
UW Madison's

2005 ACM-ICPC Individual Placement Test
September 18, 1:00-6:00pm, 1350 CS

Overview:
This test consists of eight problems, which will be referred to by the following names
(respective of order):

shoe, babylon, chandelier, numbers, knights, department, land, fire.
Please note that some problems also include a problem number (or letter). Please ignore
these labelings and use the names above.

Input/Output:
Your programs should take input from standard in (i.e. the keyboard) and output to standard
out (i.e. the terminal). As is standard practice for the ICPC, you may assume that the input
strictly follows the description in the problems. If a problem description does not indicate
how the input will be terminated, you may assume it will be with the EOF character. It is
your responsibility to ensure that your output precisely matches that described in the
problems, or else risk your program being rejected with a “Presentation Error”.

Problem Submission:
To submit a program, send e-mail to mwa+icpc@cs.wisc.edu and attach your source code.
The subject line should contain only the problem name, prob, that you are submitting, and
the attached source code should be named prob.{c|cpp|java}. For example, if you are
using C++ and submitting the problem “land”, the file should be named “land.cpp”. You
will receive the results of your submission as soon as possible via e-mail.

Clarifications:
As in the ICPC, you may submit clarification requests as well. They should be sent to
mwa+icpc@cs.wisc.edu, with a subject of “Clarification-prob”, where prob is the name of
the problem you wish to be clarified. Replace prob with “general” if there is an issue with
the contest as a whole. Accepted clarification requests will be answered to all those taking
the test via e-mail. Experience of previous years learns that most clarification requests are
rejected, and receive a simple response such as “Read the problem description”.

Printing:
You may print to the printer at any time during the test.

After the Test:
The proctor will announce when time is up. Please stop working at this time and take a
moment to fill out the form on the back of this sheet and turn it in to the proctor (you may
keep the problems). You are invited to join us for pizza and soda after the test in 1325 CS.

Final Submissions:
You will have until 11:59 pm on Tuesday to make one final submission of any problems
which you did not successfully solve during the test period. Please note that only your
first submission after 6:00 pm on Sunday will be evaluated in case multiple are submitted.
Due to this extra time allowance, please refrain from discussing any of the problems
after the test.

Information Form:

Name:

CS Login:

Student status (i.e. Junior, first year grad student):

Year of birth:____________ , Year starting college:_________________

What do you feel are your strengths with respect to the ICPC?

What programming languages do you prefer?

Is there anyone that you would prefer to be placed on a team with (if
possible)?

How did you hear about the ICPC (e-mail, flier, word of mouth, etc.):

From Skiena and Revilla, Programming Challenges: The Programming Contest Training ManualSpringer-Verlag, New York, 2003. ISBN: 0-387-00163-8.110405 Shoes maker's problemA shoemaker has N orders from ustomers whih he must satisfy. The shoemaker an work on onlyone job in eah day, and jobs usually take several days. For the ith job, the integer Ti (1 � Ti � 1; 000)denotes the number of days it takes the shoemaker to �nish the job.But popularity has its prie. For eah day of delay before starting to work on the ith job, theshoemaker has agreed to pay a �ne of Si (1 � Si � 10; 000) ents per day. Help the shoemaker bywriting a program to �nd the sequene of jobs with minimum total �ne.InputThe input begins with a single positive integer on a line by itself indiating the number of the testases, followed by a blank line. There is also a blank line between two onseutive ases.The �rst line of eah ase ontains an integer reporting the number of jobs N , where 1 � N � 1; 000.The ith subsequent line ontains the ompletion time Ti and daily penalty Si for the ith job.OutputFor eah test ase, your program should print the sequene of jobs with minimal �ne. Eah job shouldbe represented by its position in the input. All integers should be plaed on only one output line andeah pair separated by one spae. If multiple solutions are possible, print the �rst one in lexiographiorder.The output of two onseutive ases must be separated by a blank line.Sample Input143 41 10002 25 5Sample Output2 1 3 4

http://www.programming-hallenges.om opyright 2003

 The Tower of Babylon

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale
have been forgotten. So now, in line with the educational nature of this contest, we will tell you the
whole story:

The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type−i
block was a rectangular solid with linear dimensions . A block could be reoriented so that

any two of its three dimensions determined the dimensions of the base and the other dimension was
the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was
that, in building a tower, one block could only be placed on top of another block as long as the two
base dimensions of the upper block were both strictly smaller than the corresponding base dimensions
of the lower block. This meant, for example, that blocks oriented to have equal−sized bases couldn’t
be stacked.

Your job is to write a program that determines the height of the tallest tower the babylonians can build
with a given set of blocks.

Input and Output

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values , and .

Input is terminated by a value of zero (0) for n.

For each test case, print one line containing the case number (they are numbered sequentially starting
from 1) and the height of the tallest possible tower in the format "Case case: maximum height =
height"

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

3215 − Chandelier

Europe − Northeastern Europe & Russian Republic − 2004/2005

Lamps−O−Matic company assembles very large chandeliers. A chandelier consists of multiple levels. On the

first level crystal pendants are attached to the rings. Assembled rings and new pendants are attached to the

rings of the next level, and so on. At the end there is a single large ring −− the complete chandelier with

multiple smaller rings and pendants hanging from it. A special−purpose robot assembles chandeliers. It has a

supply of crystal pendants and empty rings, and a stack to store elements of a chandelier during assembly.

Initially the stack is empty. Robot executes a list of commands to assemble a chandelier.

On command ``a'' robot takes a new crystal pendant and places it on the top of the stack. On command ``1'' to

``9'' robot takes the corresponding number of items from the top of the stack and consecutively attaches them

to the new ring. The newly assembled ring is then placed on the top of the stack. At the end of the program

there is a single item on the stack −− the complete chandelier. Unfortunately, for some programs it turns out

that the stack during their execution needs to store too many items at some moments. Your task is to optimize

the given program, so that the overall design of the respective chandelier remains the same, but the maximal

number of items on the stack during the execution is minimal. A pendant or any complex multi−level

assembled ring count as a single item of the stack. The design of a chandelier is considered to be the same if

each ring contains the same items in the same order. Since rings are circular it does not matter what item is on

the top of the stack when the robot receives a command to assemble a new ring, but the relative order of the

items on the stack is important. For example, if the robot receives command ``4'' when items
i
1
, i

2
, i

3
, i

4

are on the top of the stack in this order (i1

 being the topmost), then the same ring is also assembled if these

items are arranged on the stack in the following ways: i
2
, i

3
, i

4
, i

1
, or i

3
, i

4
, i

1
, i

2
, or i

4
, i

1
, i

2
, i

3

.

Input

Input file contains several test cases. Each of them consists of a single line with a valid program for the robot.

The program consists of at most 10 000 characters.

Output

For each test case, print two output lines. On the first line write the minimal required stack capacity (number

of items it can hold) to assemble the chandelier. On the second line write some program for the assembly

robot that uses stack of this capacity and results in the same chandelier.

Sample Input

aaaaa3aaa2aaa45

3215 − Chandelier 1/2

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=nea&year=2004

Sample Output

6

aaa3aaa2aaa4aa5

Northeastern Europe & Russian Republic 2004−2005

3215 − Chandelier 2/2

2687 − Amusing Numbers

Europe − Northeastern − 2002/2003

Let us consider the set of integer numbers between 1 and N inclusive. Let us order them lexicographically (i.

e. like in the vocabulary), for example, for N = 11 the order would be: 1, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9.

Let us denote the position of the number K in this ordering as QN, K. For example, Q11, 2 = 4. Given numbers K

and M find the smallest N such that QN, K = M.

Input

Input file contains several test cases, one per line. Each of them consists of two integer numbers K and M (

1
K, M 109

) separated by a space.

Output

For each input case write a different output line. If such N that QN, K = M exists then write the smallest such N,

otherwise write `0'.

Sample Input

2 4

2 1

100000001 1000000000

1000000000 11

Sample Output

11

0

100000000888888879

0

Northeastern 2002−2003

2687 − Amusing Numbers 1/1

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=nea&year=2002

From Skiena and Revilla, Programming Challenges: The Programming Contest Training ManualSpringer-Verlag, New York, 2003. ISBN: 0-387-00163-8.111303 The Knights Of The Round TableKing Arthur is planning to build the round table in a room whih has a triangular window in the eiling.He wants the sun to shine on his round table. In partiular, he wants the table to be totally in thesunlight when the sun is diretly overhead at noon.Thus the table must be built in a partiular triangular region of the room. Of ourse, the kingwants to build the largest possible table under the irumstanes.As Merlin is out to lunh, write a program whih �nds the radius of the largest irular table that�ts in the sunlit area.InputThere will be an arbitrary number of test ases, eah represented by three real numbers (a, b, and),whih stand for the side lengths of the triangular region. No side length will be greater than 1,000,000,and you may assume that max(a; b;) � (a+ b+)=2.You must read until you reah the end of the �le.OutputFor eah room on�guration read, you must print the following line:The radius of the round table is: rwhere r is the radius of the largest round table that �ts in the sunlit area, rounded to three deimaldigits.Sample Input12.0 12.0 8.0Sample OutputThe radius of the round table is: 2.828

http://www.programming-hallenges.om opyright 2003

ACM International Collegiate Programming Contest 95/96Sponsored by MicrosoftCentral European Regional ContestProblem E: DepartmentInput �le: dept.inOutput �le: dept.outProgram �le: dept.pas or dept.cppThe Department of Security has a new headquarters building. The building has several oors, and oneach oor there are rooms numbered xxyy where yy stands for the room number and xx for the oor number,0 < xx; yy � 10. The building has `pater-noster' elevator, i.e. elevator build up from several cabins runningall around. From time to time the agents must visit the headquarters. During their visit they want to visitseveral rooms and in each room they want to stay for some time. Due to the security reasons, there can beonly one agent in the same room at the same time, The same rule applies to the elevators. The visits areplanned in the way ensuring they can be accomplished within one day. Each agent visits the headquartersat most once a day.Each agent enters the building at the 1st oor, passes the reception and then starts to visit the roomsaccording to his/her list. Agents always visit the rooms by the increasing room numbers. The agents forma linear hierarchy according to which they have assigned their one letter personal codes. The agents withhigher seniority have lexicographically smaller codes. No two agents have the same code.If more then one agent want to enter a room, or an elevator, the agents have to form a queue. In eachqueue, they always stand according to their codes. The higher the seniority of the agent, the closer to thetop of the queue he stands. Every 5 s (seconds) the �rst agent in the queue in front of the elevator entersthe elevator. After visiting the last room in the headquarters each agent uses if necessary elevator to the�rst oor and exits the building.The times necessary to move from a certain point in the headquarters to another are set as follows:Entering the building, i.e. passing the reception and reaching the elevator, or a room on the �rst oor takes30 s. Exiting the building, i.e. stepping out of the elevator or a room on the �rst oor and passing thereception takes also 30 s. On the same oor, the transfer from the elevator to the room (or to the queue infront of the room), or from the room to the elevator (or to the queue in front of the elevator), or from oneroom to another (or to the queue in front of the room) takes 10 s. The transfer from one oor to the nextoor above or below in an elevator takes 30 s. Write a program that determines time course of agent's visitsin the headquarters.InputThe input �le contains the descriptions of n � 0 visits of di�erent agents. The �rst line of the descriptionof each visit consists of agent's one character code C, C = A, : : :, Z, and the time when the agent entersthe headquarters. The time is in the format HH:MM:SS (hours, minutes, seconds). The next lines (therewill be at least one) contain the room number, and the length of time intended to stay in the room, timeis in seconds. Each room is in a separate line. The list of rooms is sorted according to the increasing roomnumber. The list of rooms ends by the line containing 0. The list of the descriptions of visits ends by theline containing the character dot.OutputThe output contains detailed records of each agent's visit in the headquarters. For each agent, therewill be a block. Blocks are ordered in the order of increasing agent's codes. Blocks are separated by anempty line. After the last block there is an empty line too. The �rst line of a block contains the code ofagent. Next lines contain the starting and ending time (in format HH:MM:SS) and the descriptions of his/heractivity. Time data will be separated by one blank character. Description will be separated from time byone blank character. Description will have a form Entry, Exit or Message. The Message can be one ofthe following: Waiting in elevator queue, Waiting in front of room RoomNumber, Transfer fromroom RoomNumber to room RoomNumber, Transfer from elevator to room RoomNumber, transferfrom RoomNumber to elevator, Stay in room RoomNumber, Stay in elevator.ExampleInput �le

A 10:00:000101 1000110 500202 900205 500B 10:01:000105 1000201 50205 2000.Output �leA10:00:00 10:00:30 Entry10:00:30 10:02:10 Stay in room 010110:02:10 10:02:20 Transfer from room 0101 to room 011010:02:20 10:03:10 Stay in room 011010:03:10 10:03:20 Transfer from room 0110 to elevator10:03:20 10:03:50 Stay in elevator10:03:50 10:04:00 Transfer from elevator to room 020210:04:00 10:05:30 Stay in room 020210:05:30 10:05:40 Transfer from room 0202 to room 020510:05:40 10:07:40 Waiting in front of room 020510:07:40 10:08:30 Stay in room 020510:08:30 10:08:40 Transfer from room 0205 to elevator10:08:40 10:09:10 Stay in elevator10:09:10 10:09:40 ExitB10:01:00 10:01:30 Entry10:01:30 10:03:10 Stay in room 010510:03:10 10:03:20 Transfer from room 0105 to elevator10:03:20 10:03:25 Waiting in elevator queue10:03:25 10:03:55 Stay in elevator10:03:55 10:04:05 Transfer from elevator to room 020110:04:05 10:04:10 Stay in room 020110:04:10 10:04:20 Transfer from room 0201 to room 020510:04:20 10:07:40 Stay in room 020510:07:40 10:07:50 Transfer from room 0205 to elevator10:07:50 10:08:20 Stay in elevator10:08:20 10:08:50 Exit

3151 − Land Division Tax

Latin America − South America − 2004/2005

International Concrete Projects Company (ICPC) is a construction company which specializes in building

houses for the high−end market. ICPC is planning a housing development for new homes around a lake. The

houses will be built in lots of different sizes, but all lots will be on the lake shore. Additionally, every lot will

have exactly two neighbors in the housing development: one to the left and one to the right.

ICPC owns the land around the lake and needs to divide it into lots according to the housing development

plan. However, the County Council has a curious regulation regarding land tax, intended to discourage the

creation of small lots:

1. land can only be divided using a sequence of land divisions;

2. a land division is an operation that divides one piece of land into two pieces of land; and

3. for each land division, a land division tax must be paid.

Denoting by A the area of the largest resulting part of the division, the value of the land division tax is A × F,

where F is the division tax factor set yearly by the County Council. Note that due to (2), in order to divide a

piece of land into N lots, N − 1 land divisions must be performed, and therefore N − 1 payments must be

made to the County Council.

For example, considering the figure above, if the division tax factor is 2.5 and the first land division separates

the lot of 500 units of area from the other lots, the land division tax to be paid for this first division is 2.5 ×

(300 + 200 + 100 + 100 + 100). If the next land division separates the lot of 300 units together with its

neighbor lot of 100 units, from the set of the remaining lots, an additional 2.5 × (300 + 100) must be paid in

taxes, and so on. Note also that some land divisions are not possible, due to (2). For example, after the first

land division mentioned above, it is not possible to make a land division to separate the lot of 300 units

together with the lot of 200 units from the remaining three lots, because more than two parts would result

from that operation.

Given the areas of all lots around the lake and the current value of the division tax factor, you must write a

program to determine the smallest total land division tax that should be paid to divide the land according to

3151 − Land Division Tax 1/2

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=sa&year=2004

the housing development plan.

Input

The input contains several test cases. The first line of a test case contains an integer N and a real F, indicating

respectively the number of lots (1 ≤ N ≤ 200) and the land division tax factor (with precision of two

decimal digits, 0 < F ≤ 5.00). The second line of a test case contains N integers Xi, representing the areas

of contiguous lots in the development plan (0 < Xi ≤ 500, for 1 ≤ i ≤ N); furthermore, Xk is

neighbour to Xk+1 for 1 ≤ k ≤ N − 1, and XN is neighbour to X1. The end of input is indicated by N = F

= 0.

Output

For each test case in the input your program must produce a single line of output, containing the minimum

total land division tax, as a real number with precision of two decimal digits.

Sample Input

4 1.50

2 1 4 1

6 2.50

300 100 500 100 100 200

0 0

Sample Output

13.50

4500.00

South America 2004−2005

3151 − Land Division Tax 2/2

Problem A: Fire Station

A city is served by a number of fire stations. Some residents have complained that the distance from
their houses to the nearest station is too far, so a new station is to be built. You are to choose the
location of the fire station so as to reduce the distance to the nearest station from the houses of the
disgruntled residents.

The city has up to 500 intersections, connected by road segments of various lengths. No more than 20
road segments intersect at a given intersection. The location of houses and firestations alike are
considered to be at intersections (the travel distance from the intersection to the actual building can be
discounted). Furthermore, we assume that there is at least one house associated with every
intersection. There may be more than one firestation per intersection.

The Input

The input begins with a single positive integer on a line by itself indicating the number of the
cases following, each of them as described below. This line is followed by a blank line, and there
is also a blank line between two consecutive inputs.

The first line of input contains two positive integers: f,the number of existing fire stations (f <= 100)
and i, the number of intersections (i <= 500). The intersections are numbered from 1 to i
consecutively. f lines follow; each contains the intersection number at which an existing fire station is
found. A number of lines follow, each containing three positive integers: the number of an
intersection, the number of a different intersection, and the length of the road segment connecting the
intersections. All road segments are two−way (at least as far as fire engines are concerned), and there
will exist a route between any pair of intersections.

The Output

For each test case, the output must follow the description below. The outputs of two consecutive
cases will be separated by a blank line.

You are to output a single integer: the lowest intersection number at which a new fire station should
be built so as to minimize the maximum distance from any intersection to the nearest fire station.

Sample Input

1

1 6
2
1 2 10
2 3 10
3 4 10
4 5 10
5 6 10
6 1 10

Output for Sample Input

5

	3215 - Chandelier
	2687 - Amusing Numbers
	3151 - Land Division Tax

