
 Cutting Sticks

You have to cut a wood stick into pieces. The most affordable company, The Analog
Cutting Machinery, Inc. (ACM), charges money according to the length of the stick
being cut. Their procedure of work requires that they only make one cut at a time.

It is easy to notice that different selections in the order of cutting can led to different
prices. For example, consider a stick of length 10 meters that has to be cut at 2, 4 and
7 meters from one end. There are several choices. One can be cutting first at 2, then
at 4, then at 7. This leads to a price of 10 + 8 + 6 = 24 because the first stick was of
10 meters, the resulting of 8 and the last one of 6. Another choice could be cutting at
4, then at 2, then at 7. This would lead to a price of 10 + 4 + 6 = 20, which is a better
price.

Your boss trusts your computer abilities to find out the minimum cost for cutting a
given stick.

Input

The input will consist of several input cases. The first line of each test case will
contain a positive number l that represents the length of the stick to be cut. You can
assume l < 1000. The next line will contain the number n (n < 50) of cuts to be made.

The next line consists of n positive numbers ci (0 < ci < l) representing the places
where the cuts have to be done, given in strictly increasing order.

An input case with l = 0 will represent the end of the input.

Output

You have to print the cost of the optimal solution of the cutting problem, that is the
minimum cost of cutting the given stick. Format the output as shown below.

Sample Input

100
3
25 50 75
10
4
4 5 7 8
0

Sample Output

The minimum cutting is 200.
The minimum cutting is 22.

Miguel Revilla
2000-08-21

Shoemaker's Problem

Shoemaker has N jobs (orders from customers) which he must make. Shoemaker can
work on only one job in each day. For each ith job, it is known the integer Ti

(1<=Ti<=1000), the time in days it takes the shoemaker to finish the job. For each
day of delay before starting to work for the ith job, shoemaker must pay a fine of Si

(1<=Si<=10000) cents. Your task is to help the shoemaker, writing a programm to
find the sequence of jobs with minimal total fine.

The Input

The input begins with a single positive integer on a line by itself indicating
the number of the cases following, each of them as described below. This line
is followed by a blank line, and there is also a blank line between two
consecutive inputs.

First line of input contains an integer N (1<=N<=1000). The next N lines each
contain two numbers: the time and fine of each task in order.

The Output

For each test case, the output must follow the description below. The outputs
of two consecutive cases will be separated by a blank line.

You programm should print the sequence of jobs with minimal fine. Each job should
be represented by its number in input. All integers should be placed on only one
output line and separated by one space. If multiple solutions are possible, print the
first lexicographically.

Sample Input

1

4
3 4
1 1000
2 2
5 5

Sample Output

2 1 3 4

Alex Gevak

September 16, 2000(Revised 4-10-00, Antonio Sanchez)

Stacking Boxes

Background

Some concepts in Mathematics and Computer Science are simple in one or two
dimensions but become more complex when extended to arbitrary dimensions.
Consider solving differential equations in several dimensions and analyzing the
topology of an n-dimensional hypercube. The former is much more complicated than
its one dimensional relative while the latter bears a remarkable resemblance to its
``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box
(2,3) might represent a box with length 2 units and width 3 units. In three dimensions
the box (4,8,9) can represent a box (length, width, and height). In 6

dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can
analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are
to determine the longest nesting string of boxes, that is a sequence of boxes

 such that each box nests in box (.

A box D = () nests in a box E = () if there is some

rearrangement of the such that when rearranged each dimension is less than the

corresponding dimension in box E. This loosely corresponds to turning box D to see if
it will fit in box E. However, since any rearrangement suffices, box D can be
contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged
as (6,2) so that each dimension is less than the corresponding dimension in E. The
box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of
D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box
E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = () nests in box E = (

) if there is a permutation of such that ()

``fits'' in () i.e., if for all .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line
consisting of the the number of boxes k in the sequence followed by the
dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box
on one line separated by one or more spaces. The line in the sequence ()

gives the measurements for the box.

There may be several box sequences in the input file. Your program should process all
of them and determine, for each sequence, which of the k boxes determine the
longest nesting string and the length of that nesting string (the number of boxes in
the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is
1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string
on one line followed on the next line by a list of the boxes that comprise this string in
order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first,
the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the
input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5

4
7 2 5 6

Problem A

The Poor Giant

Input: Standard Input

Output: Standard Output

Time Limit: 1 second

On a table, there are n apples, the i-th apple has the weight k+i(1<=i<=n). Exactly
one of the apples is sweet, lighter apples are all bitter, while heavier apples are all
sour. The giant wants to know which one is sweet, the only thing he can do is to eat
apples. He hates bitter apples and sour apples, what should he do?
For examples, n=4, k=0, the apples are of weight 1, 2, 3, 4. The gaint can first eat
apple #2.
if #2 is sweet, the answer is #2
if #2 is sour, the answer is #1
if #2 is bitter, the answer might be #3 or #4, then he eats #3, he'll know the answer
regardless of the taste of #3
The poor gaint should be prepared to eat some bad apples in order to know which one
is sweet. Let's compute the total weight of apples he must eat in all cases.
#1 is sweet: 2
#2 is sweet: 2
#3 is sweet: 2 + 3 = 5
#4 is sweet: 2 + 3 = 5
The total weights = 2 + 2 + 5 + 5 = 14.
This is not optimal. If he eats apple #1, then he eats total weight of 1, 3, 3, 3 when
apple #1, #2, #3 and #4 are sweet respectively. This yields a solution of
1+3+3+3=13, beating 14. What is the minimal total weight of apples in all cases?

Input

The first line of input contains a single integer t(1<=t<=100), the number of test
cases. The following t lines each contains a positive integer n and a non-negative
integer k(1<=n+k<=500).

Output

For each test case, output the minimal total weight in all cases as shown in the
sample output.

Sample Input Sample Output
Problem setter: Rujia Liu, Member of Elite Problemsetters' Panel

Problem G

e-Coins
Input: standard input

Output: standard output
Time Limit: 10 seconds
Memory Limit: 32 MB

At the Department for Bills and Coins, an extension of today's monetary system has newly been proposed, in
order to make it fit the new economy better. A number of new so called e-coins will be produced, which, in
addition to having a value in the normal sense of today, also have an InfoTechnological value. The goal of
this reform is, of course, to make justice to the economy of numerous dotcom companies which, despite the
fact that they are low on money surely have a lot of IT inside. All money of the old kind will keep its
conventional value and get zero InfoTechnological value.

To successfully make value comparisons in the new system, something called the e-modulus is introduced.
This is calculated as SQRT(X*X+Y*Y), where X and Y hold the sums of the conventional and
InfoTechnological values respectively. For instance, money with a conventional value of $3 altogether and an
InfoTechnological value of $4 will get an e-modulus of $5. Bear in mind that you have to calculate the sums
of the conventional and InfoTechnological values separately before you calculate the e-modulus of the
money.

To simplify the move to e-currency, you are assigned to write a program that, given the e-modulus that shall
be reached and a list of the different types of e-coins that are available, calculates the smallest amount of
e-coins that are needed to exactly match the e-modulus. There is no limit on how many e-coins of each type
that may be used to match the given e-modulus.

Input
A line with the number of problems n (0<n<=100), followed by n times:

A line with the integers m (0<m<=40) and S (0<S<=300), where m indicates the number of different
e-coin types that exist in the problem, and S states the value of the e-modulus that shall be matched
exactly.
m lines, each consisting of one pair of non-negative integers describing the value of an e-coin. The first
number in the pair states the conventional value, and the second number holds the InfoTechnological
value of the coin.

When more than one number is present on a line, they will be separated by a space. Between each problem,
there will be one blank line.

Output
The output consists of n lines. Each line contains either a single integer holding the number of coins
necessary to reach the specified e-modulus S or, if S cannot be reached, the string "not possible".

Sample Input:
3
2 5
0 2
2 0
3 20
0 2

2 0
2 1
3 5
3 0
0 4
5 5

Sample Output:
not possible
10
2

(Joint Effort Contest, Problem Source: Swedish National Programming Contest, arranged by
department of Computer Science at Lund Institute of Technology.)

Problem B: Advanced Causal Measurements (ACM)

Causality is a very important concept in theoretical physics. The basic elements in a
discussion of causality are events. An event e is described by its time of occurrence t,
and its location, x, and we write e = (t,x). For our concerns, all events happen in the
one dimensional geometric space and thus locations are given by a single real number
x as a coordinate on x-axis. Usually, theoretical physicists like to define the speed of
light to be 1, so that time and space have the same units (actual physical units
frighten and confuse theorists).

One event e1 = (t1,x1) is a possible cause for a second event e2 = (t2,x2) if a signal
emitted at e1 could arrive at e2. Signals can't travel faster than the speed of light, so
this condition can be stated as:

e1 is a possible cause for e2 iff t2 >= t1+|x2-x1|

Thus an event at (-1,1) could cause events at (0,0), (1,2), and (1,3), for example, but
could not have caused events at (1,4) or (-2,1). Note that one event can cause several
others.

Recently, scientists have observed
several unusual events in the
geometrically one dimensional universe,
and using current theories, they know
how many causes were responsible for
these observations, but they know
nothing about the time and space
coordinates of the causes. You asked to
write a program to determine the latest
time at which the earliest cause could
have occurred (i.e. the time such that at
least one cause must have occurred on
or before this time). Somewhat
surprisingly, all the observed events
have both space and time coordinates expressed by integer numbers in the range
-1000000 ≤ t, x ≤ 1000000.

The figure on the right illustrates the first case from input: the earliest single event as
a possible cause of all four events.

The first line of input is the number of cases which follow. Each case begins with a
line containing the number n of events and the number m of causes,
1 ≤ n, m ≤ 100000. Next follows n lines containing the t and x coordinates for each
event.

Output consists of a single line for each case in the format as in the sample output,
giving the latest time at which the earliest cause could have occurred, this will be an
integer as our time units are not divisible.

Sample Input

4
4 1
1 -1
1 3
1 4
2 6
4 2
1 -1
1 3
1 4
2 6
4 3
1 -1
1 3
1 4
2 6
4 4
1 -1
1 3
1 4
2 6

Output for Sample Input

Case 1: -2
Case 2: 0
Case 3: 0
Case 4: 1

Daniel Robbins

Problem D

The Grand Dinner
Input: standard input

Output: standard output
Time Limit: 15 seconds
Memory Limit: 32 MB

Each team participating in this year’s ACM World Finals contest is expected to join the grand dinner to be
arranged after the prize giving ceremony ends. In order to maximize the interaction among the members of
different teams, it is expected that no two members of the same team sit at the same table.

Now, given the number of members in each team (including contestants, coaches, reserves, guests etc.) and
the seating capacity of each available table, you are to determine whether it is possible for the teams to sit as
described in the previous paragraph. If such an arrangement is possible you must also output one possible
seating arrangement. If there are multiple possible arrangements, any one is acceptable.

Input
The input file may contain multiple test cases. The first line of each test case contains two integers M (1 £

M £ 70) and N (1 £ N £ 50) denoting the number of teams and the number of tables respectively. The

second line of the test case contains M integers where the i-th (1 £ i £ M) integer mi (1 £ mi £ 100)

indicates the number of members of team i. The third line contains N integers where the j-th (1 £ j £ N)

integer nj (2 £ nj £ 100) indicates the seating capacity of table j.

A test case containing two zeros for M and N terminates the input.

Output
For each test case in the input print a line containing either 1 or 0 depending on whether or not there exists a
valid seating arrangement of the team members. In case of a successful arrangement print M additional lines
where the i-th (1 £ i £ M) of these lines contains a table number (an integer from 1 to N) for each of the
members of team i.

Sample Input
4 5
4 5 3 5
3 5 2 6 4
4 5
4 5 3 5
3 5 2 6 3
0 0

Sample Output
1
1 2 4 5
1 2 3 4 5

2 4 5
1 2 3 4 5
0

(World Finals Warm-up Contest, Problem Setter: Rezaul Alam Chowdhury)

Problem B: Bachet's Game

Bachet's game is probably
known to all but probably not
by this name. Initially there
are n stones on the table.
There are two players Stan
and Ollie, who move
alternately. Stan always
starts. The legal moves
consist in removing at least one but not more than k stones from the table. The
winner is the one to take the last stone.

Here we consider a variation of this game. The number of stones that can be removed
in a single move must be a member of a certain set of m numbers. Among the m
numbers there is always 1 and thus the game never stalls.

Input

The input consists of a number of lines. Each line describes one game by a sequence
of positive numbers. The first number is n <= 1000000 the number of stones on the
table; the second number is m <= 10 giving the number of numbers that follow; the
last m numbers on the line specify how many stones can be removed from the table in
a single move.

Input

For each line of input, output one line saying either Stan wins or Ollie wins assuming
that both of them play perfectly.

Sample input

20 3 1 3 8
21 3 1 3 8
22 3 1 3 8
23 3 1 3 8
1000000 10 1 23 38 11 7 5 4 8 3 13
999996 10 1 23 38 11 7 5 4 8 3 13

Output for sample input

Stan wins
Stan wins
Ollie wins
Stan wins
Stan wins
Ollie wins

Problem Setter: Piotr Rudnicki

