
UW-Madison 2009
ICPC Team Practice 1

Username:______________

Password:______________

The problems will be referred to by the names (respective of order):
• dominos;
• tictactoe;
• crystal;
• signals;
• home;
• logo;
• subway;
• grid; and
• wifi.

Problem D: Dominos

Dominos are lots of fun. Children like to stand the tiles on their side in long lines.
When one domino falls, it knocks down the next one, which knocks down the one
after that, all the way down the line. However, sometimes a domino fails to knock
the next one down. In that case, we have to knock it down by hand to get the
dominos falling again.

Your task is to determine, given the layout of some domino tiles, the minimum
number of dominos that must be knocked down by hand in order for all of the
dominos to fall.

Input Specification

The first line of input contains one integer specifying the number of test cases to
follow. Each test case begins with a line containing two integers, each no larger
than 100 000. The first integer n is the number of domino tiles and the second
integer m is the number of lines to follow in the test case. The domino tiles are
numbered from 1 to n. Each of the following lines contains two integers x and y
indicating that if domino number x falls, it will cause domino number y to fall as
well.

Sample Input

1
3 2
1 2
2 3

Output Specification

For each test case, output a line containing one integer, the minimum number of
dominos that must be knocked over by hand in order for all the dominos to fall.

Output for Sample Input

1

Ondřej Lhoták

Problem A: Tic Tac Toe

The game of Tic Tac Toe is played on an n-by-n grid
(where n is usually but not necessarily three). Two
players alternate placing symbols on squares of the
grid. One player places Xes and the other player
places Os. The player placing Xes always goes first.
When the grid contains a vertical, horizontal, or
diagonal sequence of at least m consecutive squares
all containing the same symbol, the game ends and
the winner is the player who placed the last symbol.
When all the squares of the grid are filled, if neither
player has won, the game ends in a draw.

Your task is to analyze the state of a Tic Tac Toe board, and determine
whether the game is still in progress, or if it has completed, who won, or if the
game ended in a draw. You should also detect erroneous states of the Tic Tac
Toe board that could never occur during an actual game.

Input Specification

The first line of input contains an integer indicating the number of test cases.
The first line of each test case contains the two integers n and m, separated by
spaces, with 1 <= m <= n <= 2000. The following n lines of input each
contain one row of the Tic Tac Toe board. Each of these lines contains exactly
n characters, and each of these characters is either an X, an O, or a period (.),
indicating an empty square.

Sample Input

1
3 3
..X
OOX
..X

Output Specification

Output a single line for each test case containing the appropriate string X WINS,
O WINS, or DRAW if the game is over, the string IN PROGRESS if the game has not yet
finished, or ERROR if the state of the board could never occur during a game.

Output for Sample Input

X WINS

Ondřej Lhoták, Malcolm Sharpe

November 13, 2004 ACM North Central North America Regional Programming Contest Problem 6

Problem 6: Going Home
A little region of the world is divided into equal-sized rectangular areas. In this little region there
are n little men and n little houses. Every little man can move horizontally or vertically but not
diagonally to an adjacent area, being paid a $1.00 travel fee for every move he makes between
adjacent areas until he enters a little house. Your task is to compute the minimum travel fees
required to get these n little men into those n little houses. The task is complicated by the
restriction that each little house can accommodate only one little man.

The input is a map of the region, and has one of the characters ‘.’, ‘H’, or ‘m’ in each area. A ’.’
identifies an empty area, an ’H’ identifies an area containing a little house, and an ‘m’ identifies an
area containing a little man.

Each area is quite large; it can hold up to n little men and a little house at the same time. A little
man can also enter an area containing a little house without necessarily entering the little house.
Initially, however, each area will hold at most one little man or one little house.

Input
The input will contain multiple cases. Each case starts with a line having two integers N and M; N is
the number of rows (of areas) in the grid map, and M is the number of columns (of areas). The
remainder of the input for the case will be N lines giving the map, one line for each row of areas. N
and M are each between 2 and 100, inclusive. There may be one or more trailing whitespace (blank
or tab) characters on a line. The number of ‘H’s on the map will equal the number of ‘m’s on the map,
and there will be at most 100 houses. The last case will be followed by a line containing two integer
zeroes.

Output
For each case, display the case number (they start with 1 and increase sequentially) and the
minimum number of dollars required for travel fees. The output format should resemble that shown
in the sample output.

Sample Input Output for the Sample Input
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Case 1: $2
Case 2: $10
Case 3: $28

November 13, 2004 ACM North Central North America Regional Programming Contest Problem 6

Problem E: Logo 2

Logo is a programming language built around a turtle. Commands in the
language cause the turtle to move. The turtle has a pen attached to it. As the
turtle moves, it draw lines on the page. The turtle can be programmed to draw
interesting pictures.

We are interested in making the turtle draw a picture, then return to the point
that it started from. For example, we could give the turtle the following program:

fd 100 lt 120 fd 100 lt 120 fd 100

The command fd causes the turtle to move forward by the specified number of
units. The command lt causes the turtle to turn left by the specified number of
degrees. Thus the above commands cause the turtle to draw an equilateral
triangle with sides 100 units long. Notice that after executing the commands, the
turtle ends up in the same place as it started. The turtle understands two
additional commands. The command bk causes the turtle to move backward by the
specified number of units. The command rt causes the turtle to turn right by the
specified number of degrees. The distances and angles in all commands are
always non-negative integers.

Unfortunately, we have been messy in writing the program down, and cannot read
our own writing. One of the numbers in the program is missing. Assuming the
turtle ends up at the place that it started at the end of its journey, can you find the
missing number?

Input Specification

The first line of input contains one integer specifying the number of test cases to
follow. Each test case starts with a line containing one integer, the number of
commands to follow. The commands follow, one on each line. Each test case will
contain no more than 1000 commands. The argument of each command is either
an integer or a question mark (?). There will be exactly one question mark in
each test case.

Sample Input

1
5
fd 100
lt 120
fd ?
lt 120
fd 100

Output Specification

For each test case, output line containing a single integer n such that when the
question mark in the program is replaced by n, the turtle ends up at the same
point that it started from once the program completes. If the question mark is the
argument of an lt or rt command, the angle in the output must be between 0 and
359 degrees, inclusive. The correct answer will always be an integer, and we
guarantee that for every test case, there will be only one correct answer.

Output for Sample Input

100

Ondřej Lhoták

Subway

You have just moved from a quiet Madison neighbourhood to a big, noisy city. Instead of getting to ride your

bike to school every day, you now get to walk and take the subway. Because you don't want to be late for

class, you want to know how long it will take you to get to school.

You walk at a speed of 10 km/h. The subway travels at 40 km/h. Assume that you are lucky, and whenever

you arrive at a subway station, a train is there that you can board immediately. You may get on and off the

subway any number of times, and you may switch between different subway lines if you wish. All subway

lines go in both directions.

The input begins with an integer representing the number of cases to solve. Each case consists of the x,y

coordinates of your home and your school, followed by the number s of subway lines in the city. The

descriptions of these s lines follow- each description consists of the non-negative integer x,y coordinates of

each stop on the line, in order. You may assume the subway runs in a straight line between adjacent stops,

and the coordinates represent an integral number of metres. Each line has at least two stops. The end of each

subway line is followed by the dummy coordinate pair -1,-1. In total there are at most 200 subway stops in

the city.

For each test case, output the case number followed by the number of minutes it will take you to get to school

in that case, rounded to the nearest minute, taking the fastest route. Print the answer for each test case on a

separate line.

Sample Input

1

0 0 10000 1000 2

0 200 5000 200 7000 200 -1 -1

2000 600 5000 600 10000 600 -1 -1

Sample Output

Case 1: 21 minutes

Problem D: Grid Speed

Consider a grid in which north-south streets, separated by gaps of 10 miles each,
are elevated above east-west streets laid out in a similar fashion (see illustration
for the case of a 6 by 6 grid). All streets are two-way. Entrance and exit ramps
connect the streets at every intersection. Because there are no traffic lights,
switching from a north-south street to an east-west street, and vice versa, takes
essentially no time. The grid has very little traffic, but the local police patrol so
carefully for speeding that there are virtually no speeders.

The speed limits follow an unusual pattern. The speed limits are separately
posted for each street and are the same for the entire street in both directions. In
the illustration above, let us label the intersections using their column and row
numbers: the southwestern corner of the grid is (1, 1), the southeastern corner is
(6, 1), and so on. Part of your task is to determine the shortest time in which we
can get from (1, 1) to (6, 3) while obeying speed limits.

However, after the Kyoto disagreement, just being fast is not good enough, one
also has to be fuel efficient. Fuel consumption of a car is given in miles-per-gallon
(mpg) and depends on speed of the car. Speed of a car is given in miles-per-hour
(mph) and, in this digital age, the speed of a car is always a positive integer
multiple of 5. The formula relating mpg to mph is a very simple one: a car
travelling at v mph makes 80-0.03*v2 mpg. In a given grid of streets we would
like to travel from intersection (xs, ys) to intersection (xt, yt). You are to

determine the fastest and the most fuel efficient way of making the trip such that:

the car does not change speed between intersections,
the car obeys all speed limits,
the car travels the shortest possible distance between the start and finish,
and
the car arrives at the destination in the given time interval.

Input

The first line of input contains an integer t, the number of scenarios to be
processed. The data for each scenario occupy 5 lines. The first line contains an
integer n<=10 which is the number of horizontal and vertical streets. The second
line contains an integer which is the grid unit size in miles, smaller than 100. The
third and fourth lines contain n integers each, specifying the speed limits on the
horizontal and vertical streets, respectively. The largest speed limit is 50. The last
line of data for a scenario contains 6 integers. The first four are xs, ys, xt, and yt.

The last two integers give the shortest and the longest allowed time to travel in
minutes, inclusive, both not bigger than 1000.

Output

For each scenario, output two or three lines in the format given in the sample
output. If the travel is possible then, on the second line of output, report the
earliest possible arrival time (but within the imposed limits) and fuel consumed
(least possible for this travel time) and, on the third line, report the earliest arrival
time (but within the imposed limits) that consumes the minimum amount of fuel.
The time is to be reported in minutes (integer), rounded up.

Sample input

3
8
20
10 20 30 40 50 50 50 50
50 50 50 50 50 50 40 50
2 3 7 8 300 320
8
2
10 20 20 30 10 20 10 10
10 20 20 30 10 20 10 20
6 8 2 4 10 39
10
10
30 20 20 10 10 20 10 10 20 20
40 20 10 20 10 20 20 10 10 20
1 1 10 10 100 500

Output for sample input

Scenario 1:
The earliest arrival: 300 minutes, fuel 6.25 gallons
The economical travel: 318 minutes, fuel 5.60 gallons
Scenario 2:
IMPOSSIBLE
Scenario 3:
The earliest arrival: 405 minutes, fuel 4.14 gallons
The economical travel: 498 minutes, fuel 2.76 gallons

Piotr Rudnicki, based on Dennis E. Shasha's column, Scientific American, March
2004

Problem B: WiFi

One day, the residents of Main Street got together and decided that they would
install wireless internet on their street, with coverage for every house. Now they
need your help to decide where they should place the wireless access points.
They would like to have as strong a signal as possible in every house, but they
have only a limited budget for purchasing access points. They would like to place
the available access points so that the maximum distance between any house and
the access point closest to it is as small as possible.

Main Street is a perfectly straight road. The street number of each house is the
number of metres from the end of the street to the house. For example, the
house at address 123 Main Street is exactly 123 metres from the end of the
street.

Input Specification

The first line of input contains an integer specifying the number of test cases to
follow. The first line of each test case contains two positive integers n, the
number of access points that the residents can buy, and m, the number of houses
on Main Street. The following m lines contain the house numbers of the houses
on Main Street, one house number on each line. There will be no more than 100
000 houses on Main Street, and the house numbers will be no larger than one
million.

Sample Input

1
2 3
1
3
10

Output Specification

For each test case, output a line containing one number, the maximum distance
between any house and the access point nearest to it. Round the number to the
nearest tenth of a metre, and output it with exactly one digit after the decimal
point.

Output for Sample Input

1.0

Ondřej Lhoták

