
Problem E: The Bookcase 9

Problem E: The Bookcase

No wonder the old bookcase caved under
the massive piles of books Tom had stacked
on it. He had better build a new one, this
time large enough to hold all of his books.
Tom finds it practical to have the books close
at hand when he works at his desk. There-
fore, he is imagining a compact solution
with the bookcase standing on the back of
the desk. Obviously, this would put some
restrictions on the size of the bookcase, it
should preferably be as small as possible.
In addition, Tom would like the bookcase
to have exactly three shelves for aesthetical
reasons.

Wondering how small his bookcase could be, he models the problem as follows. He mea-
sures the height hi and thickness ti of each book i and he seeks a partition of the books in

three non-empty sets S1, S2, S3 such that
(

∑3
j=1 maxi∈Sj hi

)
×

(
max3

j=1 ∑i∈Sj
ti

)
is minimized,

i.e. the area of the bookcase as seen when standing in front of it (the depth needed is obvi-
ously the largest width of all his books, regardless of the partition). Note that this formula
does not give the exact area of the bookcase, since the actual shelves cause a small additional
height, and the sides cause a small additional width. For simplicity, we will ignore this small
discrepancy.

Thinking a moment on the problem, Tom realizes he will need a computer program to
do the job.

Input

The input begins with a positive number on a line of its own telling the number of test
cases (at most 20). For each test case there is one line containing a single positive integer N,
3 ≤ N ≤ 70 giving the number of books. Then N lines follow each containing two positive
integers hi, ti, satisfying 150 ≤ hi ≤ 300 and 5 ≤ ti ≤ 30, the height and thickness of book i
respectively, in millimeters.

Output

For each test case, output one line containing the minimum area (height times width) of a
three-shelf bookcase capable of holding all the books, expressed in square millimeters.

10 Problem E: The Bookcase

Sample input Sample output
2
4
220 29
195 20
200 9
180 30
6
256 20
255 30
254 15
253 20
252 15
251 9

18000
29796

Problem G: Tantrix 13

Problem G: Tantrix

Tantrix is a two player game played with 56 hexagonal tiles. Each
tile contains three links in different colours. Both players have five
tiles in hand and take turns in placing them on the playing field. The
figure to the right shows how the game could have progressed after
nine played tiles.

There are four different link colours: red, green, yellow and blue.
No two tiles are identical, and no tile is rotation symmetric. A tile
will be described in the input as a six letter string, specifying the link
colours in clockwise direction. The uppercase letters ’R’, ’G’, ’Y’ and
’B’ will be used for red, green, yellow and blue, respectively.

In this problem, a move is defined as placing one of the tiles in hand somewhere on the
playing field, subject to these rules:

1. A tile must always be placed next to tiles already played.

2. The links in all touching tiles must match colour.

3. An empty space which is surrounded by three tiles is called a forced space. If the player
can place one of his tiles in a forced space, he must do so. If there are several forced
spaces, and several ways to place a tile in a forced space, he may select any of those.

4. It’s not allowed to place a tile so that a forced space is created containing three links of
the same colour (since no tile could ever be placed there).

5. The two sides along a forced space are called controlled sides. It’s not allowed to place a
tile along a controlled side.

If there are one or more forced spaces
and the player can’t place any of his tiles
in hand in those spaces, he will have to
play any other legal move. Note that a
player may not be allowed to place a tile
in a forced space due to rule 4.

The figure on the right illustrates
these rules. There are three forced
spaces. The interposed tile may not be
placed in the lower left forced space, as
that would create a new forced space
with three red links. The dark gray
spaces lie on controlled sides created by
the forced spaces; no tiles may be placed
there. If the player to move can’t place
a tile in any of the three forced spaces,
he must place a tile in any of the white
spaces.

Your task is to count the number
of legal moves the player to move has,

14 Problem G: Tantrix

given the position and orientation of already played tiles and the tiles in hand for the player
to move. If a tile can be placed at several locations, or in several orientations, each such
combination is counted as a distinct move.

Input

The first line in the input will contain the number of cases (at
most 50).

Each case begins with a single line containing an integer
n (1 ≤ n ≤ 20), the number of tiles that have already been
played. Then follow n lines containing the coordinates and de-
scription of these tiles. The first character in the tile description
belongs to the link facing up; the remaining colours follow as
per usual in clockwise direction. Then follows a line with the
description of the five tiles in hand, the tile descriptions being
separated with a single space.

The mapping between the spaces and the coordinates is
shown in the figure below (note that the playing field is in-
finite and not restricted to these coordinates). All tiles in the
input will be valid and distinct. The layout will represent a position that could have arisen
from a legal game. One of the played tiles will have coordinates 0, 0.

Output

For each test case, output a single line containing an integer: the number of legal moves.

Sample input Sample output
2
6
0 0 BRYRBY
1 0 GRGBRB
-1 1 GGYBYB
0 1 YYBBGG
-2 2 YYBGBG
-3 3 BYGYGB
BBRRGG GBYBYG RBRBGG GYBGBY GRBBRG
4
0 0 BYYGBG
-1 1 GRGBBR
1 0 YRBRYB
2 0 YGGRRY
RBBRYY GBGYBY YBBRYR YBYBRR RBBRGG

46
2

Tantrix is copyrighted by Tantrix Games Ltd

2591 - The Tree Movers
North America - North Central - 2002/2003

Given two binary search trees, A and B, with nodes identified by (that is, having keys equal to) positive,
non-zero integers, and the use of commands ``delete K " and ``add K " (defined below), what is the smallest
number of commands that can be used to transform tree A into tree B?

Recall that in a binary search tree, the keys of all nodes in the left subtree of a node with key K must be less
than K . Similarly, the keys of all nodes in the right subtree of a node with key K must be greater than K .
There are no duplicate nodes.

The ``delete K " command will delete the tree (or subtree) with its root at the node with the key K . Deleting
the root of the entire tree leaves an empty tree. The ``add K " command will add a new node identified by the
integer K . This node will naturally be a leaf node.

Since we seek to transform tree A into tree B, it follows that commands will be applied only to tree A; tree B
is ``read only".

It is easy to see that it should never require more than N + 1 commands to achieve the transformation of A
into B, since deletion of the root node of tree A followed by the addition of one node for each of the N nodes
in B (in the proper order) will achieve the desired goal. Equally easy to determine is the minimum number of
commands required: if A and B are identical, then zero commands are required.

Input

There will be multiple input cases. For each case, the input contains the description of tree A followed by the
description of tree B. Each tree description consists of an integer N that specifies the number of nodes in the
tree, following by the keys of the N nodes in an order such that N ``add" commands would create the tree. The
last case is followed by the integer `-1'. No node will have a key larger than 109 , and N will be no larger than
100.

Output

For each case, display a single line containing the input case number (1, 2,...) and the number of commands
required to transform tree A into tree B, formatted as shown in the examples below.

Sample Input

4 5 2 7 4 6 5 3 7 1 4 9
0 0
1 100 0
0 1 100
3 100 49 37 2 200 152
-1

Sample Output

Case 1: 5 commands.
Case 2: 0 commands.
Case 3: 1 command.

2591 - The Tree Movers 1/2

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=nc&year=2002

Case 4: 1 command.
Case 5: 3 commands.

North Central 2002-2003

2591 - The Tree Movers 2/2

 The Tower of Babylon

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale
have been forgotten. So now, in line with the educational nature of this contest, we will tell you the
whole story:

The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type−i
block was a rectangular solid with linear dimensions . A block could be reoriented so that

any two of its three dimensions determined the dimensions of the base and the other dimension was
the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was
that, in building a tower, one block could only be placed on top of another block as long as the two
base dimensions of the upper block were both strictly smaller than the corresponding base dimensions
of the lower block. This meant, for example, that blocks oriented to have equal−sized bases couldn’t
be stacked.

Your job is to write a program that determines the height of the tallest tower the babylonians can build
with a given set of blocks.

Input and Output

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values , and .

Input is terminated by a value of zero (0) for n.

For each test case, print one line containing the case number (they are numbered sequentially starting
from 1) and the height of the tallest possible tower in the format "Case case: maximum height =
height"

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

3385 - Leaping Lizards
North America - Pacific Northwest - 2005/2006

Your platoon of wandering lizards has entered a strange room in the labyrinth you are exploring. As you are
looking around for hidden treasures, one of the rookies steps on an innocent-looking stone and the room's
floor suddenly disappears! Each lizard in your platoon is left standing on a fragile looking pillar, and a fire
begins to rage below...

Leave no lizard behind! Get as many lizards as possible out of the room, and report the number of casualties.

The pillars in the room are aligned as a grid, with each pillar one unit away from the pillars to its east, west,
north and south. Pillars at the edge of the grid are one unit away from the edge of the room (safety). Not all
pillars necessarily have a lizard. A lizard is able to leap onto any unoccupied pillar that is within d units of his
current one. A lizard standing on a pillar within leaping distance of the edge of the room may always leap to
safety... but there's a catch: each pillar becomes weakened after each jump, and will soon collapse and no
longer be usable by other lizards. Leaping onto a pillar does not cause it to weaken or collapse; only leaping
off of it causes it to weaken and eventually collapse. Only one lizard may be on a pillar at any given time.

Input

The input file will begin with a line containing a single integer representing the number of test cases, which is
at most 25. Each test case will begin with a line containing a single positive integer n representing the number
of rows in the map, followed by a single non-negative integer d representing the maximum leaping distance
for the lizards. Two maps will follow, each as a map of characters with one row per line. The first map will
contain a digit (0-3) in each position representing the number of jumps the pillar in that position will sustain
before collapsing (0 means there is no pillar there). The second map will follow, with an `L' for every position
where a lizard is on the pillar and a `.' for every empty pillar. There will never be a lizard on a position where
there is no pillar.

Each input map is guaranteed to be a rectangle of size n * m , where 1 n 20 and 1 m 20 .•

Leaping distance is guaranteed to be in the range [1, 3].•

Output

For each input case, you should return the number of lizards that could not escape. There should be a newline
after each case, and your output format should follow the sample provided below.

Sample Input

4
3 1
1111
1111
1111
LLLL
LLLL
LLLL
3 2
00000

3385 - Leaping Lizards 1/2

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=pn&year=2005

01110
00000
.....
.LLL.
.....
3 1
00000
01110
00000
.....
.LLL.
.....
5 2
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........

Sample Output

Case #1: 2 lizards were left behind.
Case #2: no lizard was left behind.
Case #3: 3 lizards were left behind.
Case #4: 1 lizard was left behind.

Pacific Northwest 2005-2006

3385 - Leaping Lizards 2/2

Problem E

Watering Grass
Input: standard input

Output: standard output
Time Limit: 3 seconds

n sprinklers are installed in a horizontal strip of grass l meters long and w
meters wide. Each sprinkler is installed at the horizontal center line of the
strip. For each sprinkler we are given its position as the distance from the left
end of the center line and its radius of operation.

What is the minimum number of sprinklers to turn on in order to water the
entire strip of grass?

Input
Input consists of a number of cases. The first line for each case contains
integer numbers n, l and w with n <= 10000. The next n lines contain two
integers giving the position of a sprinkler and its radius of operation. (The
picture above illustrates the first case from the sample input.)

Output

For each test case output the minimum number of sprinklers needed to water
the entire strip of grass. If it is impossible to water the entire strip output -1.

Sample input

8 20 2

5 3
4 1
1 2
7 2
10 2
13 3
16 2
19 4
3 10 1
3 5
9 3
6 1
3 10 1
5 3
1 1
9 1

Sample Output

6
2
-1

(Regionals 2002 Warm-up Contest, Problem setter: Piotr Rudnicku)

ACM ICPC 2007–2008, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 28, 2007

Problem A. Ants
Input file: ants.in
Output file: ants.out

Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees. Each
ant colony needs its own apple tree to feed itself.

Bill has a map with coordinates of n ant colonies and n apple trees. He knows that ants travel from their
colony to their feeding places and back using chemically tagged routes. The routes cannot intersect each
other or ants will get confused and get to the wrong colony or tree, thus spurring a war between colonies.

Bill would like to connect each ant colony to a single apple tree so that all n routes are non-intersecting
straight lines. In this problem such connection is always possible. Your task is to write a program that
finds such connection.

14
2

2

3

1

4

55
3

On this picture ant colonies are denoted by empty circles and apple trees are denoted by filled circles.
One possible connection is denoted by lines.

Input
The first line of the input file contains a single integer number n (1 ≤ n ≤ 100) — the number of ant
colonies and apple trees. It is followed by n lines describing n ant colonies, followed by n lines describing
n apple trees. Each ant colony and apple tree is described by a pair of integer coordinates x and y
(−10 000 ≤ x, y ≤ 10 000) on a Cartesian plane. All ant colonies and apple trees occupy distinct points
on a plane. No three points are on the same line.

Output
Write to the output file n lines with one integer number on each line. The number written on i-th line
denotes the number (from 1 to n) of the apple tree that is connected to the i-th ant colony.

Sample input and output

ants.in ants.out
5
-42 58
44 86
7 28
99 34
-13 -59
-47 -44
86 74
68 -75
-68 60
99 -60

4
2
1
5
3

Page 1 of 14

ACM ICPC 2007–2008, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 28, 2007

Problem E. Equation

Input file: equation.in
Output file: equation.out

Your task is to solve an equation of the form f(x) = 0 where f(x) is written in postfix notation with
numbers, operations +, -, *, /, and at most one occurrence of a variable x.

For example, f(x) for an equation (4x + 2)/2 = 0 is written as:

4 X * 2 + 2 /

The solution for f(x) = 0 is x = −1/2.

Input
The input file consists of a single line with at most 30 tokens separated by spaces. Each token is either:

• a digit from 0 to 9;
• an operation +, -, *, or /;
• an uppercase letter X that denotes variable x.

The input file contains a correct representation of f(x) in postfix notation where token X occurs at most
once. There is no division by a constant zero in this equation, that is, there always exists a value of x,
such that f(x) can be evaluated without division by zero.

Output
Write to the output file:

• X = p/q if equation f(x) = 0 has a single solution that can be represented with a simple fraction
p/q, where p and q are coprime integer numbers and q is positive.

• NONE if equation f(x) = 0 has no solution;
• MULTIPLE if equation f(x) = 0 has multiple solutions.

Sample input and output

equation.in equation.out
4 X * 2 + 2 / X = -1/2

2 2 * NONE

0 2 X / * MULTIPLE

Page 5 of 14

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem C. Cellular Automaton
Input file: cell.in
Output file: cell.out

A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number
of discrete time steps according to a set of rules that describe the new state of a cell based on the states
of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the
automaton of order n are numbered from 1 to n.

The order of the cell is the number of different values it may contain. Usually, values of a cell of order
m are considered to be integer numbers from 0 to m− 1.

One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed.
In this problem we examine the special kind of cellular automaton — circular cellular automaton of order
n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.

A distance between cells i and j in n,m-automaton is defined as min(|i− j|, n−|i− j|). A d-environment
of a cell is the set of cells at a distance not greater than d.

On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after
d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.

The following picture shows 1-step of the 5,3-automaton.

1
1

2 2
2
3

14

2
5

2
1

2 2
2
3

24

1
5

The problem is to calculate the state of the n,m-automaton after k d-steps.

Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500,
1 ≤ m ≤ 1 000 000, 0 ≤ d < n

2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers
from 0 to m− 1 — initial values of the automaton’s cells.

Output
Output the values of the n,m-automaton’s cells after k d-steps.

Sample input and output

cell.in cell.out
5 3 1 1
1 2 2 1 2

2 2 2 2 1

5 3 1 10
1 2 2 1 2

2 0 0 2 2

Page 4 of 15

