
Quantum Algorithms 3/30/2023

Lecture 18: Query Lower Bounds

Instructor: Dieter van Melkebeek

We have seen a number of blackbox problems where the quantum setting offered efficiency gains
over the classical setting, ranging from polynomial to exponential. As impressive as some of the
gains may be, they leave the question whether there exist even better quantum algorithms. In this
lecture we discuss two methods to develop quantum query lower bounds for blackbox problems,
namely the adversary method and the polynomial method. Using either method we establish a
lower bound of Ω(

√
N) queries for quantum search, showing that the number of queries in Grover’s

algorithm is optimal up to a constant factor.

1 Model

Suppose we have a quantum algorithm for a classical blackbox problem that has access to the
blackbox Uf for a function f : {0, 1}n → {0, 1}`. As we are only concerned with the number
of queries, we can condense the operations between successive applications of Uf into a single
operation, which we can assume to be unitary by postponing intermediate measurements and
introducing ancillas if need be. There can also be such an operation before the first query and after
the last query. At the end, there is a measurement, we can assume without loss of generality to be
of the entire system. The answer is then a subset of the bits measured. For an algorithm with q
queries, this leads to the quantum circuit in Figure 1, where V1, . . . , Vq, Vfinal represent the unitaries
independent of f , |ψ(0)〉 the start state, |ψ(i)〉 the state right after the i-th query, and |ψfinal〉 the
state right before the measurement at the end.

repeat q times

V1

Uf

V2

Uf

· · ·

Vq

Uf

Vfinal

· · ·

· · ·

· · ·

· · ·

· · ·

|ψ(0)〉 |ψ(1)〉 |ψ(2)〉 |ψ(q)〉 |ψfinal〉

Figure 1: Model of a blackbox algorithm with q queries

1

The state after the i-th query is given by

|ψ(i)〉 = (Uf ⊗ I) · Vi · . . . · (Uf ⊗ I) · V1 · |ψ(0)〉 ,

where |ψ(0)〉 = |0 . . . 0〉 without loss of generality.

2 Quantum search

The specific blackbox problem for which we will develop a lower bound is quantum search, where
the underlying function f is Boolean (` = 1) and the goal is to find an x ∈ {0, 1}n such that
f(x) = 1, or else report that no such x exists. Grover’s algorithm solves this problem with bounded
error using O(

√
N) queries. We will establish a lower bound of Ω(

√
N) queries for any quantum

blackbox algorithm that solves the problem with bounded error, matching the upper bound given
by Grover up to a constant factor.

In fact, both techniques yield the same lower bound for the weaker problem of distinguishing
between the case where there is no x ∈ {0, 1}n with f(x) = 1, and the case where there is a unique
such x. The underlying decision problem can be viewed as computing the OR of the N variables
yx

.
= f(x) over all x ∈ {0, 1}n. The lower bound applies to the promise version where there is at

most one x for which yx = 1.

3 Adversary method

Our first method is a quantum version of the classical adversary method. Given an algorithm
that makes few queries, the method tries to adversarially construct some inputs (i.e., functions f)
such that the algorithm has to behave incorrectly on at least one of them. In our case of the OR
predicate, we consider the function f = f0 that is identically zero and the functions f = δx∗ for
x∗ ∈ {0, 1}n, where δx∗(x) is 1 at x = x∗ and 0 elsewhere. The function f0 corresponds to the
one and only input where the OR predicate is 0, or equivalently, there is no solution to the search
problem. The functions δx∗ correspond to the inputs where the OR predicate is 1 that are “closest”
to f0. Intuitively, “close” means hard to detect the difference for a query algorithm. In this case it
formally means close in Hamming distance: the inputs for which there is exactly one 1.

Approach. Fix an algorithm as in Figure 1 that solves the problem with bounded error. Let

|ψ(i〉 denote the states in the figure on input f0, and |ψ(i)
x∗ 〉 the corresponding states on input δx∗ .

For any x∗ ∈ {0, 1}n, the corresponding states start out the same (|ψ(0)〉 = |ψ(0)
x∗ 〉), but in the end

they need to be very different as the first one has a correct answer of 0, whereas the second one
has a correct answer of 1. In fact, |ψfinal〉 and |ψfinal

x∗ 〉 need to be nearly orthogonal. The only way
differences between |ψ〉 and |ψx∗〉 can arise along the way is when x∗ is queried. Thus, in order for
|ψfinal〉 and |ψfinal

x∗ 〉 to differ a lot, the total weight of the queries to x∗ over the entire computation
needs to be significant. Whereas this can happen for some x∗ in a single query, for it to happen for
all x∗ ∈ {0, 1}n requires many queries. We now work out this approach quantitatively.

Application to quantum search. Let p denote the probability distribution of the measurement
at the end on input f0, and px∗ the one for input δx∗ . Since the algorithm needs to answer correctly
with probability at least 1− ε on every input, and the correct answers for f0 and δx∗ are different,

2

the statistical distance dstat(p, px∗) is at least 1− 2ε). From the lecture on quantum distances, we
know that the statistical distance is at most ‖ |ψfinal〉 − |ψfinal

x∗ 〉 ‖2. Thus,

1− 2ε ≤ ‖ |ψfinal〉 − |ψfinal
x∗ 〉 ‖2, (1)

which formalizes the near-orthogonality claim.
Next we figure out by how much the difference in 2-norm can increase due to one query. Noting

the Uf0 = I, we have

|ψ(i)〉 = (Uf0 ⊗ I)Vi |ψ(i−1)〉 = (I ⊗ I)Vi |ψ(i−1)〉

|ψ(i)
x∗ 〉 = (Uδx∗ ⊗ I)Vi |ψ(i−1)

x∗ 〉 ,

and therefore ∥∥∥|ψ(i)〉 − |ψ(i)
x∗ 〉
∥∥∥ =

∥∥∥((I ⊗ I)Vi |ψ(i−1)〉 − (Uδx∗ ⊗ I)Vi |ψ(i−1)
x∗ 〉

)∥∥∥ .
This equation can be simplified by applying the triangle inequality and removing the unitary terms
(which do not affect the 2-norm):∥∥∥|ψ(i)〉 − |ψ(i)

x∗ 〉
∥∥∥ ≤ ∥∥∥(I ⊗ I)Vi |ψ(i−1)〉 − (Uδx∗ ⊗ I)Vi |ψ(i−1)〉

∥∥∥+
∥∥∥(Uδx∗ ⊗ I)Vi

(
|ψ(i−1)〉 − |ψ(i−1)

x∗ 〉
)∥∥∥

=
∥∥∥(I ⊗ I)Vi |ψ(i−1)〉 − (Uδx∗ ⊗ I)Vi |ψ(i−1)〉

∥∥∥︸ ︷︷ ︸
∆

+
∥∥∥|ψ(i−1)〉 − |ψ(i−1)

x∗ 〉
∥∥∥ . (2)

We now analyze the term ∆ in Equation (2), which gives us an upper bound on the increase in
2-norm. Let

Vi |ψ(i−1)〉 =
∑
z

αz |z〉 ,

where |z〉 = |xbu〉 such that |xb〉 represents the input into Uf and |b〉 represents the ancilla qubit
in which the value of f(x) is XORed. Note that

Uδx∗ ⊗ I : |xbu〉 7→

{
|xbu〉 if x 6= x∗

|xbu〉 if x = x∗ .

We can now proceed to bound ∆:

∆2 =
∥∥∥[(I ⊗ I)− (Uδx∗ ⊗ I)

]∑
αz |z〉

∥∥∥2

=

∥∥∥∥∥[(I ⊗ I)− (Uδx∗ ⊗ I)
]∑
bu

αz |x∗bu〉

∥∥∥∥∥
2

=
∑
bu

∣∣αx∗bu − αx∗bu∣∣2
= 2 ·

∑
u

|αx∗0u − αx∗1u|2

≤ 4 ·
∑
u

(
|αx∗0u|2 + |αx∗1u|2

)
= 4 · Pr[ith query for f0 is x∗]. (3)

3

We return to the term
∥∥|ψfinal〉 − |ψfinal

x∗ 〉
∥∥ which, by removing unitary transformations, is simply∥∥∥|ψ(q)〉 − |ψ(q)

x∗ 〉
∥∥∥ . By combining Equations (2) and (3), this gives us∥∥∥|ψfinal〉 − |ψfinal

x∗ 〉
∥∥∥ =

∥∥∥|ψ(q)〉 − |ψ(q)
x∗ 〉
∥∥∥

≤ 2

q∑
i=1

√
Pr[ith query for f0 is x∗] +

∥∥∥|ψ(0)〉 − |ψ(0)
x∗ 〉
∥∥∥︸ ︷︷ ︸

=0

. (4)

which is true for every possible x∗. While the probability terms in Equation (4) might be large for
particular x∗, on average they have to be small since they add up to 1. So, we sum over all x∗ and
apply the Cauchy-Schwarz inequality to obtain:

∑
x∗

∥∥∥|ψfinal〉 − |ψfinal
x∗ 〉

∥∥∥ ≤ 2
∑
x∗

q∑
i=1

√
Pr[ith query for f0 is x∗]

= 2

q∑
i=1

∑
x∗

√
Pr[ith query for f0 is x∗]

≤ 2

q∑
i=1

(
1 ·
√
N
)

= 2q
√
N (5)

Combining (5) with (1) summed over all x∗ ∈ {0, 1}n, we conclude that

q ≥ (
1

2
− ε)
√
N.

General adversary method. As mentioned, a blackbox f : {0, 1}n → {0, 1} can be viewed
as a set of N Boolean variables yx for x ∈ {0, 1}n, where yx represents f(x). Viewing x as a
number in binary, we can also represent f as the sequence of variables y0, y1, . . . , yN−1, which
corresponds to the charactertistic sequence of f . With this representation, a blackbox decision
problem corresponds to a function F : {0, 1}N → {0, 1}. The function F is total in case of fully
specified decision problems, and partial in case of promise problems. We showed that any quantum
algorithm for computing F = OR with bounded error has to make Ω(

√
N) queries. In fact, we

showed that the bound already holds for the promise version where the strings in {0, 1}N contain
at most one 1.

More generally, given a (partial) function F : {0, 1}N → {0, 1}, we can ask about the complexity
of computing F . To establish a lower bound, we follow the same intuition – states for inputs that
map to different values under F must start out identical and end up almost orthogonal. The only
operations that can induce a difference between the states are the blackbox queries. If we can
exhibit a collection of input pairs from F−1(0) × F−1(1) such that any blackbox query can only
induce a small difference in the states on average over the collection, a lot of queries are needed to
compute F .

In order to construct the collection, we capitalize on the fact that for a given state and two
inputs x and y, a query can only induce a significant difference if the state puts a lot of weight on
the positions where x and y differ. Thus, to make the difference small on average, we make sure

4

that any single query position i ∈ [N] can only be different for a small fraction of the input pairs
(x, y) that we consider. This approach leads to the following quantitative statement, where we view
the pairs (x, y) that we consider as a bipartite graph G = (V,E) where V = X t Y , E ⊆ X × Y ,
X ⊆ f−1(0), and Y ⊂ f−1(1).

Theorem 1. Let F : {0, 1}N → {0, 1} be a partial function, X ⊆ F−1(0), Y ⊆ F−1(1), and
E ⊆ X × Y . Suppose that:

◦ (∀x ∈ X) |{y : (x, y) ∈ E}| ≥ dleft

◦ (∀y ∈ Y) |{x : (x, y) ∈ E}| ≥ dright

◦ (∀i ∈ [N])(∀x ∈ X) |{y ∈ Y : (x, y) ∈ E andxi 6= yi}| ≤ cleft

◦ (∀i ∈ [N])(∀y ∈ Y) |{x ∈ X : (x, y) ∈ E andxi 6= yi}| ≤ cright

Then any bounded-error quantum algorithm for computing F must make Ω

(√
dleftdright
cleftcright

)
queries.

The set E is chosen adversarially so as to obtain as large a lower bound on the query complexity
as possible. Note that to obtain a strong lower bound, the typical Hamming distance between x
and y for (x, y) ∈ E needs to be small.

We do not prove the theorem, but show how to instantiate it to obtain our lower bound for OR.
We pick X = {0N}, Y the subset of {0, 1}N with Hamming weight 1, and E = X × Y . We can set
dleft = N , dright = 1, cleft = 1, and cright = 1. On substituting these values in the formula for lower
bound in Theorem 1, we get a Ω(

√
N) lower bound.

Exercise. Let F be a balanced AND of ORs. More precisely, F is given by a Boolean formula in
conjunctive normal form with

√
N clauses, and each clause has

√
N literals. The first clause is an

OR of the first
√
N variables y0, y1, . . . , y√N−1 (called the first block), the second clause has the

next
√
N variables and so on. Show that the query complexity of F is Ω(

√
N) and O(

√
N logN).

There exists a stronger version of Theorem 1 with weights on the edges, including a version where
the weights can be negative, which gives tight results up to a constant factor for the bounded-error
query complexity of any partial function F [Rei09].

4 Polynomial method

The second method turns a quantum query algorithm into a well-studied structure, namely a
polynomial that approximates F , and then uses results such polynomials to obtain a lower bound
on the number of queries. The method is not as universal as the quantum adversary method, but
has led to interesting results, including generic relationships between quantum and classical query
complexity.

5

Approach. The method hinges on the following lemma. We state it for the setting where the
blackbox f is Boolean (` = 1).

Lemma 2 (Amplitude lemma). Given a quantum query algorithm with q queries as in Figure 1,
where f : {0, 1}n → {0, 1}, the amplitudes in |ψfinal〉 are multivariate polynomials of degree at most
q in the variables yx

.
= f(x).

Proof. We prove by induction on i that the amplitudes in |ψ(i)〉 are multivariate polynomials in the
variables yx of degree at most i. The base case i = 0 holds as |ψ(0)〉 is independent of the variables.

Vi

Uf

∑
z αz |z〉

∑
z α
′
z |z〉

Figure 2: Inductive step of the amplitude lemma

For the induction step i−1→ i, consider the circuit part in Figure 2. The state at the beginning
is |ψ(i−1)〉 and the one at the end is |ψ(i)〉. Consider the state Vi |ψ(i−1)〉, which we can decompose
as
∑

z αz |z〉. By the induction hypothesis and the fact that Vi is a linear transformation, each αz
is a polynomial of degree at most i− 1. We can similarly decompose the state |ψ(i)〉 as

∑
x α
′
z |z〉.

As |ψ(i)〉 = (Uf ⊗ I)
∑

z αz |z〉 and writing z = xbu as before (|x| = n and |b| = 1), we have that

α′xbu =

{
αxbu if f(x) = 0

αxb̄u if f(x) = 1.

Note that f(x) is yx, which is one of our variables. By interpolation, we can rewrite

α′xbu = αxbu(1− yx) + αxb̄uyx.

As the αz are polynomials of degree at most i, it follows that the α′z are polynomials of degree at
most i.

The lemma follows from the inductive claim for i = q and the fact that Vfinal is a linear
transformation. �

Decomposing |ψfinal〉 as
∑

z α
final
z |z〉, the probability that the algorithm outputs 1 can be writ-

ten as the sum of |αfinal
z |2 = (αfinal

z)∗αfinal
z over all basis states |z〉 that result in output 1. For

concreteness and without loss of generality, we can assume that the first qubit yields the output,
in which case we sum over the basis states |z〉 where z starts with 1. By the amplitude lemma, the
probability of outputting 1 is given by a multivariate real polynomial p of degree at most 2q in the
variables yx. We can say the following about the values p(y) where y

.
= (y0, y1, . . . , yN−1).

◦ For every y ∈ {0, 1}N , p(y) ∈ [0, 1]. This follows because the value p(y) is a probability.

6

◦ For every y ∈ dom(F) with F (y) = 1, f(y) ≥ 1− ε. This follows because the error is bounded
by ε.

◦ For every y ∈ dom(F) with F (y) = 0, f(y) ≤ ε. This also follows from the error bound as
Pr[output 1 on input y] = 1− Pr[output 0 on input y] ≤ 1− (1− ε) = ε.

The last two bullets mean that p approximates F to within ε on the domain of F .

Corollary 3. Given a quantum query algorithm with q queries that computes a partial Boolean
function F of the variables yx where yx

.
= f(x) and f : {0, 1}n → {0, 1}, there exists a multivariate

real polynomial p of degree at most 2q that has values in [0, 1] for all y ∈ {0, 1}N and satisfies

(∀y ∈ dom(F)) |p(y)− F (y)| ≤ ε. (6)

Corollary 3 reduces lower bounding the number of queries of bounded-error quantum algorithms
for F to lower bounding the degree of real polynomials that approximate F well on the part of the
Boolean cube in the domain of F (and are in the range [0, 1] on the entire Boolean cube). Given
the simpler mathematical structure, the latter lower bounds may be more in reach. Given the vast
knowledge about polynomials and polynomial approximations, such lower bounds may already be
known. In fact, the latter was the case for F = OR and the promise version we consider, a result
we will develop next. The method has also been used to connect quantum query complexity to
classical deterministic query complexity. For any total Boolean function F , the bounded-error
quantum query complexity is at least of the order of the fourth root of the deterministic query
complexity [ABK+21]. If, in addition, F is symmetric (i.e., the value of F on the Boolean cube
only depends on the number fo ones in the input), the fourth root can be improved to the square
root. Both results are known to be tight up to lower order terms. Note that for promise problems
F , the gap can be exponential.

Application to quantum search. We now show how to obtain a lower bound of Ω(
√
N) for

F = OR on inputs with at most one 1. Consider a quantum algorithm with q queries and the
multivariate real polynomial p of degree at most 2q from Corollary 3. Given the symmetric nature
of the problem, it makes sense to consider the symmetrization of p:

psymm(y)
.
=

1

N !

∑
π∈SN

p(π(y)),

where SN denotes the set of permutations of N elements. Since the variables yx only take values in
{0, 1}, each occurrence of ykx with k ≥ 2 in a monomial of p can be replaced by yx. Thus, without
loss of generality, the polynomial p is multi-linear, i.e., has degree at most 1 in each variable.
The same holds for its symmetrization psymm. Moreover, in psymm the coefficient of a multi-linear
monomial only depends on its degree d. On a Boolean input y of Hamming weight w

.
=
∑

i yi,
there are exactly

(
w
d

)
nonzero monomials of degree d, each of which evaluate to 1. It follows that

psymm(y) =
∑2q

d=0 cd
(
w
d

)
for some reals c0, · · · , c2q. Since

(
w
d

)
is a univariate polynomial of degree d

in w, we can write

psymm(y) = p̃

(∑
i

yi

)
,

where p̃ is a univariate real polynomial of degree at most 2q. By (6) and the other properties of
the polynomial p in Corollary 3, we conclude:

7

Proposition 4. If there exists a quantum blackbox algorithm with q queries for computing F = OR
on inputs from the Boolean cube of Hamming weight at most 1, then there exists a univariate real
polynomial p̃ such that:

p̃(w) ∈

[0, ε] for w = 0

[1− ε, 1] for w = 1

[0, 1] for w ∈ {2, . . . , N}.
(7)

See Figure 3 for a plot of the situation.

∑
i yi

p̃

0 1 2 3
. . .

N
0

ε

1− ε
1

. . .

Figure 3: Approximating univariate polynomial for quantum search

Intuitively, the fact that a polynomial makes a sudden jump (from close to 0 at w = 0 to
close to 1 at w = 1) and remains constrained to a small range on a nontrivial part of its domain
(the range [0, 1] on {0, 1, . . . , N}) requires the polynomial to have large degree. To quantify this
intuition, recall that the Chebyshev polynomialsTd is contained in the interval [−1, 1] on the interval
[−1, 1] and has a number of extremal properties among all such polynomials of the same degree
d. In particular, the maximum derivative in absolute value, i.e., the quantity maxx∈[−1,1] |p̃(x)|,
is maximized by Td. We will not prove this property but compute the maximum. Recall that
Td(cos θ) = cos(dθ). By the chain rule, T ′d(cos θ) · (− sin θ) = − sin(dθ) · d, so T ′d(cos θ) = d · sin(dθ)

sin θ ,
which yields a maximum absolute value of d2 at θ ∈ πZ (corresponding to |x| = 1). By rescaling,
we have:

Lemma 5 (Markov’s other inequality). Let p̃ be a univariate real polynomial of degree d and

X,Y ⊆ R intervals such that p̃(X) ⊆ Y . Then |p̃′(x)| ≤ |Y ||X|d
2 for all x ∈ X.

Lemma 5 does not immediately apply to the setting of Proposition 4 depicted in Figure 3 because
the lemma requires all points of the interval X = [0, N] to have values constrained in an interval
Y , whereas the proposition guarantees such a constraint at the integral points in [0, N]. However,
in cases where p̃ assumes a large value at a non-integral point in [0, N], p̃ needs to have a large
derivative in absolute value somewhere between that point and the closest integral point, where
the value of p̃ is constrained to the interval [0, 1]. This allows us to guarantee a large derivative in
absolute value on X[0, N] in both the case where Y = p̃(X) is small, and the case where it it large.
Here is a quantitative analysis:

◦ By Proposition 4, p̃(0) ≤ ε and p̃(1) ≥ 1− ε. By the mean value theorem, there exists x∗ ∈ X
such that p̃′(x∗) ≥ 1− 2ε.

8

◦ If |Y | ≥ 1, there exists a point x ∈ X such that distance of p̃(x) to [0, 1] is (|Y | − 1)/2. This
follows because the range of p̃(X) outside of [0, 1] has size |Y |−1, and at least half of it needs
to be on the same side of [0, 1]. On the other hand, at the least integral point, dxc, p̃ has a
value in [0, 1]. The distance between x and dxc is at most 1/2. By mean value theorem, there
exists x∗ ∈ X such that p̃′(x∗) ≥ |Y | − 1.

Thus, there exists x∗ ∈ X such that |p̃′(x∗)| ≥ max(1− 2ε, |Y | − 1). By Markov’s other inequality

max(1 − 2ε, |Y | − 1) ≤ |Y |
N d2, where d = 2q. We do not know what |Y | is, but can guarantee the

lower bound obtained for the case where 1 − 2ε = |Y | − 1, or equivalently, for |Y | = 2(1 − ε). We
conclude that

q ≥ 1

2

√
1

2
− ε

2(1− ε)
√
N.

References

[ABK+21] Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. De-
gree vs. approximate degree and quantum implications of Huang’s sensitivity theorem.
In 53rd Annual Symposium on Theory of Computing (STOC), pages 1330–1342, 2021.

[Rei09] Ben Reichardt. Span programs and quantum query complexity: The general adver-
sary bound is nearly tight for every boolean function. In 50th Annual Symposium on
Foundations of Computer Science (FOCS), pages 544–551, 2009.

9

	Model
	Quantum search
	Adversary method
	Polynomial method

