
Quantum Algorithms 4/6/2023

Lecture 20: Fourier Sampling

Instructor: Dieter van Melkebeek

Last lecture we discussed the problem of finding a hidden XOR-shift, presented an efficient
quantum algorithm and cast the problem as an instantiation of the hidden subgroup problem. This
lecture we view the algorithm as a special case of Fourier sampling and show that the approach
efficiently solves the hidden subgroup problem over finite Abelian groups modulo the existence of
an efficient quantum Fourier transform. Before doing so, we review the classical Fourier transform
and generalize it to finite Abelian and other groups. An efficient quantum Fourier transform for
finite Abelian groups will be covered next lecture.

1 Exercise #11

We begin with the solution to the exercise from the last lecture, which posed the following question:
Given two one-to-one functions f0, f1 : {0, 1}n → {0, 1}n where f1(x) = f0(x ⊕ s) for some s ∈
{0, 1}n. Find s, with certainty, using O(n) queries to the unitary multiplexer V : |b〉 |ψ〉 7→ |b〉fb |ψ〉.

The problem is closely related to finding a hidden XOR-shift and, in fact, reduces to it. Consider
the function f : {0, 1}n+1 → {0, 1}n+1 : bx 7→ fb(x)0, where b denotes a bit that selects between
the two functions f0 and f1. Note that f(bx1) = f(bx2) iff x1 = x2 because both f0 and f1 are
one-to-one. We have that

f(bx1) = f(bx2)⇔ fb(x1) = fb(x2)⇔ fb(x1) = fb(x2 ⊕ s)⇔ x1 ⊕ x2 = s.

It follows that
f(b1x1) = f(b2x2)⇔ b1x1 ⊕ b2x2 ∈ {0n+1, 1s}.

Thus, the function f satisfies the promise of the hidden XOR-shift problem for n+ 1 bits with the
string 1s as the hidden shift. Note that Uf coincides with V ⊗ I, where the I accounts for the extra
output bit that f and that is always 0. Thus, we can run our algorithm for the finding a hidden
XOR-shift and find s with certainty using O(n) queries to V .

2 Standard Fourier Transform

Recall the standard Fourier transform for functions over the reals.

Definition 1. Let f : R → C be such that
∫
x |f(x)|2 dx < ∞. The Fourier transform f is a

function f̂ : R→ C such that f̂(ω) =
∫
x f(x)e2πiωx dx for all ω ∈ R.

The argument x of f often represents time. The argument ω of f̂ is often referred to as a frequency.
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Properties. The Fourier transform is a linear transformation: ̂af + bg = af̂ + bĝ. The Fourier
tranform is also unitary; we can see this property using several equivalent definitions of unitarity.
A unitary transformation can be viewed as one that preserves inner products. Another definition,
which we have used heavily in this class, is that a linear transform is unitary when its inverse is equal
to its complex conjugate transpose. Viewing an (invertible) linear map as a basis transformation,
yet another definition of unitarity is transformsing an orthonormal basis of its domain into another
orthonormal basis. In more detail:

◦ Consider the a unitary transformation as one which preserves inner products. If we consider
the inner product space of functions from R to C with inner product (f, g) =

∫
x f(x)g(x) dx,

then the Fourier transform preserves inner products, i.e., (f̂ , ĝ) = (f, g), and is hence a unitary
transformation.

◦ The inverse Fourier transform is given by

f(x) =

∫
ω
f̂(ω)e−2πiωx dω.

As the function e2πiωx is symmetric in x and ω, and e−2πiωx is the complex conjugate of
e2πiωx, we can see that the inverse Fourier transform is the conjugate conjugate transpose
Fourier transform, which is thus unitary.

◦ The Fourier transform is unitary as it transforms the standard orthonormal basis (consisting
of the Dirac delta functions) into an orthonormal basis, referred to as the Fourier basis, which
consists of the harmonics

e2πiωx = cos(2πωx) + i sin(2πωx).

Apart from linearity and unitarity, another important property of the Fourier transform is that
it turns convolutions into point-wise products. Convolutions are operations that occur naturally
in several areas, including signal processing. When a signal is sent through a filter, the modified
signal is the convolution of the original signal with a function describing the characteristics of the
filter.

Definition 2. The convolution of f : R→ C with g : R→ C is f ∗ g : R→ C where

(f ∗ g)(x) =

∫
y
f(x)g(x− y) dy.

In symbols, the property states that f̂ ∗ g(ω) = f̂(ω)ĝ(ω) for all ω ∈ R.
Next we discuss the more general form of the Fourier transform including over finite Abelian

groups of size N , which is of particular interest in developing quantum algorithms. This form is also
the one most commonly used in practical applications, which rely on the O(N logN) complexity of
the fast Fourier transform, an efficient algorithm to compute the discrete Fourier transform over the
group ZN ,+. Due to the convolution property of the Fourier transform, the fast Fourier transform
makes it possible to perform convolutions in time O(N logN) which would take O(N2) if done
straightforwardly in the time domain. For this reason, the Fourier transform is heavily used in
fields such as digital signal processing, computer vision, and statistics.
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3 General Fourier Transform

In order to apply the Fourier Transform to quantum algorithms, we need to generalize it to a
transformation of functions whose domain is a more general group. We define a Fourier transform
for a general group as a transformation of complex function on the group with the above three
properties.

Definition 3. Let G be a group. A Fourier Transform on G is a transformation on the space of
functions {f : G → C}, mapping f to f̂ , that is linear and unitary, and turns convolutions into

point-wise products, i.e., f̂ ∗ g(x) = f̂(x)ĝ(x) for f, g : G→ C and x ∈ G.

For finite groups the convolution of f and g is given by (f ∗ g)(x) =
∑

y f(y)g(x − y), where the
subtraction refers to the inverse of the group operation; the other operations are in C.

A Fourier transform exists for many important groups (for example, R under addition as above),
though not for all groups. We show in this lecture that it is guaranteed to exist for an important
class of groups, finite Abelian groups. The Fourier transform is also unique (up to permutations of
the basis elements) for this class of groups.

In constructing the Fourier transform for finite Abelian G, the place of the harmonics is taken
by the characters, which we discuss next.

4 Characters of a Group

The characters of a group G as the homomorphisms from G to the multiplicative group C, ·.

Definition 4. A character of a group G is a mapping χ : G→ C such that

χ(x+ y) = χ(x) · χ(y) (1)

holds for all x, y ∈ G.

Note that “+” on the left-hand side of (1) denotes the operation of G (written additively), whereas
“·” on the right-hand side denotes multiplication of complex numbers.

4.1 Properties

Two properties of characters of finite groups are of interest to us: Their values being roots of unity
and their orthogonality.

Roots of unity. All elements in the range of a character of G are roots of unity and, in particular,
|G|-th roots of unity.

Fact 1. χ(x)|G| = 1 for all x ∈ G.

Over the reals, the only roots of unity (i.e., of 1) are 1 and -1 (for integers k with even powers).
However, given some positive integer n, there are n roots of unity in C: specifically e2kπi/n for
0 ≤ k < n. Visualizing them in the complex plane, these values form the vertices of a regular n-gon
inscribed in the unit circle, with the point 1 as one of the vertices : see Figure 1 for an example
with n = 6.

We wish to show that χ(x) is a |G|-th root of unity for every character χ of a finite group G.
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Figure 1: The sixth roots of unity

Proof (of Fact 1). We wish to show that χ(x) is a |G|-th root of unity for every character χ of a
finite group G.

First, we show that χ(0) = 1, which follows from the homomorphism property of χ. We have
that χ(0) = χ(0 + 0) = χ(0)2. Since χ(0), an element of the multaplicative group C, is invertible,
we must have χ(0) = 1.

Suppose that x ∈ G. We wish to show that χ(x)|G| = 1, i.e., that x is a |G|-th root of unity.
Let 〈x〉 = {x, x + x, x + x + x, . . . } = {1 · x, 2 · x, 3 · x, . . . } be the subgroup of G generated by x,
where we write n · x to represent x+ x+ · · ·+ x when x appears n times.

As |G| is finite, |〈x〉| ≤ |G| is finite as well, so we have some positive integer k such that k ·x = 0.
Take the smallest such k, which we call the order of x (and which equals |〈x〉|), and consider χ(x)k.

As χ is a homomorphism, χ(x)k = χ(k · x) = χ(0) = 1. Now, from group theory we have that
the order of a subgroup of a finite group divides the size of the group, so k divides |G|. Hence,
χ(x)|G| = 1. �

Orthogonality. Distinct characters of a a finite group are orthogonal to each other:

Fact 2. Consider two characters χ, χ′ of a finite group G. If χ 6= χ′, then (χ, χ′) = 0.

The inner product in Fact 2 is the standard one: For f, g : G→ C we have

(f, g) =
∑
x∈G

f(x)g(x).

Proof (of Fact 2). Suppose that a ∈ G. As a is invertible, we have that x = y if and only if
a+ x = a+ y. Now, as G is closed under addition, we have that∑

x∈G
χ(x) =

∑
a+x∈G

χ(a+ x) =
∑
x∈G

χ(a+ x) =
∑
x∈G

χ(a)χ(x) = χ(a)
∑
x∈G

χ(x)

as χ is a homomorphism.
Hence, we have either that

∑
x∈G χ(x) = 0 or χ(a) = 1 for all a ∈ G.

Noting that the conjugate of a root of unity is its inverse, we have, by the property shown
above, that χ = χ−1 for all characters χ of G.

Suppose that χ1, χ2 are distinct characters of G. Now, let χ = χ1 · χ2. As the conjugate of a
character and the product of two characters both satisfy the homomorphism properties, they are
also characters of G, and consequently, χ is a character of G. If χ is identically equal to 1, then we
must have that χ2 = χ−11 , and, by the above, that χ1 = χ2, a contradiction.
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Thus, we must instead have

0 =
∑
x∈G

χ(x) =
∑
x∈G

χ1(x)χ2(x) = (χ1, χ2)

and we are done. �

Fact 1 implies that χ(x)χ(x) = 1 for all x ∈ G and characters χ of G. Combining this with
Fact 2 we have:

Corollary 3. The normalized characters 1√
|G|
χ are orthonormal.

4.2 Fourier basis

We now try to use the characters of a group as a Fourier basis. If f : G→ C can be written as

f =
1√
|G|

∑
χ

f̂(χ)χ (2)

for some f̂ , then f̂ is our candidate Fourier transform of f . This is a linear mapping. We now
argue that both unitarity and the convolution property (modulo a constant) are satisfied, as well.

Unitarity. Suppose that f and g can be written in the form (2). Then, by the orthogonality
property of the characters χ, and the fact that (χ, χ) = |G| for all characters χ of G we must have
that

(f, g) =
1

|G|
∑
x∈G

∑
χ1,χ2

f̂(χ1)χ1(x)ĝ(χ2)χ2(x)

=
1

|G|
∑
χ1,χ2

∑
x∈G

f̂(χ1)ĝ(χ2)χ1(x)χ2(x)

=
1

|G|
∑
χ1,χ2

f̂(χ1)ĝ(χ2)
∑
x∈G

χ1(x)χ2(x)

=
1

|G|
∑
χ1,χ2

f̂(χ1)ĝ(χ2)(χ1, χ2)

=
∑
χ

f̂(χ)ĝ(χ)

= (f̂ , ĝ)

and so our candidate Fourier transform preserves inner products (and thus the 2-norm) and is
unitary.

We can also show that our candidate Fourier Transform is unitary by showing that its inverse
is equal to its complext conjugate transpose. By the orthogonality of the characters χ, we must
also havethat our candidate Fourier transform satisfies

f̂(χ) = (f, χ) =
1√
|G|

∑
x∈G

f(x)χ(x) (3)
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Recall that the mapping f → f̂ is given by equation (2). From (3), we can see that the inverse
mapping f̂ → f is the complex conjugate transpose of the forward mapping, showing again that
our candidate Fourier transform is unitary.

Convolution property. If f and g can be written in the form (2), then so can f ∗ g : G → C,
defined by (f ∗ g)(x) =

∑
y∈G f(y)g(x− y). Moreover,

f̂ ∗ g(χ) = c(G) · f̂(χ) · ĝ(χ), (4)

where c(G) =
√
|G|. Note that the constant c(G) in (4) is not 1, as required by the convolution

property stated before. However, the constant does not affect the usefulness. In general, nontrivial
constants appear either in the formula for the Fourier transform, or its inverse, or the convolution
property. It is a matter of taste where to allow them.

To argue the convolution property, we start with the convolution of f and g at x which is equal
to the sum over all y’s of f(y) times g(z) where z = x− y

(f ∗ g)(x)
.
=
∑
y∈G

f(y)g(x− y).

By rewriting f and g as a linear combination of the characters, the right-hand side becomes

1

|G|
∑
y∈G

(∑
χ1

f̂(χ1) · χ1(y)

)
·

(∑
χ2

ĝ(χ2) · χ2(x− y)

)
.

Note that we introduce a normalization factor of 1√
G

for both terms and combine them to 1
|G| .

Next, we can rewrite χ2(x − y) using the properties of characters. Namely, that the character of
a sum equals the product of the character values. Additionally, applying a character to −y is the
same as taking the inverse, but since all characters are on the unit sphere, taking the inverse is
the same as taking the complex conjugate. So, χ2(x − y) = χ2(x) · χ2(y) and taking the complex
conjugate of the whole thing leaves us with:

1

|G|
∑
y∈G

(∑
χ1

f̂(χ1) · χ1(y)

)
·

(∑
χ2

ĝ(χ2) · χ2(x) · χ2(y)

)
.

Then after rearranging terms:

1

|G|
∑
χ1,χ2

f̂(χ1) · ĝ(χ2) · χ2(x) ·
∑
y∈G

χ2(y) · χ1(y).

We then notice that
∑

y∈G χ2(y) · χ1(y) is exactly our definition of the inner product, giving us:

1

|G|
∑
χ1,χ2

f̂(χ1) · ĝ(χ2) · χ2(x) · (χ2, χ1).

Finally, we notice that whenever χ2 differs from χ1 then (χ2, χ1) = 0, therefore the sum is only
nonzero when χ2 = χ1 and we can then simply sum over χ. Furthermore, when χ1 = χ2 then
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(χ2, χ1) = |G| which cancels with 1
|G| and all that’s left is to rewrite the answer to match the given

form. ∑
χ

f̂(χ) · ĝ(χ) · χ(x)
.
=

1√
|G|

∑
χ

f̂ ∗ g(χ) · χ(x)

so f̂ ∗ g(χ) = c(G) · f̂(χ) · ĝ(χ) where c(G) =
√
|G|.

4.3 Uniqueness of Fourier basis

We have shown that the characters of a finite group G form a valid Fourier basis for the set of
functions f : G → C that are in the linear span of the characters. The remaining question is
whether every function f : G → C can be written in the form (2), i.e., whether the characters of
G form a basis for all of {f : G → C}. This is not the case for all finite groups G, but it is for
all Abelian finite groups, as we will show in the next section. Here we show that whenever the
characters form a basis, they are the unique Fourier basis according to our definition.

Theorem 4. If the characters of a group G span the space of all functions f : G → C, then the
normalized characters form the unique Fourier basis up to a permutation of the basis elements and
global phase.

Proof. We have already shown above that, if the characters span the space of all functions f : G→ C
that they form a Fourier basis; it remains to show uniqueness.

Suppose that χ1 and χ2 are characters of G. From the convolution property,

χ̂1 ∗ χ2 = c(G) · χ̂1 · χ̂2.

By the definition of convolutions of f : G→ C and the homomorphism properties of χ2

(χ1 ∗ χ2)(x) =
∑
y∈G

χ1(y)χ2(x− y)

=
∑
y∈G

χ1(y)χ2(x)χ2(y)

= (χ1, χ2) · χ2(x)

as χ2(−y) = χ2(y)−1 = χ2(y).
Hence, if χ1 6= χ2, then we have

c(G) · χ̂1 · χ̂2 = χ̂1 ∗ χ2 = (χ1, χ2) · χ̂2 = 0

and so supp(χ̂1) ∩ supp(χ̂2) = ∅.
As the vector space of functions f : G → C is |G|-dimensional, and as the characters span the

set of all such functions, we must have at least |G| characters. Furthermore, because the characters
are orthogonal by the above, we can have no more than |G| characters and thus there exist exactly
|G| distinct characters of G. Since χ̂(χ) = (χ, χ) = |G| 6= 0 for all characters of G, we have
| sup(χ̂)| ≥ 1 for all χ and hence

|G| ≤
∑
χ

| sup(χ̂)|.
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But as, by the above, the supports of distinct χ1 and χ2 are disjoint, we must also have that∑
χ

| sup χ̂| ≤ |G| = | ∪χ supp(χ̂)|.

Hence,
∑

χ | sup χ̂| = |G| and we must have | sup(χ̂)| = 1 for all χ.

For any function f : GC, |supp(f̂)| equals the number of the Fourier basis that are needed to
express f as a linear combination of them. Thus, |supp(χ̂)| = 1 means that χ is itself an element of
the Fourier basis, up to a scalar. As the Fourier basis is orthonormal, χ/

√
|G| must, in particular,

be a member of the basis up to global phase. Consequently, the Fourier basis consisting of the
normalized characters is unique up to a permutation of the basis elements and global phase. �

5 Fourier Transform over Finite Abelian Groups

We show that for finite Abelian groups G, there are as many characters as the dimension of the
space {f : G→ C}, namely |G|. By the previous section, this means that the characters form the
unique basis that satisfies our requirements for a Fourier basis. As such, a Fourier transform over
finite Abelian groups exists and is unique.

We make use the following result from group theory:

Theorem 5 (Structure Theorem). Every finite Abelian group is isomorphic to

ZN1 × ZN2 × ZN3 × · · · × ZNk

under component-wise addition for some N1, N2, . . . , Nk ∈ N.

We first find N characters for ZN for N ∈ N and then find |G1| · |G2| characters of G1 ×G2 where
G1 and G2 have |G1| and |G2| characters, respectively.

Characters of modular addition. We simply construct the following N distinct characters.
Recall that the range of the characters of G is the set of N -th roots of unity (see Figure 1 for an
example for N = 6). For each element y ∈ ZN , we construct a unique character that maps 1 to
exp(2πiy/N).

Explicitly, for y ∈ ZN , let χy : ZN → C such that χy(1) = (e2πi/N )y = e2πiy/N and χy(x) =
χy(1)x = e2πixy/N for x ∈ ZN . As χy is a homomorphism and distinct for each y ∈ ZN , we are
done.

For the special case of N = 2, the simple group with only two elements, we have that χy(x) =
(−1)xy. In particular, χ0(x) ≡ 1 and χ1(x) = (−1)x

Characters of direct product. We construct the following |G1| · |G2| characters. For y1 ∈ G1

and y2 ∈ G2 let
χy1,y2(x1, x2) = χ(G1)

y1 (x1) · χ(G2)
y2 (x2).

As we have given a distinct χ
(G1)
y1 for each y1 ∈ G1 and similarly forG2, we have |G1|·|G2| = |G1×G2|

of these, which are distinct because the χ
(G1)
y1 and χ

(G2)
y2 are.

To show this, note that, where 01 and 02 are the identities of G1 and G2, respectively, we have

that χy1,y2(01, x2) = χ
(G2)
y2 (x2) and χy1,y2(x1, 02) = χ

(G1)
y1 (x1) since homomorphisms map identities
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to identities (in this case, to 1). If (y1, y2) 6= (y′1, y
′
2) it follows that χy1,y2 and χy′1,y′2 will disagree

on some point. It remains to show that they are characters, i.e., that they are homomorphisms.

By the definition of χy1,y2 and as χ
(G1)
y1 and χ

(G2)
y2 are homomorphisms,

χy1,y2(x1 + z1, x2 + z2) = χ(G1)
y1 (x1 + z1) · χ(G2)

y2 (x2 + z2)

= (χ(G1)
y1 (x1)χ

(G1)
y1 (z1)) · (χ(G2)

y2 (x2)χ
(G2)
y2 (z2))

= (χ(G1)
y1 (x1)χ

(G2)
y2 (x2)) · (χ(G1)

y1 (z1)χ
(G2)
y2 (z2))

= χy1,y2(x1, x2) · χy1,y2(z1, z2).

Putting things together. We have constructed N distinct characters for each ZN for all N ∈ N.
We have also shown how to construct |G1| · |G2| characters for the direct product of groups G1 and
G2, given |G1| and |G2| for G1 and G2, respectively. The combination of those two constructions
allows us to construct for all groups of the form

ZN1 × ZN2 × ZN3 × · · · × ZNk
,

where N1, N2, . . . , Nk ∈ N, a number of distinct characters equal to

N1 ·N2 · · · · ·Nk = |ZN1 × ZN2 × ZN3 × · · · × ZNk
|.

The characters can be indexed by y = (y1, y2, . . . , yk) ∈ ZN1 × ZN2 · · · × ZNk
and are given by

χy(x) =
∏
j∈[k]

exp(2πixjyj/Nj) = exp

2πi
∑
j∈[k]

xjyj
Nj

 .

For the special case of G = (Z2)
n, the characters for Z2 are the constant function 1 and the

±1-valued parity function. The n-fold product of this group is obtained by taking n independent
copies:

χy(x) =
∏
j

(−1)xjyj = (−1)x·y,

which corresponds to the set of all ±1-valued parity functions.
By the Structure Theorem, all finite Abelian groups are isomorphic to such a group. It follows

from our analysis in the previous section that such groups have a unique Fourier basis (up to
permutation and global phase), given by the normalized characters χy/

√
|G|. The Fourier transform

f̂ of a function f : G→ C is given by

f̂(y) =
1√
|G|

∑
x

f(x)χy(x) =
1√
|G|

∑
x

f(x) exp

2πi
∑
j∈[k]

xjyj
Nj

 .

Quantum Fourier transform. The classical Fourier transform is applied to a vector with one
component for every element of G and outputs the same number of components. However, the
quantum Fourier transform is instead applied to a superposition on log |G| qubits. The quantum
subroutine transforms input

∑
x∈G α(x) |x〉 into output

∑
x∈G α̂(x) |x〉, where α̂ is the Fourier

transform of α. These transformations can be realized by unitary circuits of size poly log |G| for
every finite Abelian G (and some other groups). For the special case of Zn2 under addition, we
already know the way to realize the quantum Fourier transform, namely to apply H⊗n. For the
case of ZN , we will see it next lecture.
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6 Hidden subgroup problem over finite Abelian groups

Recall the hidden subgroup problem (HSP) for a group G. The input is blackbox f : G → R for
some group G and set R such that for some subgroup H of G:

f(x1) = f(x2)⇔ Hx1 = Hx2

where Hx
.
= {h · x : h ∈ H} is the right coset of x modulo H, and · denotes the group operation

in multiplicative notation. The goal is to find a set S of generators for H, i.e., S ⊆ G such that
H = 〈S〉 .= {s1 · s2 . . . sk : s1, s2 . . . , sk ∈ S ∪ S−1, k ∈ N}.

We now develop an efficient quantum algorithm for the hidden subgroup problem over finite
Abelian groups. More precisely, we establish the result for groups that are the direct product of
cyclic groups.

Theorem 6. Consider the group

G = ZN1 × ZN2 × · · · × ZNk
(5)

under component-wise addition, where N1, N2, . . . , Nk ∈ N, and suppose that the prime factoriza-
tions of the numbers Nj for j ∈ [k] are given. There exists a quantum algorithm that solves the
hidden subgroup problem over G with error bounded by ε, runs in time O(poly log(|G|/ε)), and
makes O(log(|G|) + log(1/ε)) queries to the black-box. If the size of the hidden subgroup H is also
given, then the algorithm is exact, runs in time O(poly log |G|), and makes O(log(|G|/|H|)) queries
to the black-box.

Theorem 6 applies to all of the instantiations of the HSP over the additive group Zn2 that we
discussed: distinguishing constant and balanced functions for n = 1, learning linear functions, and
finding a hidden XOR-shift. There is one more instantiation of HSP over finite Abelian groups
that we discussed, namely the discrete log problem over Zp for prime p. As the underlying group
is G = Zp−1 × Zp−1 under addition, Theorem 6 yields a quantum algorithm that runs in time
O(poly log p) once we apply the polynomial-time quantum algorithm for factoring integers to the
integer p− 1. A similar combination of Theorem 6 and the algorithm for factoring integers yields
an efficient algorithm for the HSP over more complicated finite Abelian groups provided we can
efficiently compute an isomorphism with a product of cyclic groups (5). The existence of an
isomorphism is guaranteed by the Structure Theorem for finite Abelian groups; the isomorphism
may or may not be efficiently computable.

The algorithm of Theorem 6 generalizes the one we developed for finding a hidden XOR-shift.
It consists of two parts:

◦ An exact quantum subroutine A that outputs a uniform element of H⊥, where

H⊥
.
= {g ∈ G : (∀h ∈ H)χh(g) = 1}.

The subroutine consists of Fourier sampling. It hinges on an efficient algorithm for the
quantum Fourier transform over the finite Abelian group G, which we already know for the
case G = Zn2 (the n-fold Hadamard transform), and which we will develop in full generality
for groups of the form (5) in the next lectures.
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◦ A classical part which uses the quantum subroutine A to construct a set S of generators
for H. In the case of finding a hidden XOR-shift we ran A a number of times to find a
set of generators of H⊥, and then solved the system of linear equations they define in the
components of the hidden shift s. In the general case, the process will similarly first find
a set of generators for H⊥, and then solve several systems of modular equations, each one
yielding an element of a generating set S for H. More precisely, the process runs the quantum
subroutine O(log |G|+ log(1/ε)) times to obtain a generating set for H⊥ with probability at
least 1− ε. Like in the special case of finding a hidden XOR-shift, an exact algorithm when
|H| is known can be obtained by amplitude amplification.

6.1 Quantum subroutine - Fourier Sampling

Let F denote the quantum Fourier transform over G. We use the Fourier transform over G because
it interacts nicely with the symmetries captured by the group G.

Consider a (right) coset state |Hg〉, which is the uniform superposition of all elements of the
coset Hg,

|Hg〉 .= 1√
|H|

∑
h∈H
|hg〉 .

The (quantum) Fourier transform of |Hg〉 is given by the following formula:

F |Hg〉 =
1√
|H|

∑
h∈H

1√
|G|

∑
y∈G

χy(hg) |y〉

=
1√
|H||G|

∑
y∈G

χy(g)

(∑
h∈H

χy(h)

)
|y〉 . (6)

Exercise 1. Show that ∑
h∈H

χy(h) =

{
|H| if y ∈ H⊥
0 otherwise.

(7)

Plugging in Equation (7) into Equation (6) gives us:

F |Hg〉 =

√
|H|
|G|

∑
y∈H⊥

χy(g) |y〉 . (8)

Thus, the Fourier transform of the coset state |Hg〉 yields an equally weighted superposition
over H⊥. In particular, if g = 0 we get a uniform superposition over H⊥.

The quantum subroutine acts on a system with two registers, where the first register contains
elements of the domain G of the black-box function f : G → R, and the second register contains
elements of the range R. We start with the first register in a uniform superposition over G and the
second one in the basis state |0〉, i.e. the initial state

1√
|G|

∑
g∈G
|g〉 |0〉 .

11



By applying our blackbox f via Uf , we obtain the transformed state

1√
|G|

∑
g∈G
|g〉 |f(g)〉 =

√
|H|
|G|

∑
cosets

|Hg〉 |f(Hg)〉 ,

where we used the fact that f(g) only depends on the coset Hg. Next, we apply the Fourier
transform F to the first register, which by Equation (8) gives us the resulting quantum state√

|H|
|G|

∑
cosets

F |Hg〉 |f(Hg)〉 =
|H|
|G|

∑
cosets

∑
y∈H⊥

χy(g) |y〉 |f(Hg)〉 .

As distinct cosets have distinct values under f and |χy(g)| = 1 for every g ∈ G, measuring the first
register yields a y uniformly at random from H⊥.

6.2 Use of the quantum subroutine

Running the quantum subroutine O(log(|H⊥|) + log(1/ε)) = O(log(|G|) + log(1/ε)) times and
collecting all elements s′ yields a generating set S′ for H⊥ with error bounded by ε. In order to
construct a generating set S for H out of S′, we make use of the fact that (H⊥)⊥ = H. The fact
can be argued as follows.

Exercise 2. Show that

1. The quotient group G/H is isomorphic to H⊥.

2. |G| = |H| · |H⊥|.

3. (H⊥)⊥ = H.

We can efficiently construct a generating set S for (H⊥)⊥ out of a generating set S′ for H⊥

in the following way, with bounded error. The elements s ∈ (H⊥)⊥ are exactly those that satisfy
χs′(s) = 1 for all s′ ∈ S′. Recall that G is of the form (5), so we can write s = (s1, s2, . . . , sk)
and s′ = (s′1, s

′
2, . . . , s

′
k) where sj , s

′
j ∈ ZNj for each j ∈ [k]. Using the formula we derived for the

characters of additive groups of the form (5), we have that

χs′(s) =

k∏
j=1

exp
(
2πis′jsj/Nj

)
= exp

2πi

k∑
j=1

s′jsj/Nj

 .

Thus, χs′(s) = 1 iff
∑k

j=1 s
′
jsj/Nj ∈ Z, which is equivalent to the integral modular equation

k∑
j=1

M

Nj
s′j · sj = 0 mod M, (9)

where M
.
= lcm(N1, N2, . . . , Nk).

Theorem 7. Given the prime decomposition of M , we can classically do both of the following in
time poly(n, logM) for a system of at most n linear equations in at most n variables over ZM :
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(a) Deterministically compute the number of solutions and, in particular, decide whether the
system is solvable.

(b) If a solution exists, deterministically compute one as well as generate a solution chosen uni-
formly at random among all solutions.

Proof. We use the Chinese remainder theorem to independently solve the system modulo p
ej
j where

M =
∏
j p

ej
j is the prime factorization of M , and combine those solutions into solutions to the

original system. The total number of solutions equals the product of the solutions modulo each
p
ej
j , and a uniform solution is obtained by combining independent uniform solutions modulo each

p
ej
j .

To achieve (a) and (b) for a system of linear equations in n variables modulo pe, we employ the
following reduction:

◦ If there is a coefficient that is not divisible by p, say the coefficient of variable xk in equation∑n
j=1 cjxj = b mod pe, use it to express xk as a linear combination of the other variables:

xk = c−1k

b− n∑
k 6=j=1

cjxj

 mod pe, (10)

where (ck)
−1 denotes the inverse of ck modulo pe, which exists because gcd(ck, p

e) = 1,
and can be computed efficiently using the extended Euclidean algorithm. Then use (10) to
eliminate xk from the system. The reduced system has one variable less, the number of
solutions remains the same, and a uniform solution to the full system is obtained from a
uniform solution of the reduced system by extending it via (10).

◦ If every coefficient and every right-hand side is divisible by p, then replace every equation∑n
j=1 cjxj = b mod pe by the equation

∑n
j=1 c

′
jx
′
j = b′ mod pe−1, where cj = p·c′j and b = p·b′.

There is a bijective relationship between solutions x to the original system on the one hand,
and solutions x′ to the reduced system combined with choices li ∈ Zp for each i ∈ [n] on the
other; the connection is given by xi = x′i + li · pe−1. It follows that the number of solutions
to the original system equals the number of solutions to the reduced system times pn, and
a uniform solution to the original system is obtained by picking a uniform solution of the
reduced system combined with independent uniform choices for li ∈ Zp.

◦ If every coefficient is divisible by p but not every right-hand side is, then the system has no
solution.1

We apply part (b) of Theorem 7 to generate O(log |H| + log(1/ε)) independent uniformly dis-
tributed samples of the solutions to the system of equations (9). With probability at least 1 − ε,
the resulting set S generates (H⊥)⊥ = H.

In case |H| is known, we also know |H⊥| = |G|/|H⊥| by part (b) of Exercise 2. In that case, we
can make use of amplitude amplifications with known success probability to obtain, with certainty,
a generating set S′ for H⊥ in time poly log |G| using a number of black-box queries bounded by
O(log |H⊥|) = O(log(|G|/|H|)). We construct the set S′ element by element. In each step we
obtain, with certainty, an element s′ ∈ H⊥ that is not in the set generated by the current S′.2

1This case cannot happen for the homogenous system consisting of the equations (9), but the exact algorithm uses
another application of the claim, in which the right-hand sides are not all zero.

2This makes use of Theorem 7 with right-hand side s′j modulo Nj .
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Once we have the generating set S′ for H⊥, we can similarly find a generating set S for H with
certainty in the stated time and query complexity. �

Note that the proof of Theorem 6 uses the fact that the underlying group G is finite Abelian
in two ways:

◦ A small number of Fourier samples contains enough information to determine generators for
the hidden subgroup H of G (and H can be retrieved efficiently from the samples).

◦ The quantum Fourier transform over G can be computed efficiently.

The first item hinges on the homomorphic properties of the Fourier basis, and breaks down for
more general groups. In particular, for the symmetric group Sn, even though the quantum Fourier
transform can be computed efficiently, one needs an exponential number of queries in n in order to
obtain a significant statistical distance between the distributions of positive and negative instances
of graph isomorphism.
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