k is (almost) unitary, we can use (robust) oblivious amplification to
boost the success probability to (almost) one. Then, we use the improved powering technique for
block encodings discussed above with exponent t to obtain the desired block encoding for simulating
through time t. Our full simulation algorithm has the following characteristics:

◦ q = O(t log(tε)) queries and Õ(q) other quantum gates.

◦ O(log q) additional ancilla qubits.

◦ Success probability close to 1.

Further improvement to q = O(t + log (1ε)) and O(1) additional ancillas can be achieved with
Quantum Signal Processing, which will be covered in a later lecture.

6 Local and Sparse Hamiltonians

In most physical applications, we are interested in Hamiltonians that have additional properties.
In particular, for most physical applications we are interested in local Hamiltonians.

9

Definition 2. A Hamiltonian H is k-local if H =
∑m

j=1Hj where each Hj is a Hamiltonian acting
on at most k qubits.

Hamiltonians like this are common in physics, where Hamiltonians describe interactions between
components of the system. One part of the Hamiltonian could describe the interaction between a
small number of components. Often times one can set k = 2 as interactions typically only happen
between pairs of components.

We also consider a further generalization which is of interest for algorithmic applications, in-
cluding solving systems of sparse linear equations, which we will cover next lecture:

Definition 3. A Hamiltonian H is s-sparse if each row and column of H contains at most s
nonzero entries.

One can show that if H acts on at most k qubits, then H is s-sparse for s = 2k, and thus if
we can handle sparse Hamiltonians then we can handle local Hamiltonians. The most interesting
algorithmic applications are for s = O(1) or s = poly log(N)

Simulation of sparse Hamiltonians We will see later an efficient construction of block encod-
ing for H/(s‖H‖max) where ‖H‖max

.
= maxi,j |Hi,j |. In this case, to simulate H for t steps, simulate

H ′
.
= H/(s‖H‖max) for t′ = ts‖H‖max steps. The running time becomes O(q) controlled applica-

tions of black box encoding of H and Õ(q) other quantum gates, where q = O(st‖H‖max+log(1/ε)).
Next lecture, this is the setting in which we will be using Hamiltonian simulation.

Finding ground states Apart from Hamiltonian simulation, another computational problem
about physical quantum systems that is of central importance, is finding ground states. Eigen-
states of a Hamiltonian represent stable states of a physical system, the corresponding eigenvalues
represent energy levels of those states, and the ground state is the eigenstate of the Hamiltonian
with lowest energy.

In contrast to Hamiltonian simulation, we do not know of an efficient quantum algorithm for
this problem. It is believed that a quantum computer cannot find the ground state of an arbitrary
physical system in polynomial time. In particular, the simplified problem of deciding whether the
ground state either has energy at most some threshold a, or energy at least some other threshold
b, for a and b sufficiently separated, has been shown to be complete for a quantum version of NP
known as QMA (Quantum Merlin Arthur). It is conjectured that not all of QMA can be solved by
a quantum computer in polynomial time, in which case QMA-complete problems cannot, but the
conjecture remains open.

7 Other Results

The method for Hamiltonian simulation discussed in this lecture is relatively recent. An older
method is based on formulas known as Lie-Trotter-Suzuki decompositions or as product formulas.
Lie-Trotter-Suzuki decompositions only work for local Hamiltonians, so they are not suitable for
sparse Hamiltonians. Initial analysis bounded the number of queries and quantum gates needed
for Lie-Trotter-Suzuki decompositions at O(q) queries and Õ(q) other quantum gates with q =
O(t2 + 1

ε) rather than the q = O(t+ log (1ε)) achieved with Quantum Signal Processing. However,
recently, more careful analysis as well as experiments show that Lie-Trotter-Suzuki decompositions

10

may actually perform better than Quantum Signal Processing for simulating local Hamiltonians in
practice (and perhaps also in theory).

The bounds on queries, quantum gates, and ancilla qubits achieved by the Quantum Signal
Processing approach to Hamiltonian simulation are theoretically optimal in a blackbox setting.
However, better results can be achieved for special types of Hamiltonians.

11

	Linear Combination of Unitaries
	Physics Background
	Matrix Functions
	Block Hamiltonian Simulation
	Algorithm
	Approach
	Approximating the exponential function
	Powering in the block encoding framework
	Linear Combination of Unitaries (LCU)
	Complete algorithm

	Local and Sparse Hamiltonians
	Other Results

