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Lecture 16: Input/Output Access Mechanisms & Block Encodings

Instructor: Dieter van Melkebeek

Some of the quantum algorithms that exhibit quantum advantage or supremacy need the input
to be represented in certain ways, and produce the output in certain ways. In this lecture, we
look at the input/output mechanisms, with a case study about the recommendation problem. We
discuss the QRAM access to vectors and matrices, and the sparse access to matrices, and see how
they facilitate the creation of efficient block encodings for matrices.

1 Recommendation problem

To begin, we discuss a famous motivating problem called the recommendation problem, which is
also known as the Netflix prize problem1. The setup is as follows:

1. There are M customers indexed by i ∈ [M ].

2. There are N products indexed by j ∈ [N ].

3. There exists an unseen true preference matrix T ∈ RM×N , whose (i, j)-th entry corresponds
to the preference of customer i for product j. The preference is often binary or constrained
to [0, 1].

4. We observe A, a collection of samples from T . An example A may look like

P1 P2 P3 P4 · · · PN−1 PN

C1 0.1 0.4 0.85
C2 0.6 0.85
C3 0.8 0.9
...

. . .

CM 0.75 0.2

where the empty entries correspond to unknown entries of T that are not observed in A.

Given this data, the input is a row index i ∈ [M ] corresponding to a customer, and the expected
output is a recommendation j ∈ [N ] which is believed to be preferred for customer i.

The problem has further two associated assumptions:

◦ Low rank hypothesis: T is (close to) a matrix of small rank.

The low rank hypothesis means that there are a small number of underlying dimensions that
matter, and the customer preferences are some linear combination of those few dimensions.
The number of dimensions is the rank of T . Two users with similar preferences have similar
combinations of those dimensions. One can feasibly predict a missing entry based on seen
entries. Without this assumption, the missing entries could be anything. This hypothesis
turns out to be fairly reasonable.

1From 2006-2009, Netflix held a contest with a $1,000,000 dollar grand prize to attempt to find an effective solution
to this problem for their movie recommendation system.
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◦ Sampling hypothesis: A is obtained by picking each entry from T independently with some
probability p.

The sampling hypothesis suggests that the sampling of one entry from T has no impact on the
sampling of another entry. This assumption is more debatable because one could imagine a
customer who gave a rating for one product may be more willing to rate other closely related
products. Here for simplicity, we assume there is no such correlation.

Given these two assumptions, the best guess for T is a low rank approximation of A/p , where p is
the probability of a given entry being observed and unknown entries of A are replaced with zeros.
Let k � min {N,M} be the assumed low rank of T .

The best rank k approximation to A in 2-norm can be computed from the singular value
decomposition (SVD) by setting all but the top k singular values equal to zero. This can be seen
as follows. Recall that the SVD writes A as A = UΣV ∗, where U ∈ CM×M and V ∈ CN×N are
unitary matrices, and Σ ∈ RM×N = diag(σ1, σ2, . . . ) is a diagonal matrix with σ1 ≥ σ2 · · · ≥ 0.
Since multiplication with a unitary matrix on the left or the right does not affect the 2-norm nor
the rank of a matrix, it suffices to argue the property for the diagonal matrix Σ.

Claim. In the case of Σ, the property states that the best rank k approximation to Σ in 2-norm is
Σk

.
= diag(σ1, . . . , σk).

Proof. It suffices to consider the setting with N = M . Let B ∈ CN×N have rank at most k. The
null space of B, i.e., the set of x ∈ CN such that Bx = 0, has dimension N − k. The set of x ∈ CN

where the last N − k− 1 components are zero has dimension k+ 1. It follows that both subspaces
have a nontrivial intersection. In other words, there exists a nonzero x∗ ∈ CN such that Bx∗ = 0
and the only nonzero components of x∗ lie in the first k + 1 dimensions. It follows that

‖(Σ−B)x∗‖2 = ‖Σx‖2 ≥ σk+1‖x‖2,

and therefore that ‖Σ−B‖2 ≥ σk+1. On the other hand, Σk is of rank k and satisfies ‖Σ−Σk‖2 =
σk+1. It follows that B = Σk is a best rank k approximation to Σ. �

Note that the claim also holds for the Frobenius norm instead of the 2-norm. It again suffices
to consider the case of diagonal matrices. In the case of the Frobenius norm the case of diagonal
matrices is straightforward.

Using braket notation, we can write the SVD of A as

A = UΣV ∗ =

min(M,N)∑
j=1

σj |uj〉 〈vj | ,

where U = [|u1〉 |u2〉 . . . |uM 〉] and V = [|v1〉 |v2〉 . . . |vN 〉]. For a given customer with index i, we
can write the i-th row of A as:

Ai,· = 〈ei|A =

min(M,N)∑
j=1

σj 〈ei|uj〉 〈vj | .
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We obtain the i-th row of the best approximation of A of rank k by cancelling the singular values
σj for j ≥ k + 1 in the above expression. Thus, our approximation to the i-th row of T is:

Ti,· ∼ Pi,·
.
=

1

p

k∑
j=1

σj 〈ei|uj〉 〈vj |.

Up to a scale factor, it is the projection of the i-th row of A onto the top k row singular value of A.

Quantum algorithm for recommendation systems. Given a block encoding of A, we can
efficiently compute a block encoding for a close approximation to a scaled version of Ak, where Ak

denotes the matrix A with all but the top k singular values set to zero. This can be done using
similar techniques as the ones we developed for obtaining a block encoding of A−1 from a block
encoding of A. One we have such a block encoding, we can use it to compute a close approximation
to the normalization of A∗k |ei〉, i.e., |Pi,·〉. The details of how this is done are not the focus of this
lecture (see [KP17] if you are interested), but the result is that we can compute |Pi,·〉 up to an error
of ε in 2-norm in time O(poly log(MN/ε)).

Recall that |Pi,·〉 represents Pi,· in a very compact format and does not provide easy access to
individual components of Pi,·. However, we are only interested in finding an index j for which
Pi,j is large. This is something that we can easily obtain given the compact representation as the
superposition |Pi,·〉: Measuring |Pi,·〉 yields j with probability proportional to |Pi,j |2. It follows
that, with high probability and under the model assumptions, measuring |Pi,·〉 yields a product
(movie) j that is well-liked by customer i. Thus, the recommendation problem is a setting where
the compact representation in the form of a superposition works great.

Notice that the classical input size of a matrix of size M ×N is already MN . To just read it in
would take Θ(MN), which is already exponentially larger than the runtime of O(poly log(MN/ε))
mentioned above. Therefore in order to perform such quick quantum computations, we need some
compressed or compact way of representing the input, which we discuss next.

2 Input/output access issues

Input/output access issues arise naturally when a quantum algorithm has inputs and/or outputs
that are not classical. The quantum inputs need to be constructed from classical input, and classical
output needs to be extracted from the quantum output. Such transformations are inherently needed
to achieve superpolynomial speedups for problems that are classically solvable in time polynomial
in the size of the classical input. In particular, this is the case for the linear algebra problems we
considered: solving systems of linear equations and the recommendation problem above.

Input considerations. Typical quantum structures that need to be created are vectors (super-
positions), matrices, and black-boxes. The first two arise in the linear algebra problems mentioned.
The last one occur in black-box algorithms like Grover search.

Many quantum algorithms require multiple trials run on the same quantum input. Due to the
no cloning theorem, we cannot just copy the input and rerun an algorithm on the copy. In order
to efficiently do these trials, we would need some extra constraints.
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◦ If the input is obtained from some unitary generating process, then we can run the process
from scratch as often as we need. This is one reason why we often assume the existence of a
unitary that, when applied to |0n〉, yields the input superposition.

◦ Sometimes we cannot regenerate the input, but we can reconstruct it partially from the output
of one run, and the partial reconstruction may suffice to run the process again. This what
happened in oblivious amplitude amplification in the purified setting with independent initial
weight.

◦ Sometimes the quantum algorithm, even though it involves measurements, is non-destructive,
so we can run it multiple times on the same input without issue. This happens in eigenvalue
estimation when an eigenvector is given and in some error-correction procedures.

Another input consideration is that we may need to reflect about the input state. For example,
Grover search and uses two reflections: one about the bad states, and one about the initial state,
which is the uniform superposition. The latter reflection can be done using the Hadamard transform
(and its inverse) and a reflection about |0n〉. In amplitude amplification, the initial state may be
more complicated, so reflecting over it is more of a challenge, and requires access to a unitary that
produces the initial state. In general, given a unitary generating a state, a reflection R can be
realized as R = UR|0n〉U

∗, where U denotes a unitary that maps |0n〉 to the axis of relection and
R|0n〉 denotes the reflection about the state |0n〉.

Output considerations. Extracting classical output from quantum output requires attention
in cases where the quantum output is more succinct than the classical one. This happens in the
linear algebra problems we discussed. In the generic setting of solving systems of linear equations,
the quantum output |x〉 of the solution to the system Ax = b may not be very helpful. However, in
the setting of the recommendation problem, the quantum superposition is good enough as we can
simply measure it to extract what we want.

3 Vector encoding using QRAM access

Quantum Random Access Memory (QRAM) refers to a classical read/write data structure to which
we have quantum read access in the sense that we can query the data structure on a superposition.

To encode a vector v ∈ RN we make use of a classical binary tree, where each node is labeled by
the squared 2-norm of the subtree below it. The leaves are doubled up with sign information since
that is lost in the squaring of the 2-norm. More generally, if v ∈ CN , the leaves contain the phase
instead of the sign. The depth of the tree is given by n

.
= logN . An example of the structure for

a vector v = (v1, v2, v3, v4) ∈ R4 is given below.

‖v‖22

v21 + v22

v21

sgn (v1)

v22

sgn (v2)

v23 + v24

v23

sgn (v3)

v24

sgn (v4)
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A nice property of this structure is that if we receive nonzero components one at a time in an
online fashion, then for each component we can update our tree by just traversing up from the
corresponding leaf to the root in time O(logN). If we assume our vector v is s-sparse (it only has
s nonzero entries), then the entire tree representation of our vector can be filled classically in time
O(s logN).

QRAM state generation. Provided that we can access the tree in superposition (QRAM), we
can also generate |v〉 in time O(logN). The idea here is that each qubit can be computed using a
rotation conditioned on the previous qubit. We demonstrate it through the following example.

Suppose |v〉 = 0.4 |00〉+ 0.8 |01〉+ 0.8 |10〉+ 0.2 |11〉. Then the corresponding tree is

1.0

0.32

0.16 0.16

0.68

0.64 0.04

In order to prepare the state |v〉, we first perform a unitary mapping corresponding to the super-
position of the first row’s values.

|0〉 |0〉 7→ (
√

0.32 |0〉+
√

0.68 |1〉) |0〉 .

That is, we perform a rotation to get a superposition of the state of the first qubit. Next, we
perform a rotation on the second qubit conditioning on the first qubit:

(
√

0.32 |0〉+
√

0.68 |1〉)|0〉 7→
√

0.32 |0〉 1√
0.32

(√
0.16 |0〉+

√
0.16 |1〉

)
+
√

0.68 |1〉 1√
0.68

(√
0.64 |0〉+

√
0.04 |1〉

)
=
√

0.32 |0〉 1√
0.32

(0.4 |0〉+ 0.4 |1〉) +
√

0.68 |1〉 1√
0.68

(0.8 |0〉+ 0.2 |1〉)

= (0.4 |0〉 |0〉+ 0.4 |0〉 |1〉) + (0.8 |1〉 |0〉+ 0.2 |1〉 |1〉)
= 0.4 |00〉+ 0.4 |01〉+ 0.8 |10〉+ 0.2 |11〉 = |v〉

4 Matrix encoding

There are multiple ways to encode a matrix. Two common ones are QRAM access and sparse
access.

Matrix QRAM access. This consists of QRAM access to the rows and columns, and to a vector
with the row norms and one with the column norms. More precisely, QRAM access to an matrix
M with rows Mi,· indexed by i and columns M·,j indexed by j is defined by having each of the
following:

◦ vector QRAM access to each row: Mi,·,
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◦ vector QRAM access to each column: M·,j ,

◦ vector QRAM access to row norms: ri
.
= ‖Mi,·‖2

◦ vector QRAM access to column norms: cj
.
= ‖M·,j‖2

Sparse matrix access. An alternative efficient accessing method that is particularly suitable
for matrices with few nonzero entries is sparse access. Sparse access gives us three oracle functions
that recover a given matrix entry or indices corresponding to nonzero entries: One that allows us
to determine the value of an entry given its row and column index, and two that allow us to locate
the nonzero elements in a given row or column, respectively.

First, we have
OM : |i〉 |j〉 |0b〉 7→ |i〉 |j〉 |Mij〉 ,

which takes the input of a row index i, a column index j, and a register consisting of b qubits, and
XORs in the last register the value of the corresponding matrix entry up to b bits of accuracy.

Second, we have
Orow : |i〉 |k〉 7→ |i〉 |cik〉 ,

which replaces the value k of the second register by ci,k, the column index of the k-th nonzero entry
in queried row i. Note that the mapping from k to ci,k is injective for any fixed i, and therefore
invertible and a valid quantum operation.

Finally, we have
Ocolumn : |`〉 |j〉 7→ |r`j〉 |j〉 ,

which replaces the value ` of the first register by r`j , the row index of the `-th nonzero entry in
queried column j.

5 Dequantization

Having classical random access to the trees underlying the QRAM access to a matrix A enables us to
do certain operations classically in polylogaritmic time, even though this is impossible with merely
the standard component-wise access to A. In particular, the QRAM access data structure enables
classical sampling in time O(logN) by flipping a weighted coin at each level. Since the depth of
the tree is O(logN), it only takes that many steps to get a sample according to some distribution.
This is interesting because it allows sublinear-time classical algorithms to be developed based on
sampling. This has led to the dequantization of several of the machine learning and linear algebra
problems that require QRAM access.

The recommendation problem can be solved this way by subsampling the matrix A, and com-
puting the best rank k approximation for the subsample; with high probability this gives us a good
approximation to the best rank k approximation for A (after rescaling). In some more detail, the
dequantized algorithm works as follows:

1. Get good approximations to the top k singular row vectors of A expressed as linear combina-
tions of rows of A by running the singular value decomposition (SVD) on a q × q subsample
of A for small q:

(a) I ← q samples from r.
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(b) J ← q samples from Ai,· where i ∈u I for each sample.

(c) S ← row-and-column normalized AI×J .

(d) Find the top k row singular vectors of S using SVD. Express them as linear combinations
of the rows of S.

(e) Take the same linear combinations of the corresponding rows of A as approximations for
the top k row singular vectors of A.

2. Find the projection of Ai,· onto the approximate row singular vectors.

All of the required operations can be performed in time nO(1) = (logN)O(1) given classical random
access to entries of A and sample access to r and Ai,· for each i ∈ [N ]. The resulting running time
is polynomially bounded in the running time of the quantum algorithm. We refer to [Tan19] for
more details.

6 Block encodings

As we have seen in prior lecture, a block encoding is often convenient to represent a matrix in
quantum computing. In this section we show how to efficiently obtain a block encoding for a
matrix M given its sparse or QRAM encoding.

Let us first recall the definition and the properties of block encodings we have seen so far. A
block encoding of a matrix M acting on m qubits with ` ancilla qubits is a unitary A acting on
`+m qubits such that

A =

[
M ∗
∗ ∗

]
When we talk about computing an efficient block encoding for a matrix M , this usually means we
can efficiently construct a small unitary circuit that realizes A.

Here is a summary of the properties we have seen previously.

◦ Given |v〉 we can compute |Mv〉. This is done by applying A to |0`〉 |v〉 and postselecting
|0`〉 on the first register. We can use oblivious amplitude amplification in order to boost the
probability of measuring the desired |0`〉.

◦ Given block encodings for Mj for j ∈ [k], we have an efficient encoding of
∑

j cjMj/(
∑

j |cj |).
This is the linear combination of unitaries (LCU) method and uses an additional log k ancillas.

◦ Given encodings for M1 and M2, we have an efficient encoding for M1M2 which uses `1 + `2
ancillas, where `i is the number of ancillas for the block encoding of Mi.

◦ Given an encoding of M , we have efficient encodings of the Chebyshev polynomials Td(M),
which we constructed using quantum walks. This uses a constant number of additional
ancillas.

The second and fourth property can be used to approximate arbitrary polynomials of M using log d
ancillas where d is the degree of the polynomial.

We now show how to efficiently create a block encoding from either sparse access or QRAM
access. Both constructions follow a common pattern. The strategy is to write M as a Gram matrix.
Informally, a Gram matrix is made of inner products of states. More specifically:
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Definition 1 (Gram matrix). Given collections states |ψi〉 and |φj〉, their Gram matrix G is
given by Gij

.
= 〈ψi|φj〉

Our strategy for producing an encoding of M is to specify how to generate the |ψi〉 and |φj〉. In
particular we will define maps UL : |0p〉 |i〉 7→ |ψi〉 and UR : |0p〉 |j〉 7→ |φj〉. Then the first few
columns of UL will be the |ψi〉 and the first few columns of UR will be the |φj〉 and the rest will be
garbage so

U
.
= U∗LUR


〈ψ1|
〈ψ2|
〈ψ3|

...

 [|φ1〉 |φ2〉 |φ3〉 · · ·] =

[
G ∗
∗ ∗

]

is a block encoding of Gram matrix G with p ancillas. All we need to do in each setting is determine
how to get appropriate UL and UR to get a block encoding for the desired matrix.

From sparse access. In this setting we assume that M is s-sparse. Additionally, we require that
‖M‖max

.
= maxi,j |Mij | ≤ 1. This is not too extreme of a requirement because in order to even be

able to have a block encoding M must have 2-norm at most 1. The construction goes as follows.
First, we can use Orow to create UL : |0p〉 |i〉 7→ 1√

s

∑s
k=1 |i〉 |cik〉. Then we use Ocolumn to

create UR : |0p〉 |j〉 7→ 1√
s

∑s
`=1 |r`j〉 |j〉. If we consider the Gram matrix U∗LUR, notice that the

only way for an entry (U∗LUR)ij to be nonzero is if cik = j and r`j = i. In this case (U∗LUR)ij =
1/s, and 0 otherwise. Note that the only nonzero entries of M appear in positions (i, j) with
(U∗LUR)ij = 1/s. Finally, we can can use OM to apply quantum rejection sampling on extra ancilla:
|0〉 7→ Mij |0〉 +

√
1− |Mij |2 |1〉. This yields a block encoding of M/s using p + 1 = (log s) + 1

ancillas.

From QRAM access. In this setting, we have QRAM access to the rows and columns, and to
a vector with the row norms and one with the column norms. As we will see, it will actually only
be necessary to use the row accesses.

For the construction we again follow the Gram matrix approach. First, we use access to Mi,· to
create

UL : |0n〉 |i〉 7→ 1

‖Mi,·‖2

∑
`

Mi` |i〉 |`〉

Then we use access to r to create

UR : |0n〉 |j〉 → 1

‖M‖F

∑
k

‖Mk,·‖2 |k〉 |j〉

where ‖ · ‖F is the Frobenius norm. To compute U∗LUR, we only need to consider ` = j and k = i.
We then have (U∗LUR)ij = (Mij/‖Mi,·‖2)(‖Mi,·‖2/‖M‖F ) = Mij/‖M‖F . So this time we get a
block encoding for M/‖M‖F with n ancillas.
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