
November 11, 2006 ACM North Central North America Regional Programming Contest Problem 1

Problem 1: Prime Tracks

For her birthday, Colleen was given a section of track in order to start a toy train set. The section

was a railroad crossing of exactly 90 but with different lengths, as shown in the figure on the left

below.

The distances d1 and d2 are specified in integral numbers of

millimeters.

Since this is the only piece of track she owned, she decided to

purchase additional track in order to construct a figure eight, as show

The top and bottom regions are 2

n in the figure on the righ

 a constant radius, so that the

ack. “The reason the store is

Distance d1

Distance d2

t.

with

tr

asing the required

gram should be the two distance measurements D1 and D2. The output should

Input
t will contain multiple cases. For each case, the input will consist of two integers giving the

se.

oes.

70 portions of a circle, each

arcs exactly line up with each respective portion of the crossing.

Colleen goes to the toy store, Mathematical Marvels, to purchase

called Mathematical Marvels,” explains the owner, “is that we only sell flexible track, in sections

that happen to be lengths that are prime numbers.” To make matters worse, there is a track

shortage! The store only carries one track piece with each prime number length between 3 and 997.

The store charges by the piece, not the length, of track, and Colleen only has enough money for a

maximum of five sections for the top oval, and five sections for the bottom oval.

You volunteer to help Colleen by writing a program to minimize the cost of purch

train track. To do this you will determine the smallest number of primes, and their values, that give

the lengths of track sections that must be purchased in order to complete the figure eight. There

may be more than one correct set of primes for each arc, but the minimal cardinality for each set

of sections is desired. Since the track sections are flexible, a tolerance of 1 mm on each arc

distance is allowed.

The input to the pro

be a list of prime numbers necessary for the top loop and a list of prime numbers necessary for the

bottom loop. Because of the track shortage these primes must all be unique.

The inpu

lengths d1 and d2 as described above.

There will be at least one solution for each input ca

Input for the last case will be followed by a pair of zer

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 1

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 1

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 1

ase, display the case number (they start with 1 and increase sequentially). Then, on the

e Input Output for the Sample Input

ments: 3, 383, 977, 997

ments: 3, 19, 967

Output
For each c

next line, display the number of segments and the prime number lengths of track (in ascending

order) to be used in constructing the upper region of the figure 8. Similarly, on the third line,

information about the track used to construct the lower region. Separate the output for

consecutive cases with a blank line. Your output should appear similar to that shown in the sample

below.

Sampl
301 501

210 435

0 0

Case 1

 4 seg

 2 segments: 499, 919

ase 2 C

 3 seg

 3 segments: 61, 991, 997

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 2

Problem 2: Pies

Mrs. Smith bakes apple pies. Because she makes quite a few, she wishes to optimize the process by

knowing exactly how much dough is required for each pie. Her pies are baked in tins which have

negligible thickness but which are of this general shape (side view):

Two pieces of dough are required for each pie. One piece of dough is placed in the bottom of the

pan, up the inside, and out to the outside edge of the rim. The second piece of dough goes over the

top of the pie, from the outside of the rim up to a point in the center of the pie forming a perfect

cone. For clarity, note that the dough is two layers thick at the very outside edge of the rim.

Angle of

pan’s side

with

horizontal

surface,

Pan’s base, of

diameter d

Height of the top crust, h

Height of the pan, p

Pan’s rim, of

width r

Given values for , d, r, p, and h (as identified in the preceding figures), determine the volume of

dough required for each pie, in cubic inches, by first calculating the necessary surface areas and

then considering the dough to be 1/8 inches thick.

Input
The input will contain multiple cases. For each case, the input will consist of a line containing real

numbers for , d, r, p, and h. Since these are real pies, will always be in the range 10 to 80

degrees, and the values for d, r, p, and h will be positive and less than or equal to 16 inches.

Input for the last case will be followed by a line containing a single –1.

Output
For each case, display the case number (they start with 1 and increase sequentially), and the total

volume of crust required, in cubic inches, with three fractional digits. Separate the output for

consecutive cases with a blank line. Your output should appear similar to that shown in the sample

below.

Sample Input Output for the Sample Input
45.0 9.0 0.5 2.0 1.0

.0 10.0 0.5 2.5 1.2540

-1

Case 1: 21.991 cubic inches

Case 2: 29.954 cubic inches

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 2

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 3

Problem 3: Segment Life

Decimal numbers can be displayed using one or more seven-segment displays. The segments are

arranged so that illuminating selected segments yields a pattern corresponding to a decimal digit.

The patterns used in this problem are show below. There are three horizontal segments (each

illustrated by two hyphens), and seven vertical segments (each illustrated by a vertical stroke).

 --

 | |

 | |

 --

 |

 |

 --

 |

 --

|

 --

 --

 |

 --

 |

 --

 | |

 --

 |

 --

 |

 --

 |

 --

 |

 --

 | |

 --

 --

 |

 |

 --

 | |

 --

 | |

 --

 --

 | |

 --

 |

0 1 2 3 4 5 6 7 8 9

Each of the segments in a single display has an expected lifetime specified by the manufacturer.

This lifetime is the minimum cumulative time each segment is expected to be capable of being

illuminated, independent of how frequently it is turned on or off.

In normal use, a display doesn’t always illuminate the same segments. That is, different digits are

displayed with different frequencies. As a result, some segments might be illuminated longer than

others, and thus the actual length of time the display can be expected to display the proper results

is dependent on the values it displays.

Given the values to be displayed, their probability of appearance, and the lifetime specified by the

manufacturer, you are to determine the minimum time the display can be expected to display the

proper values.

Multiple single-digit displays may be required, the actual number of such depending on the largest

value to be displayed. Values are displayed with leading zeroes, if necessary, to use all single-digit

displays. The displays are entirely blank (no segments illuminated) if no value is displayed.

Examples
As a simple example, suppose the manufacturer specifies a particular display as having a 100 hour

lifetime. If only the digits 0 and 1 are displayed, each with a 25 percent probability, then the

display will require only a single digit, and it will be blank 50 percent of the time. During the

remaining time, the rightmost two vertical segments will be illuminated, since they are “on” during

the display of 0 or 1. Given these conditions, the display will correctly operate for at least 200

hours.

Suppose the values to be displayed are 0, 1, 10, and 11, each with a probability of 25 percent. If the

display has the same manufacturer-specified lifetime, then two single-digit display units will be

required, and the display will correctly operate for at least 100 hours.

Finally, assume arbitrary decimal digits are to be displayed (with equal probability) 50 percent of

the time. With a segment lifetime of 50 hours, the display can be expected to operate correctly

for at least 111.11 hours. This is because no segment is illuminated in more than 90 percent of the

digits displayed.

Input
For this problem there are multiple cases. The input for each case begins with two integers. The

first of these is the manufacturer-specified lifetime of a display, in hours; the second is the

number of ranges of values to be displayed. For each of these ranges there follows a group of three

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 3

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 3

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 3

integers that give the lowest and highest values in the range, and the probability that one of these

values will appear. The largest value will never require a display with more than six digits. Input for

the last case is followed by a single integer –1.

Output
For each case, display the case number (starting with 1) and the minimum time (with two fractional

digits) the display will operate correctly. Leave a single blank line between the output for

consecutive cases.

Sample Input Output for the Sample Input
100 1

 0 1 50

100 4

 0 0 25

 1 1 25

 10 10 25

 11 11 25

100 2

 0 1 50

 10 11 50

50 1

 0 9 50

-1

Case 1: 200.00 hours

Case 2: 100.00 hours

Case 3: 100.00 hours

Case 4: 111.11 hours

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 4

Problem 4: Grade Dropping

Welcome to Discrete Math I. Forty percent of your final grade will be based on your homework

assignments. Since everyone can have a bad day from time to time, you will be allowed to not count

up to three of these assignments, but you have to choose which assignments to drop. If all

assignments counted equally (that is, the raw scores were simply averaged together) the choice

would be easy — drop the assignments with the lowest scores. However, each assignment may have a

different maximum score. The final homework grade will be the percentage ratio of your total

score to the maximum possible score for the retained assignments.

Write a program that, given a list of assignment results, will calculate the best homework

percentage grade after dropping zero, one, two, and three of the assignments.

Example
As an example, consider that you have received the following scores on each of seven

assignments, with the maximum scores as show:

Assignment

Number
Score

Maximum

Possible

1 41 42

2 22 64

3 2 26

4 11 44

5 24 27

6 26 70

7 4 30

The homework grade without dropping any assignments is calculated as follows:

(41 + 22 + 2 + 11 + 24 + 26 + 4) / (42 + 64 + 26 + 44 + 27 + 70 + 30) = 42.9%

The best result possible for dropping only one assignment is to drop assignment 3:

(41 + 22 + 11 + 24 + 26 + 4) / (42 + 64 + 44 + 27 + 70 + 30) =46.2%

Similarly it is possible to choose the second and third assignments to drop to yield the best possible

final average.

Input
There may be multiple cases. The input for each case is a series of between 4 and 30 pairs of

integers terminated by a –1. The first integer in each pair is your score on an assignment; the

second integer is the maximum possible score on that assignment. Each assignment has a maximum

possible score between 1 and 100 points, and no assignment will ever receive a negative score.

Input for the last case is followed by a single integer –1.

Output
For each case, display the case number (starting with 1) and the maximum possible homework grade

(with two fractional digits) that could be obtained by dropping zero, one, two and three

assignments. Make your output appear similar to that shown in the samples below. Leave a single

blank line between the output for consecutive cases.

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 4

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 4

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 4

Sample Input Output for the Sample Input
41 42 22

64 2 26 11 44

24 27

26 70 4

30 -1

-1

Case 1:

 Dropping no grades: 42.90

 Dropping 1 grade: 46.21

 Dropping 2 grades: 50.22

 Dropping 3 grades: 56.80

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 5

Problem 5: Nested Boxes

It is a common prank to give someone a gift in a large box, in which is nested a smaller box, with

another smaller box inside that one, and so forth, until the smallest box — nested within all those

other boxes — contains the gift. Given a set of boxes of various sizes, your problem is to find the

size (cardinality) of the largest subset of boxes that can be used to create such a nested

arrangement. If no boxes can be nested, then the size of the subset is just 1.

Naturally, each box in the set from which you can choose has three dimensions. Any box can be

rotated, if desired, if that would enable it to fit inside another box. For our purposes, a box A can

fit inside a box B if each dimension of box A is strictly less than the corresponding dimension of

box B.

Example
For example, suppose box A has dimensions 12 20 60 and box B has dimensions 42 18 10. If

we rotate box B appropriately — so the dimensions are 10 18 42, then we will be able to nest it

inside box A. However, if box B had dimensions 13 11 58, then no rotations would allow it to fit

inside box A.

Input
There may be multiple cases. The input for each case begins with a line containing a single integer,

N, that specifies the number of boxes in the set from which you are allowed to choose. This line will

be followed by N more lines, each containing three positive non-zero integers giving the dimensions

of a box. N will be no larger than 500, and no box will have a dimension larger than 999.

Input for the last case is followed by a single integer –1.

Output
For each case, display the case number (starting with 1) and the maximum number of boxes selected

from the set that can be nested as described. Make your output appear similar to that shown in the

samples below. Leave a single blank line between the output for consecutive cases.

Sample Input Output for the Sample Input
5

145 472 812

827 133 549

381 371 900

271 389 128

718 217 491

4

432 123 139

942 844 783

481 487 577

677 581 701

-1

Case 1: 2 boxes

Case 2: 4 boxes

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 5

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 6

Problem 6: Conveyor Belts

The package sorting area of a shipping company consists

of an incoming bin of packages, and three conveyor

belts, “A”, “B”, and “C”, of varying widths. Each conveyor

belt moves to the right. Packages fall off the end of the

conveyor and into some other sorting bin. Suppose that

the conveyors are of widths 10”, 20”, and 30” as in the

diagram shown to the right.

All the packages are “simple six sided boxes” with three

dimensions. The person doing the sorting places each box on the appropriate conveyor. The proper

conveyor to use is the narrowest one which is still wide enough to hold the package. We wish to use

as little conveyor length as possible. All packages will fit on at least one conveyor, and (for example)

a 20” conveyor would hold up to and including a 20” distance on one side of the package. Packages

are placed on the conveyor with no space between them. In order to select the conveyor, you need

to consider all dimensions of the package.

A

B

C

Examples
Suppose a certain box is 15” x 21” x 4”. The sorting process first considers using the minimal

conveyor length, so we desire to put the box on a conveyor such that the 4” side is traveling in the

conveyor direction to the right. We can thus place the box on a 4” x 21” side so that it is 15” high,

or we can place it on a 4” x 15” side and the package will stand 21” high. Since we want to use the

narrowest possible conveyor, we select conveyor “B” since the 20” width of the conveyor will handle

the 15” dimension of the box (“A” is too narrow, “C” is excessively wide). At this point, conveyor “B”

moves to the right 4” to accommodate the box, and the box is placed on the far left end of the

belt.

Another box arrives which is 12” x 24” x 19”. We use the 12” dimension for the linear distance, and

can either stand the box on a 12” x 19” surface so it is 24” high, or on a 12” x 24” surface so it is

19” high. We choose conveyor “B” since 19” <= 20”. Conveyor “B” moves to the right by 12” to

accommodate the box, and we place it on the belt.

After the two boxes described above have been processed, conveyor

“B” will look like this, with the first box to the right of the second

box. Note that 24” of the conveyor belt is still unused.

40”-4”-12”=24”

As the belts move from left to right, packages will eventually fall off the end. The conveyor belts

are 40” long. A package must be more than 50% over the right edge in order to fall off. For

example, a box which occupies 5” of belt space will fall off when 3” has passed the end of the belt,

not 2”. Since package dimensions are given as integral numbers of inches, there is no need to check

for 2.5”. Similarly, a box taking up 4” of conveyor space falls off at 3” but stays on at 2”.

Since there is 24” of conveyor remaining in this case, the first box

will fall off when the belt has moved more than 26” further (recall

that the first box is 4” on this dimension). The diagram shows the

first box about to fall off the conveyor.

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 6

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 6

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 6

Input
There may be multiple cases. The input for each case begins with a line containing three integers

that specify the widths of the conveyor belts, in increasing order. That is, conveyor “A” is the

narrowest, and conveyor “C” is the widest. No two conveyor belts will have the same width. This line

will be followed by additional lines, one for each box, in the order they are placed on the conveyor

belts. Each of these lines contains three positive non-zero integers giving the dimensions of a box.

The first of these lines gives data for box 1, the second for box 2, and so forth. The last box in

each case will be followed by a line containing three integers, each –1.

Input for the last case is followed by a line containing three integer zeroes.

Output
For each case, display the case number (starting with 1) on a line by itself. Then display additional

lines, each of which gives the number of a box and the letter (A, B, or C) identifying the conveyor

belt from which it fell. These must be in the correct order for the given input. Make your output

appear similar to that shown in the samples below. Leave a single blank line between the output for

consecutive cases. Note that there will be fewer lines of output than there are boxes, since some

boxes will remain on the conveyors at the end of the program. Also, placing one large box on the

conveyor may force more than one box (or no boxes) off the end.

Sample Input Output for the Sample Input
10 15 20

6 8 10

4 11 8

19 8 8

5 9 12

10 10 10

8 8 8

9 9 14

-1 -1 –1

0 0 0

Case 1:

 Box 1 fell off conveyor A

 Box 2 fell off conveyor A

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 7

Problem 7: Happy Birthday to You, and You, and You!

Many people recognize the “birthday paradox.” It states that given a group of 23 or more randomly

chosen persons, the probability that at least two of them will have the same birthday is more than

50%. Actually it isn’t a paradox, but is so named because it contradicts what most people would

intuitively expect.

But what is the probability that at least three persons in a group of N randomly chosen persons

share the same birthday?

For simplicity we will assume that there are exactly 365 days in a year, and require that your

answer be correct only within one tenth of a percent. For example, with 88 people in a group, the

probability that at least three of these people will have the same birthday is 51.1 percent (with the

result rounded to one fractional digit). Your answer could be any of 51.0 percent, 51.1 percent, or

51.2 percent and still be considered correct.

Input
There may be multiple cases. The input for each case is a line containing the integer N, the size of

the group. N will be no larger than 1000.

Input for the last case is followed by a line containing -1.

Output
For each case, display the case number (starting with 1) and the probability that at least three

persons in a group of size N share the same birthday. Your result should be displayed as a

percentage rounded to one fractional digit. Separate the output for consecutive cases by a blank

line. Your output should look very similar to that shown in the samples below.

Sample Input Output for the Sample Input
23

88

-1

Case 1. 1.3 percent

Case 2. 51.1 percent

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 7

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 8

Problem 8: E-mail Sniffing

Your company is constructing a device for the International Criminal Protection Council ICPC). This

device can be used to detect e-mail messages containing words that suggest the message relates to

an illegal activity, and thus require further attention. Since e-mail is abundant, and the networks

are fast, the device needs to detect these words very quickly. You have decided to construct a hash

code for each word in an e-mail and then determine if that word is in a hash table of suspect words.

To make the lookup fast, you have decided to use a perfect hash function where each suspect word

maps to a unique location in the table.

A perfect hash function maps its input directly to a fully-occupied table. You need to construct the

perfect hash function from the list of suspect words. The hash function is of the form C / w mod

n, where C is a positive integer (which you need to discover), w is an integer representation of a

word, and n is the length of the table (that is, the number of suspect words). C must be as small as

possible. Note that is the floor function and that R for some real number R is the largest

integer that is less than or equal to R.

Assume the set of n suspect words is represented by the positive integers w1, w2, …, wn. The

problem is to find the smallest positive integer C such that C / wi mod n C / wj mod n for all

1 i j n . You are to convert each input word to an integer by processing each letter in the

word, working left to right. Consider ‘a’ to be 1, ‘b’ to be 2, …, and ‘z’ to be 26. Use 5 bits for each

letter; before processing the next letter, shift the partially completed word’s integer value left by

5 bits or multiply it by 32. Thus ‘a’ = 1, and ‘bz’ = 2 32 + 26 = 90.

C must be a multiple of at least one word’s integer representation.

If C / wi mod n = C / wj mod n for some i j (that is, a hashing collision) then the next

largest C that could possibly resolve the conflict is at least the minimum of (C / wi + 1) wi and

(C / wj + 1) wj, . Since all conflicts must be resolved, it is advantageous to choose the largest

candidate from among the conflicts as the next C to test. C will not always fit in a 32-bit integer.

Input
The input will contain multiple cases. For each case the input will consist of a single line containing

between two and thirteen unique words, each containing only between one and five lowercase

letters. The words are separated from each other by at least one blank.

Input for the last case will be followed by a line containing only an end of line character.

Output
For each case, display the case number (starting with 1) and the value of C that yields a perfect

hashing function. Separate the output for consecutive cases with a blank line. Your output should

appear similar to that shown in the sample below.

Sample Input Output for the Sample Input
bomb timer fuse radio

ax knife pick lock gun

This line contains only an end of line.

Case 1: 19029075

Case 2: 817488

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 8

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 9

Problem 9: Digital Editing

A display device is being constructed that will display certain five-digit values. Only certain values

can be displayed, and the device can change only one digit at a time.

For example, suppose the allowed display values were 12345, 12346, 17345, 17346, 22346, and

26346. Is it possible to display each of these, given a choice as to which value is displayed first?

The answer is yes, as illustrated below.

Start with 26346.

Change the first 6 to 2 to yield 22346.

Now change the first 2 to 1 to yield 12346.

Now change the remaining 2 to 7 to yield 17346.

Then change the 6 to 5 to yield 17345.

And finally, change the 7 to 2 to yield 12345.

Although all six values can be displayed in this case, it is not always the case that all values can be

displayed. For example, consider this set of values: 59304, 58304, 8300, 48304, 19304, and 18304.

The longest sequence that can be displayed has four values, as in 19304 59304 58304

58303.

Your job, given the set of values that can be displayed, is to determine the maximum number of

values in a sequence that can be displayed, given that you can select the value with which the display

begins, and that you can only change one digit at a time.

It is obvious that there are multiple such sequences. For example, reversing the order in which the

values are displayed will yield another allowable sequence. It is not the particular sequence that is

of interest here, but only the length of the sequence.

Input
The input will contain multiple cases. Each case begins with a line containing an integer N that

specifies the number of distinct values in the set. N will be no larger than 10,000. This line is then

followed by one or more lines containing a total of N unique integers, each in the range 0 to 99999,

with one or more such integers per line. Multiple integers on a line will be separated by spaces.

Input for the last case will be followed by a line containing the integer 0.

Output
For each case, display the case number (starting with 1) and the number of unique values that can

be displayed subject to the single-digit modification constraint. Separate output for consecutive

cases with a blank line. Your output should appear similar to that shown in the sample below.

Sample Input Output for the Sample Input
6

12345 12346 17345 17346 22346

26346

6

59304 58304 8300 48304 19304 58303

5

10057 57 10056 50056 58

0

Case 1. 6 values

Case 2. 4 values

Case 3. 5 values

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 9

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 9

November 11, 2006 ACM North Central North America Regional Programming Contest Problem 9

