
UW-Madison's
2009 ACM-ICPC Individual Placement Test

October 4th, 1:00-6:00pm, CS1350

Overview:
This test consists of seven problems, which will be referred to by the following
names (respective of order):
 numbers, willy, island, ferry, fence, rockers, corners.

Input/Output:
Your programs should take input from standard in (i.e., the keyboard) and output
to standard out (i.e., the terminal). As is standard practice for the ICPC, you may
assume that the input strictly follows the description in the problems. It is your
responsibility to ensure that your output precisely matches that described in the
problems, or else risk your program being rejected with a “Presentation Error”.

Problem Submission:
Problem submission will be handled via the PC^2 judging software, as at the
actual competition.

Clarifications:
Clarification requests will also be handled via the PC^2 software. Accepted
clarification requests will be answered to all those taking the test. Experience of
previous years learns that most clarification requests are rejected, and receive a
simple response such as “Read the problem description”.

Printing:
You may print to the printer at any time during the test.

Written Solutions:
We encourage you to spend the last half hour of the test to write down the main
idea behind the solution to any of the problems for which you have not had a
program accepted. Please be concise, using at most a few sentences within the
space provided on the opposite side of this page. We will take these partial
solutions into account along with your official ranking when composing teams,
although they will have less weight.

After the Test:
The proctor will announce when time is up. Please stop working at this time and
take a moment to fill out the form on the back of this sheet and turn it in to the
proctor (you may keep the problems). You are invited to join us for pizza and
soda after the test in 1325 CS.

Information:

Name: ______________

CS Login:____________

PC^2 Login/Pass: __________ / __________

Student Status (e.g Junior, 1st-year grad):____________

Year of birth:________, Year starting college:___________

How many ICPC regionals have you participated in?____ How many world
finals?___

Which of C/C++/Java do you prefer:____ Please indicate your proficiency in
each:

Which classes have you taken (or are taking) whichare relevent to the ICPC?

What do you feel your strengths are with respect to the ICPC?

Are you able to travel to the world finals in Harbin, China, February 1 - 6, 2010
(and obtain a visa / passport as necessary)?

If your team progresses to the world finals, how many hours per week could you
commit to practicing, starting mid-November? ____

Are there people you would prefer to be (or not be) on the same team as?

Is there anything else we should know about you?

Written solutions for unsolved problems:

numbers:

willy:

island:

ferry:

fence:

rockers:

corners:

2687 − Amusing Numbers

Europe − Northeastern − 2002/2003

Let us consider the set of integer numbers between 1 and N inclusive. Let us order them lexicographically (i.

e. like in the vocabulary), for example, for N = 11 the order would be: 1, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9.

Let us denote the position of the number K in this ordering as QN, K. For example, Q11, 2 = 4. Given numbers K

and M find the smallest N such that QN, K = M.

Input

Input file contains several test cases, one per line. Each of them consists of two integer numbers K and M (

1
K, M 109

) separated by a space.

Output

For each input case write a different output line. If such N that QN, K = M exists then write the smallest such N,

otherwise write `0'.

Sample Input

2 4

2 1

100000001 1000000000

1000000000 11

Sample Output

11

0

100000000888888879

0

Northeastern 2002−2003

2687 − Amusing Numbers 1/1

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=nea&year=2002

The 2002 26th Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

Problem E
Island Hopping
Input: islands.in

The company Pacific Island Net (PIN) has identified several small island groups in the Pacific that do not have a fast
internet connection. PIN plans to tap this potential market by offering internet service to the island inhabitants. Each
groups of islands already has a deep-sea cable that connects the main island to the closest internet hub on the
mainland (be it America, Australia or Asia). All that remains to be done is to connect the islands in a group to each
other. You must write a program to help them determine a connection procedure.

750

600

400

1500

250

500

2500
Main Island

For each island, you are given the position of its router and the number of island inhabitants. In the figure, the dark
dots are the routers and the numbers are the numbers of inhabitants. PIN will build connections between pairs of
routers such that every router has a path to the main island. PIN has decided to build the network such that the total
amount of cable used is minimal. Under this restriction, there may be several optimal networks. However, it does
not matter to PIN which of the optimal networks is built.

PIN is interested in the average time required for new customers to access the internet, based on the assumption that
construction on all cable links in the network begins at the same time. Cable links can be constructed at a rate of one
kilometer of cable per day. As a result, shorter cable links are completed before the longer links. An island will have
internet access as soon as there is a path from the island to the main island along completed cable links. If mi is the
number of inhabitants of the ith island and ti is the time when the island is connected to the internet, then the average
connection time is:

∑
∑ ∗

i

ii

m
mt

The 2002 ACM Programming Contest World Finals sponsored by IBM

Input
The input consists of several descriptions of groups of islands. The first line of each description contains a single
positive integer n, the number of islands in the group (n ≤ 50). Each of the next n lines has three integers xi, yi, mi,
giving the position of the router (xi, yi) and number of inhabitants mi (mi > 0) of the islands. Coordinates are
measured in kilometers. The first island in this sequence is the main island.

The input is terminated by the number zero on a line by itself.

Output
For each group of islands in the input, output the sequence number of the group and the average number of days
until the inhabitants are connected to the internet. The number of days should have two digits to the right of the
decimal point. Use the output format in the sample given below.

Place a blank line after the output of each test case.

Sample Input Output for the Sample Input
7
11 12 2500
14 17 1500
9 9 750
7 15 600
19 16 500
8 18 400
15 21 250
0

Island Group: 1 Average 3.20

Ferry Loading

Before bridges were common, ferries were used to transport

cars across rivers. River ferries, unlike their larger cousins,

run on a guide line and are powered by the river's current.

Cars drive onto the ferry from one end, the ferry crosses the

river, and the cars exit from the other end of the ferry.

There is a ferry across the river that can take n cars across the

river in t minutes and return in t minutes. m cars arrive at the

ferry terminal by a given schedule. What is the earliest time

that all the cars can be transported across the river? What is

the minimum number of trips that the operator must make to

deliver all cars by that time?

The first line of input contains c, the number of test cases.

Each test case begins with n, t, m. m lines follow, each giving

the arrival time for a car (in minutes since the beginning of the

day). The operator can run the ferry whenever he or she

wishes, but can take only the cars that have arrived up to that

time. For each test case, output a single line with two integers: the time, in minutes since the beginning of the

day, when the last car is delivered to the other side of the river, and the minimum number of trips made by

the ferry to carry the cars within that time.

You may assume that 0 < n, t, m < 1440. The arrival times for each test case are in non-decreasing order.

Sample input

2

2 10 10

0

10

20

30

40

50

60

70

80

90

2 10 3

10

30

40

Output for sample input

100 5

50 2

November 9, 2002 ACM North Central North America Regional Programming Contest Problem 4

Problem 4: The Fence Builder
A fence builder has been given a strange task. Provided with N (between 3 and 100) pieces of
straight fencing, each having an arbitrary length, the builder is to enclose as large a region as
possible. The customer wants to know the area of the region that can be enclosed by the fence
before it is built. There is only one constraint on the construction: each piece of fencing is
connected only at its endpoints to exactly two other different pieces of fencing. That is, after
completion, the fence will look like a (possibly irregular) polygon with N sides. The customer has
guaranteed the builder that the fencing provided will allow for a region with a non-zero area to be
enclosed.

Input
There will be multiple cases in the input. For each case, the input begins with the number of pieces
of fencing (an integer, N). There then follow N positive, non-zero real numbers giving the lengths of
the fence pieces. A single integer zero follows the last case in the input.

Output
For each case, display the case number (starting with 1) and the maximum area that can be
enclosed by the provided fencing materials. Show three fractional digits in each answer. Use the
format shown below in displaying the results.

Sample Input
3 2.0 2.0 2.0
4 1.0 1.0 1.0 1.0
4 5.0 5.0 3.0 11.0
0

Expected Output
Case 1: maximum area = 1.732
Case 2: maximum area = 1.000
Case 3: maximum area = 21.000

November 9, 2002 ACM North Central North America Regional Programming Contest Problem 4

 Raucous Rockers

You just inherited the rights to n previously unreleased songs recorded by the popular group Raucous

Rockers. You plan to release a set of m compact disks with a selection of these songs. Each disk can hold a

maximum of t minutes of music, and a song can not overlap from one disk to another. Since you are a

classical music fan and have no way to judge the artistic merits of these songs, you decide on the following

criteria for making the selection:

The songs will be recorded on the set of disks in the order of the dates they were written - All songs on

disk i must be written before those on disk i+1 for 1 <= i < m, and the songs must appear in order on

each of these disks.

1.

The total number of songs included will be maximized.2.

Input

The input consists of several datasets. The first line of the input indicates the number of datasets, then there is

a blank line and the datasets separated by a blank line. Each dataset consists of a line containing the values of

1 <= n <= 1000, 1 <= t <= 1,000,000,000 (yes, they like their power ballads) and 1 <= m <= 1,000 (integer

numbers) followed by a line containing a list of the length of n songs, ordered by the date they

were written (Each is between 1 and t minutes long, both inclusive, and .)

Output

The output for each dataset consists of one integer indicating the number of songs that, following the above

selection criteria will fit on m disks. Print a blank line between consecutive datasets.

Sample Input

2

10 5 3

3, 5, 1, 2, 3, 5, 4, 1, 1, 5

1 1 1

1

Sample Output

6

1

Programming Contest Finals
The Twentieth Annual ACM International Collegiate

s po ns o red by

Problem
Cutting Corners

Input file: corner.in

Bicycle messengers delivering documents and small items from one office building to another have long been part
of the guerrilla transportation services in several major U.S. cities. The cyclists themselves are a rare breed of
riders who are notorious for their speed, their disrespect for one-way streets and traffic signals, and their
unflinching bravery in facing motorized vehicles and pedestrians alike.

Bicycle messenger services tend to be very competitive, and Billy’s Bicycle Messenger Service is no exception. In
order to boost its competitive edge as well as determine its actual expenses, BBMS is developing a new scheme
for pricing deliveries that depends in part on the routes messengers travel. You are to write a program to help
BBMS determine the minimum distances for various routes.

The following assumptions simplify your task:
• Messengers can ride their bicycles anywhere at ground level except inside buildings.
• Ground floors of buildings consist of rectangles. If two rectangles making up ground floors touch, they share

interior space. In that case, they are considered to be part of the same building.
• Two different buildings do not touch, although they can be quite close. (Bicycle messengers— skinny to a

fault—can travel between any two different buildings.)
• Starting and stopping points for any given trip are never in the interiors of buildings.
• It is always possible to travel from the starting to stopping point for each trip.

Input for your program will be several scenarios of bicycle delivery trips. Each scenario is a bird’s-eye snapshot
showing the locations of the buildings and the starting and ending points for a route (all measured with respect to
a hypothetical infinite square grid). The picture below is a typical snapshot of buildings, which are shaded, and the
route’s starting and stopping points. All are superimposed on a grid.

0 1 2 3 4 5 6 7 8 9 10 1211

1

2

3

4

5

6

7

8

9

10

11

12

13

start

stop

The input file represents several snapshots. Input for each snapshot consists of lines as follows:

First line: n The number of rectangles comprising buildings in the
snapshot (an integer greater than or equal to 0)

Second line: x1 y1 x2 y2 The x- and y-coordinates of the starting and stopping points
of the route.

Remaining n lines: x1 y1 x2 y2 x3 y3 The x- and y-coordinates of three vertices of the rectangle
representing a rectangular part of a building.

The x- and y-coordinates of all input data are real numbers between 0 and 1000 inclusive. Successive coordinates
on a line are separated by one or more blanks. The end of all input is signified by a “First line” with a negative
number of rectangles.

To avoid problems with real precision, the input data set restricts all coordinates to be between 0 and 1000
inclusive. The interior enclosed by any two intersecting rectangles will be at least large enough to contain a square
of .01 unit on a side. In addition, two buildings that do not intersect will be at least .01 unit apart.

Output for each snapshot is the number of the input record (snapshot #1, snapshot #2, etc.) and the distance of the
shortest path from the starting to stopping points that does not go through the interior of any building. Diasance
should be shown with two digits to the right of the decimal. Output for successive snapshots should be separated
by blank lines.

The following input data file corresponds to the single snapshot from the illustration on the opposite side.

Sample Input
5
6.5 9 10 3
1 5 3 3 6 6
5.25 2 8 2 8 3.5
6 10 6 12 9 12
7 6 11 6 11 8
10 7 11 7 11 11
-1

Output for the Sample Input
Snapshot #:1
 route distance: 7.28

