
NCPC 2006 Problem G: Whac-a-Mole 15

Problem G

Whac-a-Mole

While visiting a traveling fun fair you
suddenly have an urge to break the high
score in the Whac-a-Mole game. The goal
of the Whac-a-Mole game is to... well...
whack moles. With a hammer. To make
the job easier you have first consulted
the fortune teller and now you know the
exact appearance patterns of the moles.

The moles appear out of holes occu-
pying the n2 integer points (x, y) satisfy-
ing 0 ≤ x, y < n in a two-dimensional
coordinate system. At each time step, some moles will appear and then disappear
again before the next time step. After the moles appear but before they disappear, you
are able to move your hammer in a straight line to any position (x2, y2) that is at dis-
tance at most d from your current position (x1, y1). For simplicity, we assume that you
can only move your hammer to a point having integer coordinates. A mole is whacked
if the center of the hole it appears out of is located on the line between (x1, y1) and
(x2, y2) (including the two endpoints). Every mole whacked earns you a point. When
the game starts, before the first time step, you are able to place your hammer anywhere
you see fit.

Input specifications

The input consists of several test cases. Each test case starts with a line containing three
integers n, d and m, where n and d are as described above, and m is the total number
of moles that will appear (1 ≤ n ≤ 20, 1 ≤ d ≤ 5, and 1 ≤ m ≤ 1000). Then follow
m lines, each containing three integers x, y and t giving the position and time of the
appearance of a mole (0 ≤ x, y < n and 1 ≤ t ≤ 10). No two moles will appear at the
same place at the same time.

The input is ended with a test case where n = d = m = 0. This case should not be
processed.

Output specifications

For each test case output a single line containing a single integer, the maximum
possible score achievable.

16 NCPC 2006 Problem G: Whac-a-Mole

Sample input

4 2 6

0 0 1

3 1 3

0 1 2

0 2 2

1 0 2

2 0 2

5 4 3

0 0 1

1 2 1

2 4 1

0 0 0

Output for sample input

4

2

Problem I: Up the Stairs 17

Problem I: Up the Stairs

John is moving to the penthouse of a tall sky-scraper. He
packed all his stuff in boxes and drove them to the en-
trance of the building on the ground floor. Unfortunately
the elevator is out of order, so the boxes have to be moved
up the stairs.

Luckily John has a lot of friends that want to help car-
rying his boxes up. They all walk the stairway at the same
speed of 1 floor per minute, regardless of whether they
carry a box or not. The stairway however is so narrow that
two persons can’t pass each other on it. Therefore they de-
ciced to do the following: someone with a box in his hands
is always moving up and someone empty-handed is al-
ways moving down. When two persons meet each other
somewhere on the stairway, the lower one (with a box)
hands it over to the higher one (without a box). (And then
the lower one walks down again and the higher one walks
up.) The box exchange is instantaneous. When someone
is back on the ground floor, he picks up a box and starts
walking up. When someone is at the penthouse, he drops
the box and walks down again.

After a while the persons are scattered across the stairway, some of them with boxes in
their hands and some without. There are still a number of boxes on the ground floor and
John is wondering how much more time it will take before all the boxes are up. Help him to
find out!

Input

One line with a positive number: the number of test cases. Then for each test case:

• One line with three numbers N, F, B with 1 ≤ N, F ≤ 1, 000 and 1 ≤ B ≤ 1, 000, 000:
the number of persons, the number of floors (0=ground floor, F=penthouse) and the
number of boxes that are still on the ground floor.

• N lines with two numbers fi and bi with 0 ≤ fi ≤ F and bi = 0 or bi = 1: the floors
where the persons are initially and whether or not they have a box in their hands
(1=box, 0=no box).

Output

One line with the amount of time (in minutes) it will take to get all the remaining boxes to
the penthouse.

18 Problem I: Up the Stairs

Sample input Sample output
2
3 10 5
0 0
0 0
0 0
2 5 1
2 1
3 0

30
8

ACM ICPC 2004–2005, Northeastern European Regional Contest
St Petersburg – Barnaul – Yerevan – Tashkent, December 1, 2004

Problem G. Gunman
Input file: gunman.in
Output file: gunman.out

Consider a 3D scene with OXYZ coordinate system. Axis OX points to the right, axis OY points up,
and axis OZ points away from you. There is a number of rectangular windows on the scene. The plane
of each window is parallel to OXY , its sides are parallel to OX and OY . All windows are situated at
different depths on the scene (different coordinates z > 0).

O
X

Y

Z

1 2 3
54

6

1 2 3 4 5 6 7-1

A gunman with a rifle moves along OX axis (y = 0 and z = 0). He can shoot a bullet in a straight line.
His goal is to shoot a single bullet through all the windows. Just touching a window edge is enough.

Your task is to determine how to make such shot.

Input
The first line of the input file contains a single integer number n (2 ≤ n ≤ 100) — the number of windows
on the scene. The following n lines describe the windows. Each line contains five integer numbers x1i,
y1i, x2i, y2i, zi (0 < x1i, y1i, x2i, y2i, zi < 1000). Here (x1i, y1i, zi) are coordinates of the bottom left
corner of the window, and (x2i, y2i, zi) are coordinates of the top right corner of the window (x1i < x2i,
y1i < y2i). Windows are ordered by z coordinate (zi > zi−1 for 2 ≤ i ≤ n).

Output
Output a single word “UNSOLVABLE” if the gunman cannot reach the goal of shooting a bullet through
all the windows.

Otherwise, on the first line output a word “SOLUTION”. On the next line output x coordinate of the point
from which the gunman must fire a bullet. On the following n lines output x, y, z coordinates of the
points where the bullet goes through the consecutive windows. All coordinates in the output file must
be printed with six digits after decimal point.

Sample input and output

gunman.in gunman.out
3
1 3 5 5 3
1 2 5 7 5
5 2 7 6 6

SOLUTION
-1.000000
2.000000 3.000000 3.000000
4.000000 5.000000 5.000000
5.000000 6.000000 6.000000

3
2 1 5 4 1
3 5 6 8 2
4 3 8 6 4

UNSOLVABLE

Page 9 of 14

ACM ICPC 2005–2006, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Batumi, November 30, 2005

Problem C. Cactus
Input file: cactus.in
Output file: cactus.out

Cactus is a connected undirected graph in which every edge lies on at most one simple cycle. Intuitively
cactus is a generalization of a tree where some cycles are allowed. Your task first is to verify if the given
graph is a cactus or not. Important difference between a cactus and a tree is that a cactus can have
a number of spanning subgraphs that are also cactuses. The number of such subgraphs (including the
graph itself) determines cactusness of a graph (this number is one for a cactus that is just a tree). The
cactusness of a graph that is not a cactus is considered to be zero.

1

2

3

4

5

6

7

8

9

10 11

1213

14

1

2

3

4

5

6

7

8

9

10 1

2

3

4

5

A cactus Not a cactus Not a cactus

The first graph on the picture is a cactus with cactusness 35. The second graph is not a cactus because
edge (2, 3) lies on two cycles. The third graph is not a cactus because it is not connected.

Input
The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 20000, 0 ≤ m ≤ 1000).
Here n is the number of vertices in the graph. Vertices are numbered from 1 to n. Edges of the graph
are represented by a set of edge-distinct paths, where m is the number of such paths.

Each of the following m lines contains a path in the graph. A path starts with an integer number ki

(2 ≤ ki ≤ 1000) followed by ki integers from 1 to n. These ki integers represent vertices of a path. Path
can go to the same vertex multiple times, but every edge is traversed exactly once in the whole input file.
There are no multiedges in the graph (there is at most one edge between any two vertices).

Output
Write to the output file a single integer number — the cactusness of the given graph. Note that cactusness
can be quite a large number.

Sample input and output
cactus.in cactus.out

14 3
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
2 2 14

35

10 2
7 1 2 3 4 5 6 1
6 3 7 8 9 10 2

0

5 1
4 1 2 3 4

0

Page 5 of 14

Problem I: Tower Parking 17

I Tower Parking

There is a new revolution in the parking lot business: the parking tower. The concept is
simple: you drive your car into the elevator at the entrance of the tower, and the elevator
and conveyor belts drag the car to an empty parking spot, where the car remains until you
pick it up. When you return, the elevator and conveyor belts move your car back to the
entrance and you’re done.

The layout of the tower is simple. There is one central elevator that transports the cars
between the different floors. On each floor there is one giant circular conveyor belt on which
the cars stand. This belt can move in clockwise and counterclockwise direction. When the
elevator arrives on a floor, it becomes part of the belt so that cars can move through it.

At the end of the day the tower is usually packed with cars and a lot of people come to
pick them up. Customers are processed in a first come first serve order: the elevator is moved
to the floor of the first car, the conveyor belt moves the car on the elevator, the elevator is
moved down again, and so on. We like to know how long it takes before the last customer
gets his car. Moving the elevator one floor up- or downwards takes 10 seconds and moving
a conveyor belt one car in either direction takes 5 seconds.

Input

On the first line one positive number: the number of testcases, at most 100. After that per
testcase:

• One line with two integers h and l with 1 ≤ h ≤ 50 and 2 ≤ l ≤ 50: the height of the
parking tower and the length of the conveyor belts.

• h lines with l integers: the initial placement of the cars. The jth number on the ith line
describes the jth position on the ith floor. This number is −1 if the position is empty,
and r if the position is occupied by the rth car to pick up. The positive numbers form
a consecutive sequence from 1 to the number of cars. The entrance is on the first floor
and the elevator (which is initially empty) is in the first position. There is at least one
car in the parking tower.

Output

Per testcase:

• One line with the number of seconds before the last customer is served.

Sample in- and output

Input Output

2
1 5
-1 2 1 -1 3
3 6
-1 5 6 -1 -1 3
-1 -1 7 -1 2 9
-1 10 4 1 8 -1

25
320

November 8, 2003 ACM North Central North America Regional Programming Contest Problem 2

November 8, 2003 ACM North Central North America Regional Programming Contest Problem 2

Problem 2: Making Pals
A palindrome is a sequence that is the same when read forward or backward. For example, “pop” is a
palindrome, as are “Poor Dan is in a droop” (ignoring spaces and case), and “12321”.

In this problem, you are to find the “cheapest” way to transform a sequence of decimal digits into a
palindrome. There are only two types of modifications you may make to the sequence, but each of these
may be repeated as many times as necessary. You may delete a digit from either end of the sequence, or
you may add a digit to either end of the sequence. Each of these operations incurs a “cost” of 1. For each
input sequence, determine the smallest cost of transforming the sequence into a palindrome, and the length
of the resulting palindrome. If two palindromes can be produced with the same cost, the length of the
longer palindrome (the one with more digits) is to be reported.

For example, suppose the initial sequence was “911”. This can be transformed into a palindrome by deleting
the leading “9” (yielding “11”) or by adding an additional “9” to the right end of the sequence (yielding
“9119”). Since both of these transformations have a cost of 1, and the second transformation yields a
longer palindrome, it is this one which would be reported as your result.

Note that the particular palindrome produced by the cheapest sequence of transformations is not
necessarily unique, but since you are not required to report the resulting palindrome, any of these will
suffice.

Input
There will be multiple cases to consider. Each case has a single line of input that contains one or more
decimal digits followed by the end of line. The maximum number of digits in a sequence will be 6. The last
case is followed by an empty line (that is, only an end of line).

Output
For each input case, display the case number (1, 2, …), the input sequence, the cost of the cheapest
transformation, and the length of the resulting palindrome. Your output should follow the format shown in
the examples below.

Sample Input
911
9118
11234
 <-- This line is blank

Expected Output
Case 1, sequence = 911, cost = 1, length = 4
Case 2, sequence = 9118, cost = 2, length = 4
Case 3, sequence = 11234, cost = 3, length = 8

Problem B: Declaration of Content 3

Problem B: Declaration of Content

Most food you can buy at your local gro-
cery store has a declaration of content. The
declaration of content lists the ingredients of
the product. It does not necessarily tell you
the exact amount of every ingredient, only
the ordering of the ingredients, from most
common to least common. For some ingre-
dients, an exact percentage might be given,
either required by law or because the pro-
ducer wants you to know how much of the
fine expensive ingredients they have used.

Given a set of different products and their respective declarations of content you should
determine which contain the most or the least of some given ingredients. For simplicity, we
assume in this problem that the percentage of each ingredient always is an integer.

Input

The input consists of several test cases. Each test case consists of two parts.
The first part of a test case begins with an integer P, 1 ≤ P ≤ 10, the number of different

products in this test case, on a line of its own. Then follows the description of the P products.
Each product description consists of a line giving the name of the product, followed by a line
containing an integer n, 1 ≤ n ≤ 100, giving the number of ingredients in this product. Then
follow n lines, the i:th of which contains the name of the i:th most common ingredient of the
product. In case of ties, the ingredients will be listed in arbitrary order. Optionally, every
ingredient name can be followed by space, an integer p, 0 ≤ p ≤ 100 and a percentage sign.
If this is present, it specifies the exact amount of this ingredient in the product. Otherwise,
because all percentages in this problem are integers, the ingredient makes up at least one
percent of the total product.

The second part of a test case begins with an integer Q, 1 ≤ Q ≤ 100, the number of
queries. Then follow Q lines, each containing a query. A query is of the form “least X”, or
“most X”, where X is the name of an ingredient. In the “most X” case, the ingredient X is
guaranteed to be present in at least one of the products.

A name of a product or an ingredient is a string of alphabetic characters (A-Z and a-z),
digits (0-9) and underscore. Case is significant. No name will be longer than 30 characters.
You may assume that each declaration of content is valid.

The last test case to be processed is followed by a line consisting of the integer 0.

Output

The output consists of one line for every query in the input data. For each query, output
the name of the product containing the most or the least of ingredient X, as indicated by the
query. If there are several possible such products, output all of them, in the same order as the
products were presented in the test case input data. The product names should be separated
by a single space.

4 Problem B: Declaration of Content

Sample input Sample output
3
Product 1
3
A
B
C
Product 2
3
C
B
A
Product 3
2
B
C 35%
4
most A
most B
most C
least D
0

Product 1
Product 3
Product 2 Product 3
Product 1 Product 2 Product 3

NZ Contest, 1990, Dvision I 1

Problem A: Bumpy Objects

1

2
3

4

5

6

7

8

Object 1

1 2

34

Square

5

1 2

3 4

6

7 8

Object 2

Consider objects such as these. They are polygons, specified by the coor-
dinates of a centre of mass and their vertices. In the figure, centres of mass
are shown as black squares. The vertices will be numbered consecutively anti-
clockwise as shown.

An object can be rotated to stand stably if two vertices can be found that
can be joined by a straight line that does not intersect the object, and, when
this line is horizontal, the centre of mass lies above the line and strictly between
its endpoints. There are typically many stable positions and each is defined by
one of these lines known as its base line. A base line, and its associated stable
position, is identified by the highest numbered vertex touched by that line.

Write a program that will determine the stable position that has the lowest
numbered base line. Thus for the above objects, the desired base lines would
be 6 for object 1, 6 for object 2 and 2 for the square. You may assume that
the objects are possible, that is they will be represented as non self-intersecting
polygons, although they may well be concave.

Successive lines of a data set will contain: a string of less than 20 characters
identifying the object; the coordinates of the centre of mass; and the coordinates
of successive points terminated by two zeroes (0 0), on one or more lines as
necessary. There may be successive data sets (objects). The end of data will
be defined by the string ’#’.

Output will consist of the identification string followed by the number of
the relevant base line.

NZ Contest, 1990, Dvision I 2

Sample input

Square

2 2

1 1 3 1 3 3 1 3 0 0

#

Sample output

1 22

Object1 6

Object2 6

Square 2

ACM ICPC 2006–2007, Northeastern European Regional Contest
St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem G. Graveyard

Input file: graveyard.in
Output file: graveyard.out

Programming contests became so popular in the year 2397 that the governor of New Earck — the largest
human-inhabited planet of the galaxy — opened a special Alley of Contestant Memories (ACM) at the
local graveyard. The ACM encircles a green park, and holds the holographic statues of famous contestants
placed equidistantly along the park perimeter. The alley has to be renewed from time to time when a
new group of memorials arrives.

When new memorials are added, the exact place for each can be selected arbitrarily along the ACM, but
the equidistant disposition must be maintained by moving some of the old statues along the alley.

Surprisingly, humans are still quite superstitious in 24th century: the graveyard keepers believe the
holograms are holding dead people souls, and thus always try to renew the ACM with minimal possible
movements of existing statues (besides, the holographic equipment is very heavy). Statues are moved
along the park perimeter. Your work is to find a renewal plan which minimizes the sum of travel distances
of all statues. Installation of a new hologram adds no distance penalty, so choose the places for newcomers
wisely!

Input
Input file contains two integer numbers: n — the number of holographic statues initially located at the
ACM, and m – the number of statues to be added (2 ≤ n ≤ 1000, 1 ≤ m ≤ 1000). The length of the
alley along the park perimeter is exactly 10 000 feet.

Output
Write a single real number to the output file — the minimal sum of travel distances of all statues (in
feet). The answer must be precise to at least 4 digits after decimal point.

Sample input and output

graveyard.in graveyard.out
2 1 1666.6667

2 3 1000.0

3 1 1666.6667

10 10 0.0

Pictures show the first three examples. Marked circles denote original statues, empty circles denote new
equidistant places, arrows denote movement plans for existing statues.

Page 11 of 15

Problem G: Prime Path 13

Problem G: Prime Path

The ministers of the cabinet were quite upset by the
message from the Chief of Security stating that they
would all have to change the four-digit room num-
bers on their offices.
— It is a matter of security to change such things ev-
ery now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good
reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also
a prime. You will just have to paste four new digits
over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change
the first digit to an 8, then the number will read 8033
which is not a prime!
— I see, being the prime minister you cannot stand
having a non-prime number on your door even for a
few seconds.
— Correct! So I must invent a scheme for going from
1033 to 8179 by a path of prime numbers where only
one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one
pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know
some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on. . .
Help the prime minister to find the cheapest prime path between any two given four-digit
primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033
1733
3733
3739
3779
8779
8179

The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2
can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test
case, one line with two numbers separated by a blank. Both numbers are four-digit primes
(without leading zeros).

14 Problem G: Prime Path

Output

One line for each case, either with a number stating the minimal cost or containing the word
Impossible.

Sample input Sample output
3
1033 8179
1373 8017
1033 1033

6
7
0

