
Team Practice 1
14 October 2012: 1:00 – 6:00 PM

Contest Problem Set

The ten problems on this contest are referred to, in order, by the

following names:

stones, birdtree, money, duke1, dull, maze, howbig,

pizza, duke2, antimono

All problem submissions will be done via the PC2 system. Any

questions about the problems should be addressed through the

clarification system. Be sure that you are submitting your code

under the correct problem name!

No matter what the individual problem statements say, your program

should read its input from standard in and print its output to standard

out.

You may print to the printer at any point during the contest.

Printed code libraries and language references are permitted; all

other aids, including other internet resources and any code you may

have typed before the contest, are not.

Good Luck!

A Game of Stones

A game is played with a single pile of stones. Two players, Alice and Bob, start with N
stones in the pile and a rational number c ≥ 1. Alice goes first, and can take any positive
integer k1 number of stones from the pile so long as she doesn’t take the whole pile; that is,
1 ≤ k1 < N . Subsequently, the players take turns, on turn t taking an integer kt number of
stones from the pile, where kt satisfies 1 ≤ kt ≤ c · kt−1. That is, the current player takes
up to c times the number of stones just taken by the other player in his or her most recent
turn. The winner is the player to take the last stone.

Given an integer 2 ≤ N ≤ 30000 and rational number c ≥ 1 with numerator and
denominator both at most 1000, find out who wins, assuming perfect play from both Alice
and Bob.

Input: The first line contains the number of test cases, P ≤ 40. Each of P subsequent
lines contains three integers, N , A, and B, the number of stones and the numerator and
denominator of c, respectively. These numbers satisfy 2 ≤ N ≤ 30000 and 1 ≤ B ≤ A ≤
1000.

Output: For each test case, a output a single line containing either “Alice Wins” or “Bob
Wins”, depending on whether Alice or Bob will win with perfect play from both players.

Sample Input:

2

10 1 1

8 2 1

Output for Sample Input:

Alice Wins

Bob Wins

1

Problem B: Bird tree 3

B Bird tree

The Bird tree1 is an infinite binary tree, whose first 5 levels look as follows:

1/1

1/2

2/3

3/5

5/8 4/7

3/4

4/5 5/7

1/3

1/4

2/7 1/5

2/5

3/7 3/8

2/1

3/1

5/2

8/3 7/3

4/1

5/1 7/2

3/2

4/3

7/5 5/4

5/3

7/4 8/5

It can be defined as follows:

bird = 1/1

1/(bird+ 1) (1/bird) + 1

This is a co-recursive definition in which both occurrences of bird refer to the full (infinite) tree.
The expression bird+ 1 means that 1 is added to every fraction in the tree, and 1/bird means
that every fraction in the tree is inverted (so a/b becomes b/a).

Surprisingly, the tree contains every positive rational number exactly once, so every re-
duced fraction is at a unique place in the tree. Hence, we can also describe a rational number
by giving directions (L for left subtree, R for right subtree) in the Bird tree. For example, 2/5
is represented by LRR. Given a reduced fraction, return a string consisting of L’s and R’s: the
directions to locate this fraction from the top of the tree.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• one line with two integers a and b (1 ≤ a, b ≤ 109), separated by a ’/’. These represent
the numerator and denominator of a reduced fraction. The integers a and b are not both
equal to 1, and they satisfy gcd(a, b) = 1.

For every test case the length of the string with directions will be at most 10 000.

Output

Per test case:

• one line with the string representation of the location of this fraction in the Bird tree.

1Hinze, R. (2009). The Bird tree. J. Funct. Program., 19:491–508.

4 Problem B: Bird tree

Sample in- and output

Input Output

3
1/2
2/5
7/3

L
LRR
RLLR

NCPC 2009 Problem B: Money Matters 3

Problem B

Money Matters

Our sad tale begins with a tight clique of friends. Together they went on a trip to the
picturesque country of Molvania. During their stay, various events which are too horrible
to mention occurred. The net result was that the last evening of the trip ended with a
momentous exchange of “I never want to see you again!”s. A quick calculation tells you
it may have been said almost 50 million times!

Back home in Scandinavia, our group of ex-friends realize that they haven’t split the
costs incurred during the trip evenly. Some people may be out several thousand crowns.
Settling the debts turns out to be a bit more problematic than it ought to be, as many in
the group no longer wish to speak to one another, and even less to give each other money.

Naturally, you want to help out, so you ask each person to tell you how much money
she owes or is owed, and whom she is still friends with. Given this information, you’re
sure you can figure out if it’s possible for everyone to get even, and with money only being
given between persons who are still friends.

Input specifications

The first line contains two integers, n (2 ≤ n ≤ 10000), and m (0 ≤ m ≤ 50000), the
number of friends and the number of remaining friendships. Then n lines follow, each
containing an integer o (−10000 ≤ o ≤ 10000) indicating how much each person owes
(or is owed if o < 0). The sum of these values is zero. After this comes m lines giving
the remaining friendships, each line containing two integers x, y (0 ≤ x < y ≤ n − 1)
indicating that persons x and y are still friends.

Output specifications

Your output should consist of a single line saying “POSSIBLE” or “IMPOSSIBLE”.

Sample input 1 Sample output 1

5 3

100

-75

-25

-42

42

0 1

1 2

3 4

POSSIBLE

4 NCPC 2009 Problem B: Money Matters

Sample input 2 Sample output 2

4 2

15

20

-10

-25

0 2

1 3

IMPOSSIBLE

Duke of York, Part 1

Oh, the grand old duke of York
He had ten thousand men

He marched them up to the top of the hill
And he marched them down again.

The duke of York has got his men to the top of the hill, and now he needs to get them
down again! He would like to know how many ways there are for a man to march down the
hill without using up too much energy. He has a map of the hill, but he is not so good at
programming, so he has enlisted your help.

The hill can be represented as a rectangular grid of squares with N rows and M columns,
2 ≤ N,M ≤ 50. All of the squares in the first row are at the top of the hill, and all of the
squares in the Nth row are at the bottom. Every square s on the hill has an associated
base energy cost b, which is an integer between 0 and 9 inclusive, or it is impassable. The
total energy cost to walk onto the square s is the base energy cost b of s plus the direction
cost, which is 0 for going downhill, 1 for going left or right, and 3 for going uphill. One of
the duke’s men has an total starting energy of E, where 1 ≤ E ≤ 200. Making any move
subtracts its total energy cost from a man’s remaining energy. If a man doesn’t have at least
as much energy as it takes to move into a square, he can’t do it, nor can he move if he has
0 energy left even if his move would cost 0 energy. (The duke is okay with a man having
exactly 0 energy on reaching the bottom of the hill, though.)

A path down the hill is a sequence of moves (up, down, left, or right), starting from one
of the squares at the top of the hill and ending at one of the squares at the bottom of the
hill. Since the duke likes marching his men around, a path is permitted (but not required)
to continue on the hill in any direction after reaching the bottom of the hill, provided that
it eventually ends at the bottom. A path cannot start on, travel through, or end on an
impassable square.

You are required to compute the number of different paths down the hill that can be
travelled given a starting energy of E. Since this number may be very large, you should
output the answer modulo 1000000007 (that’s 109 + 7).

Input: The first line of input will contain an integer 1 ≤ C ≤ 20, the number of test cases.
The first line of each case will contain three integers: N , M , and E, with 2 ≤ N,M ≤ 50,
and 1 ≤ E ≤ 200. The next N lines will contain a map of the hill, in the following format.
Each square on the hill is represented by a single character: either one of the numbers 0-9,
if the square is passable and has the corresponding base energy cost, or the letter X, if the
square is impassable. There will be no whitespace in the map except for the newlines at the
end of each line of M characters.

Output: For each test case, output a single line containing one integer: the number of
paths down the hill that can be travelled given a starting energy E, modulo 1000000007.

1

Sample Input:

2

2 2 2

00

00

3 2 2

02

X0

00

Output for Sample Input:

10

3

Explanation of Output: In the first case, the paths are (starting from upper left): D,
DR, DRL, RD, RDL. RLD is not possible because after the first two moves the man would
have zero energy left and be unable to move. The other five paths are the mirror images of
these.

In the second case, the paths are (starting from the upper right) DDD, DDDL, DDDLR.
No path starting from the upper left is possible. Beginning on the upper right square does
not cost any energy.

2

Problem C: DuLL

Source file: dull.{c, cpp, java}

Input file: dull.in

In Windows, a DLL (or dynamic link library) is a file that contains a collection of pre-compiled functions that

can be loaded into a program at runtime. The two primary benefits of DLLs are (1) only one copy of a DLL

is needed in memory, regardless of how many different programs are using it at the same time, and (2) since

they are separate from programs, DLLs can be upgraded independently, without having to recompile the

programs that use them. (DLLs have their problems, too, but we’ll ignore those for now.) Your job is to

calculate the maximum memory usage when running a series of programs together with the DLLs they need.

The DLLs in our system are not very exciting. These dull DLLs (or DuLLs) each require a fixed amount of

memory which never changes as long as the DuLL is in memory. Similarly, each program has its own fixed

memory requirements which never change as long as the program is executing. Each program also requires

certain DuLLs to be in memory the entire time the program is executing. Therefore, the only time the amount

of memory required changes is when a new program is executed, or a currently running program exits. When

a new program begins execution, all DuLLs required by that program that must be loaded into memory if they

are not there already. When a currently running program exits, all DuLLs that are no longer needed by any

currently running programs are removed from memory.

Remember, there will never be more than one copy of a specific DuLL in memory at any given time.

However, it is possible for multiple instances of the same program to be running at the same time. In this case

each instance of the program would require its own memory; however, the instances still share DuLLs in the

same way two unrelated programs would.

Input: The input consists of at least one data set, followed by a line containing only 0.

The first line of a data set contains three space separated integers N P S, where N is the number of DuLLs

available, 1 ≤ N ≤ 20, P is the number of programs which can be executed, 1 ≤ P ≤ 9, and S is the number of

state transitions recorded, 1 ≤ S ≤ 32.

The next line contains exactly N space separated integers representing the sizes in bytes of each of the

DuLLs, 1 ≤ size ≤ 1,000. Each DuLL is implicitly labeled with a letter: ‘A’, ‘B’, ‘C’, …, possibly extending

to ‘T’. Therefore the first integer is the size of ‘A’, the second integer is the size of ‘B’, and so on.

The next P lines contain information about each of the programs, one program per line. Each line contains a

single integer representing the size of the program in bytes, 1 ≤ size ≤ 1,000, followed by 1 to N

characters representing the DuLLs required by that program. There will be a single space between the size of

the program and the DuLL labels, but no spaces between the labels themselves. The order of the labels is

insignificant and therefore undefined, but they will all be valid DuLL labels, and no label will occur more than

once. Each program is implicitly labeled with an integer: 1, 2, 3, … possibly extending to 9.

The final line of the data set will contain S space separated integers. Each integer will either be a positive

number q, 1 ≤ q ≤ P, indicating that a new execution of program q has begun, or else it will be a negative

number –q, 1 ≤ q ≤ P, indicating that a single execution of program q has completed. The transitions are

given in the order they occurred. Each is a valid program number; if it is a negative number –q then there will

always be at least one instance of program q running.

Output: There is one line of output for each data set, containing only the maximum amount of memory

required throughout the execution of the data set.

Example input: Example output:

2 2 3

500 600

100 A

200 B

2 1 2

5 4 8

100 400 200 500 300

250 AC

360 ACE

120 AB

40 DE

2 3 4 -3 1 2 -2 1

0

1600

2110

Last modified on October 18, 2009 at 8:36 AM.

Problem G: Line & Circle Maze

Source file: maze.{c, cpp, java}

Input file: maze.in

A deranged algorithms professor has devised a terrible final exam: he throws his students into a strange maze formed entirely

of linear and circular paths, with line segment endpoints and object intersections forming the junctions of the maze. The

professor gives his students a map of the maze and a fixed amount of time to find the exit before he floods the maze with

xerobiton particles, causing anyone still in the maze to be immediately inverted at the quantum level. Students who escape pass

the course; those who don't are trapped forever in a parallel universe where the grass is blue and the sky is green.

The entrance and the exit are always at a junction as defined above. Knowing that clever ACM programming students will

always follow the shortest possible path between two junctions, he chooses the entrance and exit junctions so that the distance

that they have to travel is as far as possible. That is, he examines all pairs of junctions that have a path between them, and

selects a pair of junctions whose shortest path distance is the longest possible for the maze (which he rebuilds every semester,

of course, as the motivation to cheat on this exam is very high).

The joy he derives from quantumly inverting the majority of his students is marred by the tedium of computing the length of

the longest of the shortest paths (he needs this to know to decide how much time to put on the clock), so he wants you to write

a program to do it for him. He already has a program that generates the mazes, essentially just a random collection of line

segments and circles. Your job is to take that collection of line segments and circles, determine the shortest paths between all

the distinct pairs of junctions, and report the length of the longest one.

The input to your program is the output of the program that generates his mazes. That program was written by another student,

much like yourself, and it meets a few of the professor's specifications: 1) No endpoint of a line segment will lie on a circle; 2)

No line segment will intersect a circle at a tangent; 3) If two circles intersect, they intersect at exactly two distinct points; 4)

Every maze contains at least two junctions; that is, a minimum maze is either a single line segment, or two circles that intersect.

There is, however, one bug in the program. (He would like to have it fixed, but unfortunately the student who wrote the code

never gave him the source, and is now forever trapped in a parallel universe.) That bug is that the maze is not always entirely

connected. There might be line segments or circles, or both, off by themselves that intersect nothing, or even little "submazes"

composed of intersecting line segments and circles that as a whole are not connected to the rest of the maze. The professor

insists that your solution account for this! The length that you report must be for a path between connected junctions!

Examples:

Line segments only. The large dots are the junction pair whose

shortest path is the longest possible.

An example using circles only. Note that in this case there is

also another pair of junctions with the same length longest

possible shortest path.

Disconnected components.
Now the line segments are connected by a circle, allowing for

a longer shortest path.

Input: An input test case is a collection of line segments and circles. A line segment is specified as "L X1 Y1 X2 Y2" where

"L" is a literal character, and (X1,Y1) and (X2,Y2) are the line segment endpoints. A circle is specified by "C X Y R" where

"C" is a literal character, (X,Y) is the center of the circle, and R is its radius. All input values are integers, and line segment and

circle objects are entirely contained in the first quadrant within the box defined by (0,0) at the lower left and (100,100) at the

upper right. Each test case will consist of from 1 to 20 objects, terminated by a line containing only a single asterisk. Following

the final test case, a line containing only a single asterisk marks the end of the input.

Output: For each input maze, output "Case N: ", where N is the input case number starting at one (1), followed by the length,

rounded to one decimal, of the longest possible shortest path between a pair of connected junctions.

Example Input: Example Output:

L 10 0 50 40

L 10 40 50 0

L 10 10 60 10

L 0 30 50 30

*

C 25 25 25

C 50 25 25

C 25 50 25

C 50 50 25

*

L 0 0 80 80

L 80 100 100 80

*

L 0 0 80 80

L 80 100 100 80

C 85 85 10

*

*

Case 1: 68.3

Case 2: 78.5

Case 3: 113.1

Case 4: 140.8

ACM Hosted Contests Arhive University of Valladolid (SPAIN)10012 How Big Is It?Ian's going to California, and he has to pak his things, inluding his olletion of irles. Given a setof irles, your program must �nd the smallest retangular box in whih they �t.All irles must touh the bottom of the box. The �gure below shows an aeptable paking for aset of irles (although this may not be the optimal paking for these partiular irles). Note that inan ideal paking, eah irle should touh at least one other irle (but you probably �gured that out).

InputThe �rst line of input ontains a single positive deimal integer n, n < 50. This indiates the numberof lines whih follow. The subsequent n lines eah ontain a series of numbers separated by spaes.The �rst number on eah of these lines is a positive integer m, m < 8, whih indiates how many othernumbers appear on that line. The next m numbers on the line are the radii of the irles whih mustbe paked in a single box. These numbers need not be integers.OutputFor eah data line of input, exluding the �rst line of input ontaining n, your program must outputthe size of the smallest retangle whih an pak the irles. Eah ase should be output on a separateline by itself, with three plaes after the deimal point. Do not output leading zeroes unless the numberis less than 1, e.g. 0.543.Sample Input33 2.0 1.0 2.04 2.0 2.0 2.0 2.03 2.0 1.0 4.0Sample Output9.65716.00012.657

olhotak
Rectangle

olhotak
Rectangle

olhotak
Typewriter
Problem C:

Problem C: Pizza Pricing

Source file: pizza.{c, cpp, java}

Input file: pizza.in

Pizza has always been a staple on college campuses. After the downturn in the economy, it is more important
than ever to get the best deal, namely the lowest cost per square inch. Consider, for example, the following
menu for a store selling circular pizzas of varying diameter and price:

Menu

Diameter Price

5 inch $2

10 inch $6

12 inch $8

One could actually compute the costs per square inch, which would be approximately 10.2¢, 7.6¢, and 7.1¢
respectively, so the 12-inch pizza is the best value. However, if the 10-inch had been sold for $5, it would
have been the best value, at approximately 6.4¢ per square inch.

Your task is to analyze a menu and to report the diameter of the pizza that is the best value. Note that no two
pizzas on a menu will have the same diameter or the same inherent cost per square inch.

Input: The input contains a series of one or more menus. Each menu starts with the number of options N,
1 ≤ N ≤ 10, followed by N lines, each containing two integers respectively designating a pizza's diameter D (in
inches) and price P (in dollars), with 1 ≤ D ≤ 36 and 1 ≤ P ≤ 100. The end of the input will be designated with
a line containing the number 0.

Output: For each menu, print a line identifying the menu number and the diameter D of the pizza with the
best value, using the format shown below.

Example input: Example output:

3

5 2

10 6

12 8

3

5 2

10 5

12 8

4

1 1

24 33

13 11

6 11

0

Menu 1: 12

Menu 2: 10

Menu 3: 24

Duke of York, Part 2

Oh, the grand old duke of York
He had ten thousand men

He marched them up to the top of the hill
And he marched them down again.

The duke of York has once again got his men to the top of the hill, and he needs your
help again! This time, he wants to march as many of his men as possible down to the bottom
of the hill at once. Since his men all march at different speeds, this means that he can’t
assign any of his men to march on the same square during their descents, for risk of them
getting confused and running into each other.

The duke has grown somewhat considerate of his men, however. Thus, among all possible
sets of marching orders which maximize the number of men he can march down the hill at
once, he wants you to minimize the average energy expenditure of his men.

The setup is as follows: The hill can be represented as a rectangular grid of squares with
N rows and M columns, 2 ≤ N,M ≤ 20. All of the squares in the first row are at the top of
the hill, and all of the squares in the Nth row are at the bottom. Every square s on the hill
has an associated base energy cost b, which is an integer between 0 and 9 inclusive, or it is
impassable. The total energy cost to walk onto the square s is the base cost b of s plus the
direction cost, which is 0 for going downhill, 1 for going left or right, and 3 for going uphill.

A path down the hill is a sequence of moves (up, down, left, or right), starting from one
of the squares at the top of the hill and ending at one of the squares at the bottom of the
hill. The total energy expenditure of such a path is the sum of all the energy expenditures
necessary to enter each square along the path (except for the starting square at the top of
the hill). A path cannot start on, travel through, or end on an impassable square.

Input: The first line of input will contain an integer 1 ≤ C ≤ 20, the number of test
cases. The first line of each case will contain two integers: N and M , with 2 ≤ N,M ≤ 20.
The next N lines will contain a map of the hill, in the following format. Each square on
the hill is represented by a single character: either one of the numbers 0-9, if the square
is passable and has the corresponding base energy cost, or the letter X, if the square is
impassable. There will be no whitespace in the map except for the newlines at the end of
each line of M characters.

Output: For each test case, output a single line containing two space-separated numbers:
first, the maximum number of men that the duke can march down the hill at once, and second,
a real number giving the minimum average energy cost for those men to march down the
hill, with exactly two digits after the decimal point (rounded). You are guaranteed that at
least one man can march down the hill.

1

Sample Input:

1

5 3

001

2X7

000

111

X23

Output for Sample Input:

2 8.50

2

Problem B: Antimonotonicity

I have a sequence Fred of length n comprised of integers

between 1 and n inclusive. The elements of Fred are

pairwise distinct. I want to find a subsequence Mary of

Fred that is as long as possible and has the property that:

 Mary[0] > Mary[1] < Mary[2] > Mary[3] < ...

Input

The first line of input will contain a single integer T expressed in decimal with no leading zeroes. T will be at

most 50. T test cases will follow.

Each test case is contained on a single line. A line describing a test case is formatted as follows:

 n Fred[0] Fred[1] Fred[2] ... Fred[n-1].

where n and each element of Fred is an integer expressed in decimal with no leading zeroes. No line will have

leading or trailing whitespace, and two adjacent integers on the same line will be separated by a single space.

n will be at most 30000.

Output

For each test case, output a single integer followed by a newline --- the length of the longest subsequence

Mary of Fred with the desired properties.

Sample Input

4

5 1 2 3 4 5

5 5 4 3 2 1

5 5 1 4 2 3

5 2 4 1 3 5

Sample Output

1

2

5

3

Tor Myklebust

