
Team Practice 2
21 October 2012: 1:00 – 6:00 PM

Contest Problem Set

The ten problems on this contest are referred to, in order, by the

following names:

square, slides, persist, racket, clocks, goodbad,

class, mines, tautology, rooks

All problem submissions will be done via the PC2 system. Any

questions about the problems should be addressed through the

clarification system. Be sure that you are submitting your code

under the correct problem name!

No matter what the individual problem statements say, your program

should read its input from standard in and print its output to standard

out.

You may print to the printer at any point during the contest.

Printed code libraries and online language references are permitted;

all other aids, including other internet resources and any code you

may have typed before the contest, are not.

Good Luck!

Problem D: Largest Square

There is an N × N mosaic of square solar cells (1 ≤ N ≤ 2,000). Each solar cell is either good or bad. There are

W (1 ≤ W ≤ 50,000) bad cells. You need to find the largest square within the mosaic containing at most L (0 ≤

L ≤ W) bad cells.

Input Specification

The input will begin with a number Z ≤ 20, the number of test cases, on a line by itself. Z test cases then

follow. The first line of the test case contains three space-separated integers: N, W, and L. W lines follow, each

containing two space-separated integers representing the coordinates of a location of the bad solar cells.

Sample Input

1

4 3 1

1 1

2 2

2 3

Output Specification

For each input instance, the output will be a single integer representing the area of the largest square that

contains no more than L bad solar cells.

Output for Sample Input

4

Explanation of Sample Output

The mosaic is 4× 4, and contains the following arrangement of good and bad cells ('G' represents good, and 'B'

represents bad):

BGGG

GBBG

GGGG

GGGG

Several 2× 2 squares at the bottom contain no bad solar cells, but all 3 × 3 squares contain at least two bad

solar cells.

Neal Wu

ACM Contest Problems Ar
hive University of Valladolid (SPAIN)663 Sorting SlidesProfessor Clumsey is going to give an important talk this afternoon. Unfortunately, he is not a verytidy person and has put all his transparen
ies on one big heap. Before giving the talk, he has to sortthe slides. Being a kind of minimalist, he wants to do this with the minimum amount of work possible.The situation is like this. The slides all have numbers written on them a

ording to their order inthe talk. Sin
e the slides lie on ea
h other and are transparent, one
annot see on whi
h slide ea
hnumber is written.

Well, one
annot see on whi
h slide a number is written, but one may dedu
e whi
h numbers arewritten on whi
h slides. If we label the slides whi
h
hara
ters A, B, C, ... as in the �gure above, it isobvious that D has number 3, B has number 1, C number 2 and A number 4.Your task, should you
hoose to a

ept it, is to write a program that automates this pro
ess.InputThe input
onsists of several heap des
riptions. Ea
h heap des
riptions starts with a line
ontaining asingle integer n, the number of slides in the heap. The following n lines
ontain four integers xmin, xmax,ymin and ymax, ea
h, the bounding
oordinates of the slides. The slides will be labeled as A,B,C,... inthe order of the input.This is followed by n lines
ontaining two integers ea
h, the x- and y-
oordinates of the n numbersprinted on the slides. The �rst
oordinate pair will be for number 1, the next pair for 2, et
. No numberwill lie on a slide boundary.The input is terminated by a heap des
ription starting with n = 0, whi
h should not be pro
essed.OutputFor ea
h heap des
ription in the input �rst output its number. Then print a series of all the slideswhose numbers
an be uniquely determined from the input. Order the pairs by their letter identi�er.If no mat
hings
an be determined from the input, just print the word none on a line by itself.Output a blank line after ea
h test
ase.

ACM Contest Problems Ar
hive University of Valladolid (SPAIN)Sample Input46 22 10 204 18 6 168 20 2 1810 24 4 89 1519 1711 721 1120 2 0 20 2 0 21 11 10Sample OutputHeap 1(A,4) (B,1) (C,2) (D,3)Heap 2none

1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 4 6 8 10 12 14 16 18

3 3 6 9 12 15 18 21 24 27

4 4 8 12 16 20 24 28 32 36

5 5 10 15 20 25 30 35 40 45

6 6 12 18 24 30 36 42 48 54

7 7 14 21 28 35 42 49 56 63

8 8 16 24 32 40 48 56 64 72

9 9 18 27 36 45 54 63 72 81

Problem B: Persistent Numbers

The multiplicative persistence of a number is defined by

Neil Sloane (Neil J.A. Sloane in The Persistence of a

Number published in Journal of Recreational

Mathematics 6, 1973, pp. 97-98., 1973) as the number

of steps to reach a one-digit number when repeatedly

multiplying the digits. Example:

679 -> 378 -> 168 -> 48 -> 32 -> 6.

That is, the persistence of 679 is 5. The persistence of a

single digit number is 0. At the time of this writing it is

known that there are numbers with the persistence of 11.

It is not known whether there are numbers with the

persistence of 12 but it is known that if they exists then

the smallest of them would have more than 3000 digits.

The problem that you are to solve here is: what is the smallest number such that the first step of computing its

persistence results in the given number?

For each test case there is a single line of input containing a decimal number with up to 1000 digits. A line

containing -1 follows the last test case. For each test case you are to output one line containing one integer

number satisfying the condition stated above or a statement saying that there is no such number in the format

shown below.

Sample input

0

1

4

7

18

49

51

768

-1

Output for sample input

10

11

14

17

29

77

There is no such number.

2688

P. Rudnicki

Numbers Racket

Ollie has invented a new game for Stan to play. It works like this. First, Ollie chooses
four integers, 1 ≤ n ≤ 1000, 1 ≤ k ≤ 1000, 0 ≤ x < n, and 0 ≤ y < n, and writes the
number x on the blackboard. Stan’s goal is to get y onto the blackboard. However, it is not
so simple as just erasing x and writing y. Stan can only change the number on the board
according to the following rules:

• Stan can only erase the number a and write the number b if |a− b| ≤ k and 0 ≤ b < n.

• In order to make such a change to the number on the board, Stan has to pay Ollie a
fee. This fee depends on whether Stan’s current turn is odd (first, third, fifth, etc) or
even (second, fourth, etc). If it is an odd turn, then Stan has to pay Ollie (a2 + b2)
MOD n cents, and if it is an even turn, then Stan has to pay Ollie (a4 + b4) MOD n
cents. So, for instance, if n = 9, then to erase 1 and write 2 would cost Stan 5 cents
on an odd turn, and 8 cents on an even turn.

• Stan cannot just skip a turn to change whether the current turn is even or odd, but if
he wants, he can erase the number on the board and re-write the same number in the
same way he could make any other move, by paying the same fee.

Ollie figures that this game will confound Stan, and earn him great riches! But of course
he has to convince Stan to play, so he needs to offer him a reward for writing y on the board.
Unfortunately, Ollie has confounded himself as well, and doesn’t know what prize to offer!
Help Ollie out by telling him the largest prize he can offer while still guaranteeing that he
never loses money when Stan plays the game.

Input: The first line will contain a single integer, the number of cases (up to 20, no more
than 5 of which have n > 500). There follows one line for each case, each containing four
integers: n, k, x, and y, in that order. You are guaranteed that these integers will be within
the bounds described above.

Output: For each test case, one line containing a single integer: the maximum reward
that Ollie can offer, in cents, that still guarantees that Ollie will never lose money when Stan
plays the game.

Sample Input:

2

9 1 3 7

17 3 0 3

Output for Sample Input:

17

4

1

November 3, 2007 ACM North Central North America Regional Programming Contest Problem 5

November 3, 2007 ACM North Central North America Regional Programming Contest Problem 5

Problem 5: Clock Repair
Mr. Horologia’s House of Clocks contains various cuckoo clocks that customers have brought in for
repair. Since they are in the clock shop, one might rightly assume that these clocks don’t quite run
as they should. In fact, a fast clock may take 3,500 seconds to advance one hour, instead of 3,600
seconds. A slow clock might take 3,750 seconds.

Every midnight on Sunday morning, Mr. Horologia sets all clocks to exactly 12:00. He has sufficient
assistants awake at that hour that all clocks can be set simultaneously. Some time later, possibly
that same day but quite possibly several days later, all clocks in the room will cuckoo at precisely
the same instant in time. (All clocks initially would chime when they are set at midnight on Sunday,
but the initial cuckooing does not count.) What is the first day, hour, minute, and second when all
clocks simultaneously go off? The time might be several days in the future; also, midnight on the
next Sunday morning might come around again before they ever cuckoo simultaneously. In this
latter case, Mr. Horologia will set them all again, and the correct answer would be “Never”.

Example
An easy example involves two clocks, one that advances an hour every 3,000 seconds, and a second
clock that advances an hour every 4,500 seconds. For simplicity, note that these represent 50
minutes and 75 minutes, respectively. The first clock would reach 1:00 AM after 50 minutes, then
2:00 AM after 100 minutes, and 3:00 AM after 150 minutes. The second clock would reach 1:00 at
75 minutes and 2:00 at 150 minutes. Thus, 150 minutes after midnight, clock number one and clock
number two both cuckoo. The correct answer is thus “Sunday at 2:30:00 AM”.

A second example might involve four clocks, all of which are extremely fast. They advance at 600,
1200, 1800, and 600 seconds. After 30 minutes, all of them cuckoo except for the second clock.
After 60 minutes, all will cuckoo. Thus the answer here is “Sunday at 1:00:00 AM”.

Finally, suppose we have four clocks with speeds of 3601, 3559, 3600, and 3700. The answer in this
case is “Never” – the next Sunday will occur before all clocks cuckoo.

Input
There will be multiple cases, sequentially numbered starting with 1. The input for each case is a
single line that contains integers giving the number of clocks N, followed by N “seconds”
measurements. A line containing the integer 0 follows the last case. Because the repair shop is
limited, N will never be larger than 10.

Output
For each case, display the case number and either the first date and time when all clocks will
cuckoo simultaneously, or the word “Never” as described above. Display a blank line after the output
for each case.

Sample Input Output for the Sample Input
2 3000 4500
4 600 1200 1800 600
3 3550 3650 3655
2 3525 3625
0

Case 1: Sunday at 2:30:00 AM

Case 2: Sunday at 1:00:00 AM

Case 3: Never

Case 4: Friday at 9:58:45 PM

Problem A — limit 5 seconds

Good or Bad?

Description

Bikini Bottom has become inundated with tourists with super powers. Sponge Bob and Patrick
are trying to figure out if a given character is good or bad, so they’ll know whether to ask them to
go jelly-fishing, or whether they should send Sandy, Mermaid Man, and Barnacle Boy after them.

sponge bob: Wow, all these characters with super powers and we don’t know whether they
are good guys or bad guys.

patrick: Well, it’s easy to tell. You just have to count up the number of g’s and b’s in their
name. If they have more g’s, they are good, if they have more b’s, they are bad. Think
about it, the greatest hero of them all, Algorithm Crunching Man is good since he has
two g’s and no b’s.

sponge bob: Oh, I get it. So Green Lantern is good and Boba Fett is bad!
patrick: Exactly! Uh, who’s Boba Fett?
sponge bob: Never mind. What about Superman?
patrick: Well he has the same number of g’s as b’s so he must be neutral.
sponge bob: I see, no b’s and no g’s is the same number. Very clever Patrick! Well what

about Batman? I thought he was good.
patrick: You clearly never saw The Dark Knight...
sponge bob: Well what about Green Goblin? He’s a baddy for sure and scary!
patrick: The Green Goblin is completely misunderstood. He’s tormented by his past. Inside

he’s good and that’s what counts. So the method works!
sponge bob: Patrick, you are clearly on to something. But wait, are you saying that Plank-

ton is neutral after all the terrible things he’s tried to do to get the secret Crabby Patty
formula?

patrick: Have any of his schemes ever worked?
sponge bob: Hmmm, I guess not. Ultimately he’s harmless and probably just needs a friend.

So sure, neutral works for him.
patrick: Alright then, let’s start taking names and figure this out.
sponge bob: But Patrick, if we start counting all day, Squidward will probably get annoyed

and play his clarinet and make us lose count.
patrick: Well, let’s hire a human to do it for us on the computer. We’ll pay them with

Crabby Patties!
sponge bob: Great idea Patrick. We’re best friends forever!

Help Sponge Bob and Patrick figure out who is good and who is bad.

Input

The first line will contain an integer n (n > 0), specifying the number of names to process. Following
this will be n names, one per line. Each name will have at least 1 character and no more than 25.
Names will be composed of letters (upper or lower case) and spaces only. Spaces will only be used
to separate multiple word names (e.g., there is a space between Green and Goblin).

2011 Pacific Northwest Region Programming Contest 1

Output

For each name read, display the name followed by a single space, followed by “ is ”, and then
followed by either “GOOD”, “A BADDY”, or “NEUTRAL” based on the relation of b’s to g’s.
Each result should be ended with a newline.

Sample Input Sample Output

8

Algorithm Crunching Man

Green Lantern

Boba Fett

Superman

Batman

Green Goblin

Barney

Spider Pig

Algorithm Crunching Man is GOOD

Green Lantern is GOOD

Boba Fett is A BADDY

Superman is NEUTRAL

Batman is A BADDY

Green Goblin is GOOD

Barney is A BADDY

Spider Pig is GOOD

2011 Pacific Northwest Region Programming Contest 2

Problem E: Class Schedule

At Fred Hacker's school, there are T × C classes, divided into C catagories of T classes each. The day begins

with all the category 1 classes being taught simultaneously. These all end at the same time, and then all the

category 2 classes are taught, etc. Fred has to take exactly one class in each category. His goal is to choose

the set of classes that will minimize the amount of ``energy'' required to carry out his daily schedule.

The energy requirement of a schedule is the sum of the energy requirement of the classes themselves, and

energy consumed by moving from one class to the next through the schedule.

More specifically, taking the jth class in the ith category uses Eij units of energy. The rooms where classes

take place are located at integer positions (ranging from 0 to L) along a single hallway. The jth class in the ith

category is located at position Pij. Fred starts the day at position 0, moves from class to class, according to his

chosen schedule, and finally exits at location L. Moving a distance d uses d units of energy.

Input Specification

The first line of the input is Z ≤ 20 the number of test cases. This is followed by Z test cases. Each test case

begins with three space-separated integers: C, T, and L. Each of the following C× T lines gives, respectively,

the location and energy consumption of a class. The first T lines represent the classes of category 1, the next T

lines represent the classes of category 2, and so on. No two classes in the same category will have the same

location.

Bounds

1 ≤ C ≤ 25

1 ≤ T ≤ 1000

1 ≤ L ≤ 1,000,000

1 ≤ Eij ≤ 1,000,000

0 ≤ Pij ≤ L

Sample Input

1

3 2 5

2 1

3 1

4 1

1 3

1 4

3 2

Explanation of Sample Input

Fred must take 3 classes every day, and for each he has 2 choices. The hall has length 5. His first possible

class is located at position 2 and will take 1 unit of energy each day, etc.

Output Specification

For each input instance, the output will be a single integer on a line by itself which is the minimum possible

energy of a schedule satisfying the constraints.

Output for Sample Input

11

Explanation of Sample Output

Here is one way to obtain the minimum energy:

Go to the class at location 2. Energy used: 3

Next, go to the class at location 4. Energy used: 6

Then go to the class at location 3. Energy used: 9

Finally, leave the school at location 5. Energy used: 11

Neal Wu

Problem E: Data Mining?

Source file: mines.{c, cpp, java, pas}

Input file: mines.in

Output file: mines.out

A variation of the minesweeper game is available for almost every computer platform. Your employer wants

to create yet another version that is targeted toward casual, as opposed to expert, players. Your task is to

write a program that takes a minesweeper board and returns the minimum number of covered, unmined cells

that remain after a casual player has tried his/her best. The details of the game and program are decribed

below.

A minesweeper board consists of a rectangular grid of cells, with one or more cells containing a mine. The

entire board is initially presented with all the cells covered, i.e., blank. The object of the game is to uncover

all the cells that do not contain a mine. If a mine in uncovered, the game is over and the player loses. A cell

can be in one of 3 states: covered, cleared/uncovered, or flagged as a mine.

When a player clears a cell that does not contain a mine, that cell displays the number of mines in cells that

are adjacent to it. These numbers help the player determine where the mines are located. The adjacent cells

are the cells that form a 3x3 square with the cleared cell in the center. Depending on a cell's location, it will

have between 3 and 8 adjacent cells. The board in Figure 1 below shows two mines at locations (3,1) and

(3,2), and the numbers of adjacent mines for each of the remaining cells.

A casual player makes use of this information in the following way. First the player selects one cell from a

totally covered board. If it's a mine, the game is over. Otherwise, the player clears the cell and then applies

the following two rules to cleared cells on the board until no further progress can be made. Let (x,y) be the

location of a cleared cell, and let f, c, and m be the number of flagged, covered, and mined cells adjacent to

(x,y).

If f = m, then clear all covered cells adjacent to (x,y).1.

If f + c = m, then flag all covered cells adjacent to (x,y).2.

Note that after successfully clearing the first cell, a casual player never clears or flags a cell except as dictated

by rule 1 or 2, which means that the player may get "stuck". When a casual player is stuck, the game is over;

no further guesses are made, and the player will not use more sophisticated rules that might allow him/her to

safely clear additional cells.

Figure 2 below shows an application of these rules using the board from Figure 1.

Figure 1 Figure 2a Figure 2b Figure 2c Figure 2d Figure 3

Figure 2a shows the board after a player initially clears cell (1,2). Rule 1 applies, since (0 flagged = 0 mined

neighbors), so the player clears the adjacent cells at (1,1), (1,3), (2,1), (2,2), and (2,3), which leads to Figure

2b.

From the board in Figure 2b, the player can consider cell (2,1) and apply rule 2 (0 flagged + 2 covered = 2

mined) to flag cells (3,1) and (3,2) as mines. This generates Figure 2c.

Finally, by looking at cell (2,3), the player can again apply rule 1 to clear cell (3,3), since cell (2,3) has exactly

1 adjacent mine, and cell (3,2) is already flagged as a mine. Now, all the cells without mines have been

cleared, so the game stops with the player winning.

As indicated above, these two rules are not sufficient to solve every game board from every starting position,

so the player might get stuck. Again, considering the board in Figure 1, if the player instead first cleared cell

(2,2), the resulting board appears as Figure 3. The player cannot make any further progress, since neither rule

1 nor rule 2 clears or flags any new cells. In this case the player is stuck with 6 covered cells that do not

contain mines.

You must write a program that looks at a game board and determines the smallest number of covered,

unmined cells that could possibly remain when a casual player plays the game as described. For the game

board in Figure 1, the answer is 0.

The input file contains one or more game boards, followed by a final line containing only two zeros. A game

board starts with a line containing two integers, r and c, the number of rows and columns in the game board; r

and c will always be at least 3. The total number of cells in any board will never be greater than 40. The rest

of the data set consists of a graphical representation of the game board, where an upper case 'M' represents a

mine and a period '.' represents an empty cell. There will always be at least one 'M' and at least one '.' on each

game board.

For each data set write one line with a single integer indicating the smallest number of covered, unmined cells

for that board.

Example input: Example output:

3 3

...

...

MM.

3 4

M.M.

.M.M

M.M.

7 5

.....

.....

MMM..

M.M..

MMM..

.....

.....

4 4

...M

....

....

M...

0 0

0

5

1

0

Last modified on October 23, 2003 at 8:34 PM.

Problem D: Tautology

WFF 'N PROOF is a logic game played with dice. Each die has six faces

representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A

Well-formed formula (WFF) is any string of these symbols obeying the

following rules:

p, q, r, s, and t are WFFs

if w is a WFF, Nw is a WFF

if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.

The meaning of a WFF is defined as follows:

p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).

K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.

Definitions of K, A, N, C, and E

 w x Kwx Awx Nw Cwx Ewx

 1 1 1 1 0 1 1

 1 0 0 1 0 0 0

 0 1 0 1 1 1 0

 0 0 0 0 1 1 1

A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a

tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the

value 0 for p=0, q=1.

You must determine whether or not a WFF is a tautology.

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100

symbols. A line containing 0 follows the last case. For each test case, output a line containing tautology or not

as appropriate.

Sample Input

ApNp

ApNq

0

Possible Output for Sample Input

tautology

not

Gordon V. Cormack

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Problem A: Rooks

You have unexpectedly become the owner of a large

chessboard, having fifteen squares to each side. Because

you do not know how to play chess on such a large

board, you find an alternative way to make use of it.

In chess, a rook attacks all squares that are in the same

row or column of the chessboard as it is. For the

purposes of this problem, we define a rook as also

attacking the square on which it is already standing.

Given a set of chessboard squares, how many rooks are

needed to attack all of them?

Input Specification

Input consists of a number of test cases. Each test case

consists of fifteen lines each containing fifteen

characters depicting the chess board. Each character is

either a period (.) or a hash (#). Every chessboard

square depicted by a hash must be attacked by a rook.

After all the test cases, one more line of input appears.

This line contains the word END.

Sample Input

...............

...............

...............

...............

...............

...............

...............

.......#.......

...............

...............

...............

...............

...............

...............

...............

END

Output Specification

Output consists of exactly one line for each test case. The line contains a single integer, the minimum number

of rooks that must be placed on the chess board so that every square marked with a hash is attacked.

Output for Sample Input

1

Malcolm Sharpe, Ondřej Lhoták

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

