
Quantum Algorithms 4/11/2023

Lecture 21: Phase Estimation

Instructor: Dieter van Melkebeek

In this lecture, we talk about the quantum Fourier transform and phase estimation, which is
a precursor to eigenvalue estimation, a key ingredient in the algorithm we will later develop for
finding the order of an integer modulo another integer. We start by discussing Quantum Fourier
transform for the the group ZN ,+ (integers modulo N), where N = 2n. A similar approach can be
adapted for the cases where N has prime factors other than 2, but we will mainly use the case where
N is a power of 2. Then we talk about phase estimation: the problem statement, an algorithm
based on the Quantum Fourier transform over ZN ,+, and its analysis. We end by introducing
eigenvalue estimation as an application of phase estimation.

1 Quantum Fourier transform over ZN ,+

In previous lectures, we derived the expression for Quantum Fourier Transform over ZN ,+ as:

F |x〉 =
1√
N

N−1∑
y=0

exp

(
2πixy

N

)
|y〉 . (1)

Qualitatively, applying the Fourier transform to a basis state |x〉 results in a superposition of
the basis states |y〉 where the amplitude for each basis state has absolute value 1√

N
and the phase

is given by exp
(
2πixy
N

)
. Since y here represents an n bit binary number, considering the binary

expansion, it can be written as

y =
n∑
j=1

yj2
n−j for yi ∈ {0, 1}. (2)

Thus, we can write |y〉 as:

|y〉 = |y1〉 |y2〉 |y3〉 . . . |yn〉 = |y1〉 ⊗ |y2〉 ⊗ |y3〉 ⊗ · · · ⊗ |yn〉 , (3)

where yn is the lowest order bit and y1 is the highest order bit. We have written |y〉 as a tensor
product on individual qubits, which we can always do for a basis state. We can further use (2) to
rewrite the phase term in (1):

exp

(
2πixy

N

)
= exp

 n∑
j=1

2πixyj2
n−j

2n

 =

n∏
j=1

exp

(
πixyj
2j−1

)
. (4)

Combining the equations (2), (3) and (4), the overall expression for the Fourier transform can be
written as:

F |x〉 =
1√
N

1∑
y1=0

1∑
y2=0

...
1∑

yn=0

exp(πixy1) |y1〉 ⊗ exp(πiy2/2) |y2〉 ⊗ · · · ⊗ exp(πixyn/2
n−1) |yn〉 . (5)

1

Since the yi part does not depend on any previous element of the tensor product, we can use
distributivity of tensor products over sums to move the sum inside of the tensor product and
obtain:

F |s〉 =
1√
N

1∑
y1=0

exp(πixy1) |y1〉 ⊗
1∑

y2=0

exp(πixy2/2) |y2〉 ⊗ · · · ⊗
1∑

yn=0

exp

(
πixyn
2n−1

)
|yn〉 . (6)

Note that x is an integer between 0 and N − 1, and each yj can either be 0 or 1. Focusing on
each individual sum of the vector product in (6), we note that for

∑1
yj=0 exp(πixyj/2

j−1) |yj〉, the

first term (yj = 0) is always equal to ket0. Further, for yj = 1, the product exp(πixyj) becomes
exp(πix/2j−1). Thus, the sum becomes |0〉+ exp(πix/2j−1)|1〉. Re-writing our (6) we get:

1√
2

(|0〉+ exp(πix)|1〉)⊗ 1√
2

(|0〉+ exp(πix/2)|1〉)⊗ ...⊗ 1√
2

(
|0〉+ exp

(
πix

2n−1

)
|1〉
)
. (7)

Note that the factor 1√
N

in (6) is broken down into n factors of 1√
2

in (7). In summary, we can

write the Fourier transform as
F |x〉 = |z1〉 |z2〉 . . . |zn〉 ,

where |zk〉 = 1√
2
(|0〉+ exp(πix/2k−1) |1〉).

Expressing |zj〉 in terms of |x〉. We now see how we can realize each of these qubits. We start
with the simplest case: |z1〉. We first note that similar to (2), we can write x =

∑n
j=1 xj2

n−j , where
xj ∈ {0, 1}. Using this, the expression for |z1〉 can be written as:

|z1〉 =
1√
2

(|0〉+ exp(πixn) |1〉). (8)

Note that the higher order bit in the binary expansion of x do not contribute to the exponential
term as they give us a factor of 2 (through the exponent of 2) and exp(2πik) = 1 for any integer k.
Thus, for |z1〉, only the lowest order bit of x contributes, namely xn. For xn = 0, |z1〉 = 1√

2
(|0〉+|1〉)

whereas for xn = 1 we have |z1〉 = 1√
2
(|0〉 − |1〉). In other words, |z1〉 can be obtained from |xn〉 by

application of an Hadamard gate:

|z1〉 =
1√
2

(|0〉+ exp(πixn) |1〉) = H |xn〉 , (9)

which can be represented in circuits as:

|xn〉 H |z1〉

We can extend this analysis to |z2〉. Note here that only the two lowest order bits of x contibute
here as the other bits yield a factor of 1 (similar to above). After applying the simplification, the
expression can be written as:

|z2〉 =
1√
2

(|0〉+ exp(πixn−1) exp(πixn/2) |1〉). (10)

This can be realized by applying the Hadamard gate to |xn−1〉, i.e., H |xn−1〉 = 1√
2
(|0〉+exp(πixn−1) |1〉),

with an additional phase factor on the component |1〉. The value of the additional phase factor is

2

1 if xn = 0 and exp(iπ/2) for xn = 1. We can write this as a conditional rotation, conditioned on
the qubit |xn〉 being |1〉:

CR(π/2) |xn〉H |xn−1〉 = |xn〉|z2〉. (11)

In terms of circuits, we have:

|xn〉 • |xn〉

|xn−1〉 H Rπ/2 |z2〉

Qualitatively, to obtain |z2〉, we first apply the Hadamard gate to |xn−1〉 and then apply a controlled
rotation of π

2 controlled by qubit |xn〉. Note that the order of gates matter here; we cannot swap
the Hadamard gate and the controlled rotation. To see this, consider the case when the |xn−1〉 is
in the |0〉 state. Here, if we apply the rotation first and then the Hadamard gate, the conditional
rotation does not have an effect (it only affects the |1〉 state) and the application of the Hadamard
gate results in the final state being |+〉 = 1√

2
(|0〉 + |1〉) (without any additional phase on |1〉).

On the contrary, if we apply the Hadamard first, then the input for the conditional rotation is
|+〉 = 1√

2
(|0〉 + |1〉), resulting in the final state |+〉 if xn = 0 but |−〉 = 1√

2
(|0〉 − |1〉) if xn = 1.

Thus, the order of application of gates matters.
Extending the procedure to |z3〉, we can construct the following circuit:

|xn〉 • |xn〉

|xn−1〉 • |xn−1〉

|xn−2〉 H Rπ/2 Rπ/4 |z3〉

Putting it all together. We can extend the pattern to get circuits for |zk〉, where we transform
the qubit |xn−k+1〉 into |zk〉. In order to calculate the overall Fourier transform, we need the jth bit
of x to act as a control on |xk〉 for all k < j, and thus we cannot change |xj〉 until all |xk〉 for k < j
have been transformed. Due to this, we must compute the |zk〉 in descending order, computing |zn〉
and then |zn−1〉, until computing |z1〉. This results in the following circuit:

|x1〉 H Rπ/2 Rπ/4 · · · Rπ/2n−1 |zn〉

|x2〉 • · · · H Rπ/2 · · · |zn−1〉

|x3〉 • · · · • · · · |zn−2〉

...

|xn〉 • · · · H |z1〉

Since the circuits is unitary and works for all basis states |x〉, it also works for all possible
superpositions |ψ〉. Note that this circuit reverts the order of the output qubits, which can later

3

be reversed using swaps to get the qubits in order. The resulting circuit consists of n− j + 1 gates
for each xj , which makes the total gates to be O(n2).

An important observation here is that many of the further rotations are extremely small, so to
compute this transform approximately, we can omit them and still obtain a good approximation of
the whole circuit. More precisely:

Exercise 1. Dropping rotations Rπ/2j for j ≥ log(n/ε) yields circuit with O(n log(n/ε)) gates that
O(ε) approximates F in 2-norm.

2 Phase estimation

Phase estimation is closely related to the (inverse) Fourier transform over ZN ,+ for N = 2n.
We describe both the classical and quantum versions, with the quantum version described as the
subroutine output below.

2.1 Problem statement

Input: A pure state on of the form |ψ〉 = 1√
N

∑N−1
x=0 exp(2πiωx) |x〉, where ω ∈ [0, 1) is unknown.

We refer to such a state as a harmonic state. Note that the input expression is very similar
to the output of the Quantum Fourier Transform. The key difference is that ω can take any
value between 0 and 1. The objective is to find ω (or a good approximation of it).

Classical output: ω, or a good approximation of the form y/N for y ∈ ZN such that

|ω − y

N
|T ≤ δ, (12)

where we can take δ to be another parameter and T refers to “modulo 1” (explained below).

Quantum output: Pure state |ω̃〉 on n qubits with total weight of the good y’s at least 1 − ε,
where good y’s are the ones that satisfy (12).

To obtain the classical output, we can just observe the particular state that the quantum
subroutine outputs. It gives us a good y with probability at least 1− ε.

As for the approximation requirement (12), note that we cannot expect to find y such that
|ω − y

N | ≤ δ in general, namely in cases where ω is close to 0 or to 1. This is because the input
state |ψ〉 is the same for ω = 0 and for ω = 1. Similarly, the cases with ω = ω0 for ω1 slightly above
0, and ω = ω1 for ω1 slightly below 1 cannot be distinguished efficiently. What we want is that the
approximation to ω is to within δ modulo 1. Formally, we can define the distance

|ω0 − ω1|T = min
z∈Z
|ω0 − ω1 + z|.

We get this metric by “wrapping the interval [0, 1] around on the circle”, as shown in Figure 1: ω0

and ω1 are close even though ω1 corresponds to a very small polar angle and ω1 from a very large
polar angle. The distance on the circle captures this. The letter T in the notation stands for a
torus, as a circle is a 1-dimensional torus.

4

ω0

ω1

Figure 1: Wrapping the interval [0, 1] around on the circle.

2.2 Algorithm

To obtain (an approximation to) the phase value ω, we simply apply the inverse Fourier transform
F−1 |ψ〉 over ZN ,+.

In case ω = y∗

N for y ∈ {0, . . . , N − 1} then we have | |ω̃〉 = |y∗〉〉. In this case, measuring the
final state always yields a y∗. In this scenario, |ψ〉 is just the Fourier transform of |y∗〉.

In the general case, the output |ω̃〉 satisfies the aforementioned requirements for any δ > 0 with
δ · ε = O(1/N). Intuitively, we can understand this as |ω̃〉 has most of its weight on y ∈ ZN with y

N
close to ω modulo 1. Measuring the final state yields a good y (i.e, |ω − y

N |T ≤ δ) with probability
at least 1−ε. There is a trade-off between ε and δ. This can be understood intuitively as if we want
to be very certain in our measurement (low ε) then we would have to increase the error margin
on ω. Note that for constant ε, it suffices for N to be linear in 1

δ , or equivalently, for n to be the
number bits of accuracy required plus some constant.

2.3 Analysis

We have that F−1 |x〉 = 1√
N

∑N−1
y=0 exp

(
−2πixy

N

)
|y〉. We apply this to the superposition |ψ〉 that

we began with, |ψ〉 = 1√
N

∑N−1
x=0 exp(2πiωx) |x〉. This gives the equation:

F−1 |ψ〉 =
1√
N

N−1∑
x=0

exp(2πiωx)
1√
N

N−1∑
y=0

exp

(
−2πixy

N

)
|y〉 =

N−1∑
y=0

αy |y〉 ,

where αy = 1
N

∑N−1
x=0 exp(2πiωx) exp

(
−2πixy

N

)
. We can simplify the expression for αy using the

product properties of exponentials:

αy =
1

N

N−1∑
x=0

exp(2πi∆x) where ∆
.
= |ω − y

N
|T

=
1

N

N−1∑
x=0

rx where r
.
= exp(2πi∆). (13)

If r = 1, then the right-hand side of (13) is an arithmetic and equals 1. Since ∆ ∈ [0, 1/2], we have
that r = 1 iff ∆ = 0 iff ω = y∗

N for some y∗ ∈ ZN . In this case, αy∗ = 1, and we are guaranteed to

5

θ

B

A

M

O
R

I

Figure 2: Geometric interpretation of |A−B| where A = 1 and B = exp(iθ).

observe y∗. Otherwise, we have a geometric sum with ratio r 6= 1 and

αy =
1

N
· 1− rN

1− r
=

1

N
· 1− exp(2πi∆N)

1− exp(2πi∆)
.

Our goal is now to show that the weight of the bad y’s is small, i.e.
∑

bad y |αy|2 is small, where a y

is considered bad if |ω− y
N |T > δ. Recall the double angle identity: cos(θ) = cos2(θ/2)−sin2(θ/2) =

1− 2 sin2(θ/2). We have:

|1− exp(iθ)| = |1− cos(θ)− i sin(θ)|

=

√
(1− cos(θ))2 + sin2(θ)

=

√
1− 2 cos(θ) + cos2(θ) + sin2(θ)

=
√

2(1− cos(θ))

=

√
4 sin2(θ/2) [double angle identity]

= 2| sin(θ/2)|.

Geometrically, we can obtain the result as follows: In Figure 2, |1 − exp(iθ)| is given by the
distance of the line segment AB. To compute this distance, we can draw a perpendicular to the
segment of the circle. This perpendicular line makes an angle θ/2 with the x-axis and intersects
the segment at the midpoint M . In the right-triangle OMB, the side MB is given by sin(θ/2).
This gives us the length of AB as 2 sin(θ/2). Therefore |1− exp(iθ)| = 2| sin(θ/2)|.

Thus, we have that

|αy| =
1

N
· | sin(π∆N)|
| sin(π∆)|

.

We now want to bound from below the weight |αy∗ |2 of y∗, where y∗/N is the best approximation
of ω, and bound from above the total weight of the bad y’s. Before doing so, we bound sin(θ) from
above and below using the convexity of the sine function on the interval [0, π].

◦ For the upper bound, we note that the tangent always stays above a convex function. In
particular, sin(θ) ≤ θ for all θ ∈ [0, π].

6

2
πθ

sin(θ)

π/2−π/2

θ

Figure 3: Plot for bounding sin(θ).

◦ For the lower bound, we note that a chord always stays below a convex function. In particular,
sin(θ) ≥ 2

πθ for all θ ∈ [0, π2], as can be seen in Figure 3. The equation of the chord (y = 2
πθ)

is the equation of line connecting the origin and θ = sin π
2 .

Bounding weight of optimal y from below. We use these bounds for the sine function to get
lower bounds for |αy∗ |T, where y∗ is the best approximation of ω. We obtain our lower bound by
combining the lower bound for the sine of the numerator with the upper bound for the sine of the
denominator. Note that there has to exist an integer y such that |ω − y

N | ≤
1
2N . It follows that

∆
.
= |ω − y∗

N |T ≤
1
2N , so our lower bound for sin(θ) applies to θ = π∆N ∈ [0, π/2]. The argument

π∆ for the upper bound certainly is in the allowed range [0, π]. We obtain:

|αy∗ | ≥
1

N
· 2π∆N/π

π∆
=

2

π
.

Note that αy∗ is the amplitude to observe y∗ when we measure ω̃. Thus, the probability of observing

the optimal y∗ is at least |αy∗ |2 ≥
(
2
π

)2
= 4

π2 , which is about 40%. We also note that there could
be two values that achieve this bound. Due to this, we cannot hope to have the probability of
observing a particular y∗ to exceed 50%.

Bounding total weight of bad y from above. For any y we have

|αy| =
1

N
· | sin(π∆N)|
| sin(π∆)|

≤ 1

N
· 1

| sin(π∆)|
≤ 1

N
· 1

2∆
=

1

2∆N
,

where the last inequality holds by our lower bound for sine applied to the angle θ = π∆, which is
in the allowed range [0, π/2]. Bad y’s are the ones for which ∆ ≥ δ, or equivalently, |ωN − y|T

.
=

∆N ≥ δN . The range of those y’s can be split based on whether y
N is closer to ω or to ω ± 1. In

either range, the values of ∆N all differ by at least 1 and are at least δN . It follows that∑
bad y

|αy|2 ≤
∑
bad y

1

(2∆N)2
≤ 2

∑
k≥dδNe

1

(2k)2
=

1

2

∑
k≥dδNe

1

k2
.

7

The series can in turn be bounded from above by an integral:∑
k≥dδNe

1

k2
≤
∫ ∞
δN−1

1

x2
dx =

1

δN − 1
= O(1/(δN)).

We conclude that ε = O(1/(δN)), or equivalently, εδ = O(1/N), where ε is the odds of observing
a bad y, which is what we wanted to prove.

Putting all of this together, we have:

Theorem 1. If |ψ〉 = 1√
N

∑N−1
0 exp(2πiωx) |x〉 for unknown ω, then the odds of observing y∗ for

|y
∗

N −ω|T minimal is at least 4
π2 , and the odds of observing some y such that | yN −ω|T ≥ δ for some

specified δ is at most 1
2(δN−1) = O(1/δN).

3 Eigenvalue estimation

Eigenvalue estimation is a special case of phase estimation, where the phase derives from the
eigenvalue of a unitary operator U . Note that all eigenvalues λ of U have absolute value 1 and
can therefore be written as λ = exp(2πiω) for some ω ∈ [0, 1). We discuss the general problem of
eigenvalue estimation in this lecture and develop some interesting applications next lecture.

3.1 Problem statement

We start by defining the problem. Like for phase estimation, the output could be either classical
or a quantum superposition.

Input: A unitary operation U on n qubits, e.g., in the form of a unitary circuit, and an eigenstate
|φ〉 of U , i.e., a state such that U |φ〉 = λ |φ〉, where λ = exp(2πiω) for some ω ∈ [0, 1). Also
an accuracy parameter δ > 0.

Classical output: A good approximation to ω, namely ω̃ such that |ω − ω̃|T ≤ δ.

Quantum output: Pure state |ω̃〉 with “most” weight on good approximations to ω.

This is very similar to phase estimation, except that we are given an eigenstate |φ〉 rather than a
harmonic state.

3.2 Algorithm

Our algorithm consists of creating a harmonic state |ψ〉 with the same phase as the eigenvalue of
λ and then apply phase estimation to |ψ〉.

As n is already in use for the number of qubits of the eigenvector |φ〉, we use m to denote the
number of qubits of the harmonic state |ψ〉. We create |ψ〉 as follows:

◦ Initialize the register for |ψ〉 to |0m〉. The initial state of the combined system is |0m〉 |φ〉.

◦ Apply H⊗m to the first register to put it in a uniform superposition: 1√
M

∑M−1
x=0 |x〉 |φ〉.

◦ Use the first register as a control to apply U a number of times to the second register:
1√
M

∑M−1
x=0 |x〉Ux |φ〉

8

In summary, we have the following process:

|0m〉 |φ〉 → 1√
M

M−1∑
x=0

|x〉 |φ〉 → 1√
M

M−1∑
x=0

|x〉Ux |φ〉

For the rationale behind this, we observe that applying U x times to |φ〉 is, as |φ〉 is an eigenstate,
equivalent to a phase shift of λx = exp(2πiωx). This gives us:

1√
M

M−1∑
x=0

exp(2πiωx) |x〉 |φ〉 .= |ψ〉 |φ〉 .

Ignoring the |φ〉 yields a harmonic state with frequency ω. Wen then apply phase estimation to
|ψ〉: |ψ〉 |φ〉 → |ω̃〉 |φ〉

Note that |φ〉 has not been affected and works as a catalyst in this process. The final state we
get is equivalent to the tensor product of |ω̃〉 and |φ〉. There is no entanglement between the two
registers.

Here is the circuit obtained:

|+〉 • · · ·

F−1
|+〉 • · · ·

...
...

|+〉 · · · •

|φ〉 U2m−1
U2m−2 · · · U |φ〉

Figure 4: Eigenvalue estimation circuit. The ith highest order bit controls U2m−i
.

3.3 Analysis

Our analysis of phase estimation yields the following in terms of accuracy:

◦ The weight of the y∗ ∈ Zm with |ω − y∗

M |T ≤
1

2M is at least 4
π2 .

◦ The total weight of the y ∈ Zm with |ω − y
M |T ≥ δ is O(1

δM). As such, we can get roughly m
bits of accuracy with constant probability.

If the confidence level is not sufficient, we can boost it by increasing M or by running the process
multiple times with the same M , and then select the median or, as we know the the best approxi-
mation occurs with probability above 40%, the result that appears most often, Running the process
multiple times is possible because after measuring register |ω̃〉, the register |φ〉 remains intact, so
we can reuse it in subsequent runs for boosting the confidence.

In terms of efficiency, we can apply a Fourier transform in time poly log (M) (i.e., polynomial
in m). Applying high powers (up to M) of U can be more time consuming, and the efficiency of
the whole process is typically dictated by this part (computing powers of U).

9

Applying the process to an arbitrary state. In the problem statement of eigenvalue estima-
tion, we are directly given an eigenstate of U , namely |φ〉. What if we apply our algorithm to an
arbitrary input state |ϕ〉?

Since U is a unary operator, it has a full orthonormal basis of eigenstates: |ϕ〉 =
∑

j αj |φj〉
where U |φj〉 = exp(2πiωj)| |φj〉 for ωj ∈ [0, 1). We can write |ϕ〉 as a linear combination of the
eigenstates: |ϕ〉 =

∑
j αj |φj〉. Note that we may not know the coefficients αj , but they must exist

and can be used for analysis purposes. By linearity of the underlying unitary quantum circuit:

|0m〉 |ϕ〉 =
∑
j

αj |0m〉 |φj〉 →
∑
j

αj |ω̃j〉 |φj〉 .

Measuring the first register of the two-register system in state
∑

j αj |ω̃j〉 |φj〉 has the same distri-

bution as picking j with probability |αj |2 and then measuring |ω̃j〉. Next lecture we will see how
we can use samples from this distribution.

10

	Quantum Fourier transform over ZN,+
	Phase estimation
	Problem statement
	Algorithm
	Analysis

	Eigenvalue estimation
	Problem statement
	Algorithm
	Analysis

