
Imagine you are an explorer trying to cross a desert.
Many dangers and obstacles are waiting on your path.
Your life depends on your trusty old jeep having a
large enough fuel tank. But how large exactly does it
have to be? Compute the smallest volume needed to
reach your goal on the other side.

The following events describe your journey:

Fuel consumption n
means that your truck needs n litres of gasoline
per 100 km. n is an integer in the range [1..30].
Fuel consumption may change during your
journey, for example when you are driving up
or down a mountain.

Leak
means that your truck's fuel tank was punctured by a sharp object. The tank will start leaking gasoline
at a rate of 1 litre of fuel per kilometre. Multiple leaks add up and cause the truck to lose fuel at a faster
rate.

However, not all events are troublesome in this desert. The following events increase your chances of
survival:

Gas station
lets you fill up your tank.

Mechanic
fixes all the leaks in your tank.

And finally:

Goal
means that you have safely reached the end of your journey!

Input Format

The input consists of a series of test cases. Each test case consists of at most 50 events. Each event is
described by an integer, the distance (in kilometres measured from the start) where the event happens,
followed by the type of event as above.

In each test case, the first event is of the form '0 Fuel consumption n', and the last event is of the form
'd Goal' (d is the distance to the goal).

Events are given in sorted order by non-decreasing distance from the start, and the 'Goal' event is always the
last one. There may be multiple events at the same distance—process them in the order given.

Input is terminated by a line containing '0 Fuel consumption 0' which should not be processed.

Output Format

For each test case, print a line containing the smallest possible tank volume (in litres, with three digits
precision after the decimal point) that will guarantee a successful journey.

Sample Input

0 Fuel consumption 10
100 Goal
0 Fuel consumption 5
100 Fuel consumption 30
200 Goal
0 Fuel consumption 20
10 Leak
25 Leak
25 Fuel consumption 30
50 Gas station
70 Mechanic
100 Leak
120 Goal
0 Fuel consumption 0

Sample Output

10.000
35.000
81.000

Martin Müller

Problem C
Ancient Messages
Problem ID: ancient

In order to understand early civilizations, archaeologists often study texts written in ancient languages. One such
language, used in Egypt more than 3000 years ago, is based on characters called hieroglyphs. Figure C.1 shows six
hieroglyphs and their names. In this problem, you will write a program to recognize these six characters.

Ankh Wedjat Djed Scarab Was Akeht

Figure C.1: Six hieroglyphs

Input

The input consists of several test cases, each of which describes an image containing one or more hieroglyphs chosen
from among those shown in Figure C.1. The image is given in the form of a series of horizontal scan lines consisting
of black pixels (represented by 1) and white pixels (represented by 0). In the input data, each scan line is encoded
in hexadecimal notation. For example, the sequence of eight pixels 10011100 (one black pixel, followed by two
white pixels, and so on) would be represented in hexadecimal notation as 9c. Only digits and lowercase letters a
through f are used in the hexadecimal encoding. The first line of each test case contains two integers, H and W. H
(0 < H 200) is the number of scan lines in the image. W (0 < W 50) is the number of hexadecimal characters
in each line. The next H lines contain the hexadecimal characters of the image, working from top to bottom. Input
images conform to the following rules:

• The image contains only hieroglyphs shown in Figure C.1.
• Each image contains at least one valid hieroglyph.
• Each black pixel in the image is part of a valid hieroglyph.
• Each hieroglyph consists of a connected set of black pixels and each black pixel has at least one other black

pixel on its top, bottom, left, or right side.
• The hieroglyphs do not touch and no hieroglyph is inside another hieroglyph.
• Two black pixels that touch diagonally will always have a common touching black pixel.
• The hieroglyphs may be distorted but each has a shape that is topologically equivalent to one of the symbols in

Figure C.11.

The last test case is followed by a line containing two zeros.

1Two figures are topologically equivalent if each can be transformed into the other by stretching without tearing.

ICPC 2011 World Finals Problem C: Ancient Messages

Output

For each test case, display its case number followed by a string containing one character for each hieroglyph recognized
in the image, using the following code:

Ankh: A
Wedjat: J
Djed: D
Scarab: S
Was: W
Akhet: K

In each output string, print the codes in alphabetic order. Follow the format of the sample output.

The sample input contains descriptions of test cases shown in Figures C.2 and C.3. Due to space constraints not all of
the sample input can be shown on this page.

Figure C.2: AKW Figure C.3: AAAAA

Sample input Output for the Sample Input

100 25
0000000000000000000000000
0000000000000000000000000
...(50 lines omitted)...

00001fe0000000000007c0000
00003fe0000000000007c0000
...(44 lines omitted)...

0000000000000000000000000
0000000000000000000000000
150 38
00000000000000000000000000000000000000
00000000000000000000000000000000000000

...(75 lines omitted)...
0000000003fffffffffffffffff00000000000
0000000003fffffffffffffffff00000000000

...(69 lines omitted)...
00000000000000000000000000000000000000
00000000000000000000000000000000000000
0 0

Case 1: AKW
Case 2: AAAAA

ICPC 2011 World Finals Problem C: Ancient Messages

zefrosnbrick
8 63c08002418003c303c1810287e106618387e18284218007e8 103c3c3c3c3c24242424243c3c3c3c3c18181818187e7e7e7e7e1818181818181818181818181818180 0

3151 - Land Division Tax
Latin America - South America - 2004/2005

PDF PostScript Submit Ranking

International Concrete Projects Company (ICPC) is a construction company which specializes in building houses for the high-end
market. ICPC is planning a housing development for new homes around a lake. The houses will be built in lots of different sizes,
but all lots will be on the lake shore. Additionally, every lot will have exactly two neighbors in the housing development: one to the
left and one to the right.

ICPC owns the land around the lake and needs to divide it into lots according to the housing development plan. However, the
County Council has a curious regulation regarding land tax, intended to discourage the creation of small lots:

1. land can only be divided using a sequence of land divisions;
2. a land division is an operation that divides one piece of land into two pieces of land; and
3. for each land division, a land division tax must be paid.

Denoting by A the area of the largest resulting part of the division, the value of the land division tax is A × F, where F is the
division tax factor set yearly by the County Council. Note that due to (2), in order to divide a piece of land into N lots, N - 1 land
divisions must be performed, and therefore N - 1 payments must be made to the County Council.

For example, considering the figure above, if the division tax factor is 2.5 and the first land division separates the lot of 500 units of
area from the other lots, the land division tax to be paid for this first division is 2.5 × (300 + 200 + 100 + 100 + 100). If the next land
division separates the lot of 300 units together with its neighbor lot of 100 units, from the set of the remaining lots, an additional 2.5
× (300 + 100) must be paid in taxes, and so on. Note also that some land divisions are not possible, due to (2). For example, after the
first land division mentioned above, it is not possible to make a land division to separate the lot of 300 units together with the lot of
200 units from the remaining three lots, because more than two parts would result from that operation.

Given the areas of all lots around the lake and the current value of the division tax factor, you must write a program to determine the
smallest total land division tax that should be paid to divide the land according to the housing development plan.

Input

The input contains several test cases. The first line of a test case contains an integer N and a real F, indicating respectively the
number of lots (1 ≤ N ≤ 200) and the land division tax factor (with precision of two decimal digits, 0 < F ≤ 5.00). The second line of
a test case contains N integers X

i
, representing the areas of contiguous lots in the development plan (0 < X

i
 ≤ 500, for 1 ≤ i ≤ N);

furthermore, X
k
 is neighbour to X

k+1
 for 1 ≤ k ≤ N - 1, and X

N
 is neighbour to X

1
. The end of input is indicated by N = F = 0.

Output

For each test case in the input your program must produce a single line of output, containing the minimum total land division tax, as
a real number with precision of two decimal digits.

Sample Input

4 1.50

2 1 4 1

6 2.50

300 100 500 100 100 200

0 0

Sample Output

13.50

4500.00

South America 2004-2005

ACM ICPC 2006–2007, Northeastern European Regional Contest

St Petersburg – Barnaul – Tashkent – Yerevan, November 29, 2006

Problem C. Cellular Automaton
Input file: cell.in
Output file: cell.out

A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number
of discrete time steps according to a set of rules that describe the new state of a cell based on the states
of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the
automaton of order n are numbered from 1 to n.

The order of the cell is the number of different values it may contain. Usually, values of a cell of order
m are considered to be integer numbers from 0 to m° 1.

One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed.
In this problem we examine the special kind of cellular automaton — circular cellular automaton of order
n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.

A distance between cells i and j in n,m-automaton is defined as min(|i° j|, n° |i° j|). A d-environment

of a cell is the set of cells at a distance not greater than d.

On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after
d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.

The following picture shows 1-step of the 5,3-automaton.

1
1

2 2
2
3

14

2
5

2
1

2 2
2
3

24

1
5

The problem is to calculate the state of the n,m-automaton after k d-steps.

Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ∑ n ∑ 500,
1 ∑ m ∑ 1 000 000, 0 ∑ d < n

2 , 1 ∑ k ∑ 10 000 000). The second line contains n integer numbers
from 0 to m° 1 — initial values of the automaton’s cells.

Output
Output the values of the n,m-automaton’s cells after k d-steps.

Sample input and output
cell.in cell.out

5 3 1 1
1 2 2 1 2

2 2 2 2 1

5 3 1 10
1 2 2 1 2

2 0 0 2 2

Page 4 of 15

3215 − Chandelier

Europe − Northeastern Europe & Russian Republic − 2004/2005

Lamps−O−Matic company assembles very large chandeliers. A chandelier consists of multiple levels. On the
first level crystal pendants are attached to the rings. Assembled rings and new pendants are attached to the
rings of the next level, and so on. At the end there is a single large ring −− the complete chandelier with
multiple smaller rings and pendants hanging from it. A special−purpose robot assembles chandeliers. It has a
supply of crystal pendants and empty rings, and a stack to store elements of a chandelier during assembly.
Initially the stack is empty. Robot executes a list of commands to assemble a chandelier.

On command ``a'' robot takes a new crystal pendant and places it on the top of the stack. On command ``1'' to
``9'' robot takes the corresponding number of items from the top of the stack and consecutively attaches them
to the new ring. The newly assembled ring is then placed on the top of the stack. At the end of the program
there is a single item on the stack −− the complete chandelier. Unfortunately, for some programs it turns out
that the stack during their execution needs to store too many items at some moments. Your task is to optimize
the given program, so that the overall design of the respective chandelier remains the same, but the maximal
number of items on the stack during the execution is minimal. A pendant or any complex multi−level
assembled ring count as a single item of the stack. The design of a chandelier is considered to be the same if
each ring contains the same items in the same order. Since rings are circular it does not matter what item is on
the top of the stack when the robot receives a command to assemble a new ring, but the relative order of the

items on the stack is important. For example, if the robot receives command ``4'' when items
i
1
, i

2
, i

3
, i

4

are on the top of the stack in this order (i1

 being the topmost), then the same ring is also assembled if these

items are arranged on the stack in the following ways: i
2
, i

3
, i

4
, i

1
, or i

3
, i

4
, i

1
, i

2
, or i

4
, i

1
, i

2
, i

3

.

Input

Input file contains several test cases. Each of them consists of a single line with a valid program for the robot.
The program consists of at most 10 000 characters.

Output

For each test case, print two output lines. On the first line write the minimal required stack capacity (number
of items it can hold) to assemble the chandelier. On the second line write some program for the assembly
robot that uses stack of this capacity and results in the same chandelier.

Sample Input

aaaaa3aaa2aaa45

3215 − Chandelier 1/2

http://acmicpc-live-archive.uva.es/nuevoportal/region.php?r=nea&year=2004

Sample Output

6

aaa3aaa2aaa4aa5

Northeastern Europe & Russian Republic 2004−2005

3215 − Chandelier 2/2

The 2001 25th Annual acm International Collegiate

Programming Contest World Finals
sponsored by IBM

 Problem B
Say Cheese
Input: cheese.in

Once upon a time, in a giant piece of cheese, there lived a cheese mite named Amelia Cheese Mite. Amelia should
have been truly happy because she was surrounded by more delicious cheese than she could ever eat. Nevertheless,
she felt that something was missing from her life.

One morning, her dreams about cheese were interrupted by a noise she had never heard before. But she immediately
realized what it was — the sound of a male cheese mite, gnawing in the same piece of cheese! (Determining the
gender of a cheese mite just by the sound of its gnawing is by no means easy, but all cheese mites can do it. That’s
because their parents could.)

Nothing could stop Amelia now. She had to meet that other mite as soon as possible. Therefore she had to find the
fastest way to get to the other mite. Amelia can gnaw through one millimeter of cheese in ten seconds. But it turns
out that the direct way to the other mite might not be the fastest one. The cheese that Amelia lives in is full of holes.
These holes, which are bubbles of air trapped in the cheese, are spherical for the most part. But occasionally these
spherical holes overlap, creating compound holes of all kinds of shapes. Passing through a hole in the cheese takes
Amelia essentially zero time, since she can fly from one end to the other instantly. So it might be useful to travel
through holes to get to the other mite quickly.

For this problem, you have to write a program that, given the locations of both mites and the holes in the cheese,
determines the minimal time it takes Amelia to reach the other mite. For the purposes of this problem, you can
assume that the cheese is infinitely large. This is because the cheese is so large that it never pays for Amelia to leave
the cheese to reach the other mite (especially since cheese-mite eaters might eat her). You can also assume that the
other mite is eagerly anticipating Amelia’s arrival and will not move while Amelia is underway.

Input
The input file contains descriptions of several cheese mite test cases. Each test case starts with a line containing a
single integer n (0 ≤ n ≤ 100), the number of holes in the cheese. This is followed by n lines containing four integers
xi, yi, zi, ri each. These describe the centers (xi, yi, zi) and radii ri (ri > 0) of the holes. All values here (and in the
following) are given in millimeters.

The description concludes with two lines containing three integers each. The first line contains the values xA, yA, zA,
giving Amelia’s position in the cheese, the second line containing xO, yO, zO, gives the position of the other mite.

The input file is terminated by a line containing the number –1.

Output
For each test case, print one line of output, following the format of the sample output. First print the number of the
test case (starting with 1). Then print the minimum time in seconds it takes Amelia to reach the other mite, rounded
to the closest integer. The input will be such that the rounding is unambiguous.

The 2001 ACM Programming Contest World Finals sponsored by IBM

Sample Input Output for the Sample Input
1
20 20 20 1
0 0 0
0 0 10
1
5 0 0 4
0 0 0
10 0 0
-1

Cheese 1: Travel time = 100 sec
Cheese 2: Travel time = 20 sec

