
Quantum Algorithms 3/21/2023

Lecture 15: Quantum Linear System Solvers

Instructor: Dieter van Melkebeek

Today’s lecture is about solving a system of linear equations, which is important for many
applications including machine learning and other engineering disciplines, and also an example of
using Hamiltonian simulation as a tool. Classically, we can solve these systems in time polynomial
in the dimension of the system, but we show that we do better in the quantum setting, even an
exponential speedup. We first state the classical problem and the known results, followed by the
quantum problem, which is similar except in how the input is given and how we can access the
output. For the quantum algorithm, we first discuss the original algorithm for solving a linear
system in a quantum setting [Harrow-Hassidim-Lloyd ’09], which is not quite as efficient due to its
use of eigenvalue estimation, and then we discuss a more recent algorithm with improved accuracy,
which makes use of techniques connecting back to the previous lecture on quantum walks.

1 Classical problem and results

Consider an N × N matrix A and an N -dimensional column vector b over some field F, i.e.,
A ∈ FN×N and b ∈ FN . We are looking for a column vector x ∈ FN such that the equation Ax = b
holds. For this discussion, assume that A is invertible so that there is always a unique solution.

1.1 Results assuming infinite precision

Assuming infinite precision (or finite fields), this system can be solved in O(N3) time using standard
methods such as Gaussian elimination. As solving a system of linear equations is computationally
equivalent to matrix multiplication, the problem can actually be solved in time O(Nω), where ω
denotes the exponent for matrix multiplication. Currently, the best known upper bound on ω is
about 2.373. Progress on ω is slow, the algorithms become more and more complicated, and the
best that can be hoped for is ω = 2 (since all entries need to be read). One example is Strassen’s
algorithm, which runs in O(N log2 7) ≈ O(N2.8074) time.

In most branches of engineering where linear systems of equations need to be solved, for example
civil or chemical engineering, the systems can be very large, but their matrices are usually sparse,
i.e., most coefficients are 0. More precisely, a matrix A is said to be s-sparse if every row and
column contain at most s non-zero entries. Then, as a function of this sparseness s, the problem
can instead be solved in O(N2 · s) time for s-sparse A. Therefore, in practice, real-world systems
with hundreds or thousands of components, many of which are zero, can be solved efficiently.

1.2 Results assuming finite precision over F = R

Over the reals with finite precision (F = R), however, the number of bits of precision needed has
to be taken into account. In this case, the problem can be solved in time O(N2 · s · κ · log(1/ε)) to
obtain an approximate solution x̃ with ‖x̃ − x‖2 ≤ ε‖x‖2, where ε is the maximum relative error,
log(1/ε) is the number of bits of accuracy, and κ is an upper bound for the condition number of

1

A, defined as
κ(A) =̇ ‖A‖2 · ‖A−1‖2 = σ1/σN , (1)

where σ1 denotes the largest singular value of A, and σN the smallest. Note that in the case of a
Hermitian matrix A, κ(A) = |λ|max/|λ|min, where |λ|max denotes the largest absolute value of an
eigenvalue of A, and |λ|min the smallest.

In general, the condition number of a numerical problem bounds how much the solution can
change when the inputs are changed. If the condition number is high, then small perturbations can
be amplified and cause wide variations in the output. However, even with a small condition number,
the chosen algorithm can still end up losing a lot of precision. For example, subtracting two large
numbers that are almost equal may cause a significant loss in accuracy. From this perspective,
some algorithms are better than others.

To gain some intuition on how κ(A) defines the condition of a problem, consider a matrix A
where the difference between the largest and smallest singular values is large. Solving the system
conceptually means computing A−1b. When A−1 is applied to a vector, some dimensions may be
expanded a lot, while others may shrink by a lot. Suppose that the correct right-hand side b lies
along a direction of smallest expansion of A−1, and the measurement error on b along a direction
of largest expansion of A−1. Since the smallest expansion of A−1 is σ−11 , and the largest expansion
σ−1N , the relative error can get multiplied by a factor of about σ1/σN when going from the right-
hand side b to the solution x. The best matrix we can get from this perspective is with the smallest
condition number κ = 1, i.e., with σ1 = σN . These are exactly the unitary matrices and scaled
versions.

2 Quantum problem

We consider a variation of the classical problem in the quantum setting. More specifically, we
compact the inputs and outputs into superpositions. The invertible matrix A ∈ RN×N is given as
a block encoding UA using ` ancilla qubits. The right-hand side b is given as a superposition that
can be generated from the known basis state |0n〉by a unitary Ub:

Ub : |0n〉 7→ |b〉 =̇
1

‖b‖2

N−1∑
i=0

bi |i〉 , (2)

where each bi is a coefficient of b and 1
‖b‖2 is the normalizing factor. We represent this as a unitary

Ub because we need multiple copies, and providing it as a unitary operation yields an easy way to
generate |b〉 without requiring multiple copies of it to be supplied. Supplying a Ub also allows us to
reflect around |b〉. Besides our encodings of A and b, we also require an accuracy parameter ε > 0.

Likewise, the output is given as a superposition |x̃〉 such that ‖ |x̃〉− |x〉 ‖2 ≤ ε where x denotes
the exact solution the system Ax = b. Again, ε is the maximum relative error between the exact
(normalized) solution |x〉 .= 1

‖x‖2
∑N−1

i=0 xi |i〉 and the actual output |x̃〉. (Since |x〉 has 2-norm one,

relative and absolute error are the same.) Note that the output of the quantum problem is very
different from the classical version; with |x̃〉 being a superposition, one can, for example, observe
a particular basis state |i〉 with probability of the absolute value of the corresponding coefficient,
squared. However, one cannot just read out the parts of |x̃〉, so it is not equivalent to solving the
system of equations classically. It means that one needs to run it many times and use some statistics
to get the full solution, or even a single component, and even then one can only get estimates for

2

the absolute value squared of the components. In general, this representation is very restrictive,
but there are some settings where it suffices. For example, in machine learning, when |x̃〉 represents
(the square roots of) the weights of a probability distribution and our work is to sample from the
distribution, the representation is very appropriate, because all we need to do is just to measure
the superposition as this gives us the sample we need.

Note that, because A is a block encoding, we must have that ‖A‖2 ≤ 1. If this is not the case,
we can re-scale A. Additionally, we can assume without loss of generality that A is Hermitian.
This is because Ax = b if and only if there exists a y such that

A∗ y = 0 (3)

Ax = b (4)

which can be rewritten as [
0 A∗

A 0

] [
x
y

]
=

[
0
b

]
(5)

Since A is invertible, y must be 0. Therefore, solving these equations is equivalent to solving
Ax = b. But note that since the coefficient matrix of equation (5) is Hermitian, and since solving
that is equivalent to solving Ax = b, solving a system with coefficient matrix A can be reduced to
solving one with a Hermitian coefficient matrix.

Theorem 1. There exists a black-box algorithm with success indicator that solves the quantum
linear system for Hermitian A with the following expected cost when provided with a bound κ̃ such
that κ̃ ≥ σ−1N = ‖A−1‖2:

◦ q = O(κ̃poly log(κ̃/ε)) controlled applications for UA and its inverse,

◦ O(κ̃ log(κ̃)) applications of Ub,

◦ O(`q) other quantum gates, where ` is the number of ancilla qubits used in the block encoding
of A.

Note that, since A is given in block encoding form, the largest singular value σ1 is at most one. This
means that κ(A) =̇σ1/σN ≤ σ1κ̃ ≤ κ̃, so κ̃ gives an upper bound on the condition number. Addi-
tionally, the applications of Ub can be replaced by O((κ̃ log(1/ε))2) copies of |b〉, at a multiplicative
cost of O((κ̃2 log(1/ε))2) for q. Note that |b〉 is a quantum superposition, so the multiple copies
the algorithm needs cannot be produced from a single copy (as per the No Cloning Theorem). We
either need a certain number of copies, or else a unitary Ub that allows us to generate ourselves as
many copies as we need.

2.1 Sparse Case

As we will see next lecture, in the case of s-sparse A with ‖A‖max =̇ maxi,j |Aij | ≤ 1, we can
construct a block encoding of A/s using O(1) so-called sparse accesses to A, and O(logN) ancillas
and other quantum gates. Then, the construction from the theorem can be run on A′ =̇A/s,
yielding an algorithm for A using:

◦ O(s · κ̃ · poly log(sκ̃/ε)) sparse accesses to A

3

◦ O(s · κ̃ · log(sκ̃)) applications of Ub

◦ O(logN · s · κ̃ · poly log(sκ̃/ε)) other quantum gates.

Recall that the classical algorithm for the classical problem runs in time O(N2 ·s ·κ · log(1/ε)). This
is very similar to the last bullet point above, but notably has a factor of N2 instead of logN in
the last bullet point. In the case where both the sparseness s and condition number κ̃ are small, of
order poly logN , then the quantum algorithm represents an exponential speedup over the classical
version. However, do keep in mind that the classical and quantum outputs are not comparable, in
that the quantum output is a superposition.

3 Harrow-Hassidim-Lloyd Approach

We start by discussing the Harrow-Hassidim-Lloyd (HHL) approach. This approach ends up with
a dependency on the accuracy that is polynomial in 1/ε instead of polylogarithmic, which is not
good, but we will look at different approaches later.

Recall that A is Hermitian, so it has a full orthonormal basis of eigenvectors: A |ϕj〉 = λj |ϕj〉
with λj ∈ R. So we can think of the right-hand-side as a linear combination of eigenvectors:

|b〉 =
∑
j

βj |ϕj〉 . (6)

The solution can also be written as a linear combination of the same vectors, namely as follows:

|x〉 =

∑
j βjλ

−1
j |ϕj〉√∑

j |βjλ
−1
j |2

(7)

3.1 Harrow-Hassidim-Lloyd Subroutine

We want to transform the register that initially contains (6) into one that contains (7). In order to
do so, we will use two ancilla registers, which start and end in the all-zero state:

◦ One in which we compute approximations to the eigenvalues λj . It consists of a qubits, where
a denotes the number of bits of absolute accuracy to which we compute the eigenvalues.

◦ Another one is a register consisting of a single qubit that will aid to transfer our estimates of
the eigenvalues to the amplitudes (as inverse factors).

To execute the transformation, HHL performs the following:

1. Eigenvalue estimation:

|b〉 |0a〉 |0〉 =
∑
j

βj |ϕj〉 |0a〉 |0〉 7→
∑
j

βj |ϕj〉 |λj〉 |0〉

Recall that our expression for equation (7) requires the inverse of the eigenvalues λj of A.
This requires first finding the eigenvalues, which can be done through eigenvalue estimation.
After finding each λj (more precisely, an approximation to within a bits of absolute accuracy),
we use its inverse to scale |ϕj〉.

4

2. Scaling / Quantum rejection sampling. We would like to perform the following rotation to
the last ancilla qubit:

|ϕj〉 |λj〉 |0〉 7→ |ϕj〉 |λj〉

(
1

λj
|0〉+

√
1− (

1

λj
)2 |1〉

)

However, the coefficient 1/λj will always be greater than 1, which is invalid for a 2-norm one
vector. Thus the κ̃ in the denominator is introduced, as κ̃ is exactly defined such that 1/κ̃λj
is less than one.

|ϕj〉 |λj〉

(
1

κ̃λj
|0〉+

√
1− (

1

κ̃λj
)2 |1〉

)
This results in

1

κ̃

∑
j

βjλ
−1
j |ϕj〉 |λj〉 |0〉+ |garbage〉 |1〉

Up to the 1/κ̃ scaling factor, the
∑

j βλ
−1
j |ϕj〉 is what we are looking for. However, note

the presence of |λj〉 |0〉 above; this entanglement may prevent interference, so it needs to be
removed. This can be done by running the eigenvalue estimation procedure in reverse.

3. Undo eigenvalue estimation, resulting in

1

κ̃

∑
j

βjλ
−1
j |ϕj〉 |0

a〉 |0〉+ |other garbage〉 |1〉

This resets the ancilla qubits back to the zero state.

3.2 Eigenvalue estimation

Eigenvalue estimation cannot be done on A itself if A is not unitary. However, we can instead do
it on U = exp (iA), which can be constructed using Hamiltonian simulation. This U is a unitary
matrix and has the same eigenvectors as A. The eigenvalues have been transformed, namely from
λj to eiλj .

It is sufficient to estimate each eigenvalue of A to within relative error at most ε. This means
that the eigenvalues of A that are smallest in value must be estimated to within an absolute error
of at most ε/κ̃. To get this level of accuracy, eigenvalue estimation requires O(κ̃/ε) applications of
U , or of a block encoding of an approximation of U to within Θ(ε/κ̃).

This results in a running time cost for the subroutine of Õ(κ̃/ε) applications of UA and its
inverse, one application of Ub, and Õ(`κ̃/ε) other quantum gates. Note the dependency on 1/ε
here; this is what ends up causing the polynomial dependency on accuracy for the entire HHL
algorithm. To do better, we will have to avoid this eigenvalue estimation.

3.3 Harrow-Hassidim-Lloyd Algorithm

The subroutine described above yields:

1

κ̃

∑
j

βjλ
−1
j |ϕj〉 |0〉+ |something〉 |1〉

5

As we only care about the first term, we measure the last qubit and hope for a 0. Our probability
of success is:

Pr[success] =
∑
j

∣∣∣∣ βjκ̃λj
∣∣∣∣2 ≥ min

j

∣∣∣∣ 1

κ̃λj

∣∣∣∣ ≥ 1

κ̃2

Recall that
∑

j |βj |2 = 1 and that |λj | ≤ 1.
By using amplitude amplification, running the subroutine O(κ̃) times suffices to get a high

probability of success (with success indicator). To use amplitude amplification, we need to be able
to reflect around the start state |b〉, which is why we need the unitary Ub that generates the start
state. Using this algorithm, the overall expected running time is Õ(κ̃2/ε) applications of UA and
its inverse, O(κ̃) applications of Ub, and Õ(`κ̃2/ε) other quantum gates. If we ran this subroutine
as a classical Bernoulli experiment, we would have to run the subroutine O(κ̃2) times to get a high
probability of success. Running the subroutine O(κ̃2) times results in an overall expected running
time of Õ(κ̃3/ε) applications of UA and its inverse, O(κ̃2) applications of Ub, and Õ(`κ̃3/ε) other
quantum gates.

4 Approximate Matrix Inversion Approach

In the previous approach, the part that most greatly impacted the run time was the use of eigenvalue
estimation. Eigenvalue estimation had a run-time dependent on 1/ε. By using approximation
methods we are able to improve on this to get a dependence of poly log(1/ε). To do this we need
to compute a good approximation M of A−1, then compute Mb to get an approximation of x.

We cannot hope to construct M directly within the block encoding framework. Recall that for
a block encoding of A to exist, we need that ‖A‖2 ≤ 1. This implies that ‖M‖2 ≥ 1, which makes
it impossible to block encode within a unitary matrix. To get around this we will construct a block
encoding for M/c, for some small c. We want c to be small as it will inversely affect the probability
of success of applying the block encoding. A successful application of this block encoding to |b〉
yields:

M |b〉
‖M |b〉 ‖2

.

Exercise. Show that if ‖M −A−1‖2 ≤ ε then

∥∥∥∥ M |b〉
‖M |b〉‖2 − |x〉

∥∥∥∥
2

≤ 4ε.

Note that by the triangle inequality

‖M |b〉 ‖2 ≥ ‖A−1 |b〉 ‖2 − ‖A−1 |b〉 −M |b〉 ‖2.

The probability of a successful application of the block encoding is equal to∥∥∥∥1

c
M |b〉

∥∥∥∥2
2

≥
(

1

c
(‖A−1 |b〉 ‖2 − ε)

)2

≥
(

1− ε
c

)2

By using amplitude amplification we can obtain an approximate solution |x̃〉 at an expected cost
of O(c) times the combined cost of generating the block encoding for M/c and the cost of Ub.

6

4.1 Approximate Block Functions

In the general setting for approximating a block function, we are given the block encoding UA of a
Hermitian matrix A and want to find an efficient block encoding for an ε-approximation of f(A),
which possibly needs to be re-scaled.

The Hamiltonian simulation problem discussed in the previous lecture was equivalent to the
approximate block function problem for f(x) = exp (ixt). This problem was solved with the aid of
a function g(x) that approximates f(x) well and such that a block encoding of g(A) can be easily
computed from a block encoding of A. It suffices to for g to approximate f well at all the eigenvalues
of A, which in the case of a Hermitian matrix are all real, and in the case of a block-encoded matrix
are at most 1 in absolute value (as the largest singular is at most 1 and singular values coincide with
absolute values of eigenvalues in the case of Hermitian matrices). Thus, for a generic block-encoded
Hermitian matrix A, it suffices for g(x) to satisfy |f(x) − g(x)| ≤ ε for x ∈ [−1, 1] to guarantee
that ‖g(A)−f(A)‖2 ≤ ε. In the case of Hamiltonian simulation, our g(x) was the truncated Taylor
expansion of f(x) = exp (ixt) expressed as a linear combination of Chebyshev polynomials. For
this g(x) we were able to efficiently construct a block encoding of g(A) given the block encoding
of A, by combining techniques from quantum walks with the technique for Linear Combinations of
Unitaries (LCU).

Our matrix inversion problem is equivalent to the approximate block function problem of f(x) =
1
x . It is impossible to get a good approximation for f(x) = 1/x around x = 0. However, since we
are given a lower bound of κ̃ on σ−1N , we know that the eigenvalues of A are at least κ̃−1 in absolute
value. For this reason, we can relax the approximation requirement for g(x) from the interval
[−1, 1] to [−1, 1]\(−1/κ̃, 1/κ̃), i.e., we only need |f(x)− g(x)| ≤ ε for x ∈ [−1, 1]\(−1/κ̃, 1/κ̃).

Some possible candidates for g(x) in this scenario are a polynomial approximation expressed
as a linear combination of Chebyshev polynomials or a linear combination of harmonics (Fourier
expansion). We will be using the polynomial approximation approach.

4.2 Polynomial Approximation

−0.4 −0.2 0.2 0.4

−100

−50

50

100
f(x)=1/x

h(x)(t=100)

h(x)(t=1000)

Let us consider f(x) = 1
x and h(x) = 1−(1−x2)t

x for a positive integer t. Note that h(x) is a
polynomial of degree 2t − 1 in x. Note also that for nonzero x ∈ [−1, 1], 1 − x2 ∈ [0, 1). Thus,
when t grows, the term (1− x2)t goes to zero, which leaves us with just 1

x . This provides some of

7

the intuition of why this h(x) gives us a good enough approximation of f(x) = 1
x . Plot above is an

example of f(x) and h(x) by assigning 100 and 1000 to t. As t grows, the curve for h(x) becomes
more similar with the one for f(x).

Now we need to find a t that gives us a good approximation of f(x).

|f(x)− h(x)| =
∣∣∣∣(1− x2)tx

∣∣∣∣
≤ κ̃(1− x2)t [x ≥ κ̃−1]
≤ κ̃ exp (−x2)t [1 + y ≤ exp(y) for y = −x2]
= κ̃ exp (−tx2)
≤ ε/2,

where the last step holds for x ∈ [−1, 1]\(−1/κ̃, 1/κ̃), provided t = Ω(κ̃2 log(κ̃/ε)).
Recall from the previous lecture that xk = Esk [Tsk(x)], where sk is the sum of k independent,

uniform ±1 variables and Tsk is the sk-th Chebyshev polynomial. Using the binomial theorem we
can re-express h as a sum of monomials and plug in the above Chebyshev expansion for each of
them:

h(x) =

t∑
k=1

(
t

k

)
(−1)k+1x2k−1 = ... (some manipulations not shown)

=
t∑

k=1

ckT2k−1(x) where ck = 4(−1)k+1 Pr[s2t ≥ 2k]

As the coefficient ck starts to become negligibly small as k exceeds t/2 +O(log t), we would like
to see if we can drop those higher terms. To do that we must determine the error of dropping the
higher terms. ∣∣∣∣f(x)−

d−1∑
k=1

ckT2k−1(x)

∣∣∣∣ =

∣∣∣∣ t∑
k=d

ckT2k−1(x)

∣∣∣∣ (8)

≤
t∑

k=d

|ck| (9)

≤ 4tPr[s2t ≥ 2d] (10)

≤ 4t exp

(
− 4d2

4t

)
(11)

≤ ε/2 for d = Ω(
√
t log(1/ε)) (12)

In (9) we used the fact that Td(x) ∈ [−1, 1] for x ∈ [−1, 1], in (10) the above expression for the
coefficients ck, and in (11) the Chernoff bound.

From this we can conclude that g(x)
.
=
∑d

k=1 ckT2k−1(x) for d = Ω(κ̃ log(κ̃/ε)), satisfies the
requirement |f(x)− g(x)| ≤ ε ∀x ∈ [−1, 1]\(−1/κ̃, 1/κ̃).

4.3 Improved Algorithm

So far, we have shown that g(x) satisfies the first requirement, namely that g(x) is a good enough
approximation for f(x). What remains to be shown is that a block encoding of g(A) can be

8

efficiently computed from a block encoding of A. To do this we use the LCU method described
last lecture to construct the block encoding for M/c where M

.
= g(A) =

∑d
k=1 ckT2k−1(A) and

c =
∑d

k=1 |ck| ≤ 4d. For the bound for c, recall that each |ck| term is four times a probability and
there are d terms. Each individual term T2k−1(A) is implemented using the quantum walk method
described last lecture. Using this polynomial approximation for the block encoding of A−1, we are
able to construct a more efficient algorithm for solving a linear system in a quantum setting.

The resulting block encoding uses O(d) = O(κ̃ log(κ̃/ε)) applications of UA and its inverse,
and O(`d) other quantum gates. The resulting quantum linear system solver has an expected
cost of O(c) times the combined cost of the block encoding for M/c and the cost of Ub. This
yields an overall cost of q = O(cd) = O(d2) = O(κ̃2 log2(κ̃/ε)) applications of UA and its inverse,
O(c) = O(κ̃ log(κ̃/ε)) applications of Ub, and O(`q) other quantum gates. One factor of κ̃ in q can
be shaved off by using so-called variable-time amplitude amplification at only a polylog cost in 1/ε.
This technique (which we will not cover) leverages the fact that the time bounds are generated
using the worst case scenarios for the largest eigenvalue and smallest eigenvalue. As both of these
situations cannot actually occur simultaneously, we can exploit this leeway algorithmically.

9

	Classical problem and results
	Results assuming infinite precision
	Results assuming finite precision over F = R

	Quantum problem
	Sparse Case

	Harrow-Hassidim-Lloyd Approach
	Harrow-Hassidim-Lloyd Subroutine
	Eigenvalue estimation
	Harrow-Hassidim-Lloyd Algorithm

	Approximate Matrix Inversion Approach
	Approximate Block Functions
	Polynomial Approximation
	Improved Algorithm

