
UW Madison Data Structure

Nitit Jongsawatsataporn
n.jongsawatsataporn [at] mail.utoronto.ca

October 26, 2024

Problem A

Problem A

Given a sequence of number A1, A2, . . . , An arrange in circular order, want
to divide into k consecutive segments such that

∧interval(∨Ai∈intervaljAi)

is maximized.
Constrain: N,K ≤ 5e5, 1 ≤ Ai ≤ 1e9.

2 / 15

Problem A (cont)

Observation

1 Suppose the interval starts at A1, then there are at most 32 possible values
of ∨Ai∈intervalAi.

2 For each fix position i and a bit b, we find the next location k > i that Ak

has bit b. (k can wrap around the circle if needed)

3 Precomputation could be done efficiently using two pointers.

4 The precomputation take O(32N).

Solution for a line case (assume the first interval starts at A1)

1 Searching for the maximum bit by bit. If S is the answer, then we should be
able to construct K consecutive sequences such that
(∨Ai∈intervalAi) ∧ (S) = S.

2 Greedy algorithm works here! Let the pattern we check be L, then we just
need to jump in the bit that presents in L, that would be the shortest
segment that has bitwise or of its value to agree with L.

3 We test L bit by bit.

4 Time complexity O(322K)
3 / 15

Problem A (cont)

Solution for circular case

1 Fix the search pattern L

2 Let’s pretend the first interval start at index 1

3 Run the line case

4 If the line case work fine, we can continue, otherwise the last interval might
needs some help.

5 Sometimes, A1 is not needed, we can shrink the first interval until we can
not remove the prefix anymore.

6 Check whether the last interval works with the additional segment.

Time complexity: O(32N + 322K + 322)

4 / 15

Problem B

Use Fenwick tree.
Useful link:

1 CP Agorithm

2 Codeforces blog

Note: Segment tree is too slow for this problem. However, non-recursive segment
tree is quite fast and might be able to pass with optimal implementation. Link:
Codeforces blog.

5 / 15

https://cp-algorithms.com/data_structures/fenwick.html
https://codeforces.com/blog/entry/57292
https://codeforces.com/blog/entry/18051

Problem C

The key is a well-known data structure called suffix array CP Algorithm. The use
of suffix tree and suffix automata should pass as well.

6 / 15

https://cp-algorithms.com/string/suffix-array.html

Problem D

Problem D

Given N binary strings s1, . . . , sN (consisting of 0, 1 only), print out the
lexicographically first longest binary string that does not have any of the
listed strings as a substring, or report that there is no longest such string
(output -1).

Observation: Let’s first consider the problem of checking whether a candidate
string satisfies the requirements or not.

Inverse Problem

Given a string S and a number of pattern strings s1, . . . , sN , check whether
some si is a substring of S or not.

7 / 15

Inverse Problem

This problem is known as pattern matching. There are a number of standard
algorithms.
Single pattern:

1 KMP: CP Algorithms.

2 Rabin-Karp: CP Algorithms.

Multiple patterns:

1 Aho-Corasick: CP Algorithms.

8 / 15

https://cp-algorithms.com/string/prefix-function.html
https://cp-algorithms.com/string/rabin-karp.html
https://cp-algorithms.com/string/aho_corasick.html

Problem D (cont)

Solution

1 Build the Aho-Corasick string matching automaton.

2 Remove all edges going out from an accepting node. This ensures that if a
pattern is matched, we don’t proceed.

3 The length of the answer is the maximum length we can walk without
hitting an accepting node.

4 We output -1 if there is a loop.

5 Otherwise, we have a directed graph without a loop, so the nodes can be
ordered by topological sort.

6 Using that order, we can compute the length of the answer by standard
dynamic programming (dp[node] = maximum walk length that end at this
node) and retrieving the lexicographically first path.

Time complexity: O(|S|)

9 / 15

Problem E

Problem E

Given a sequence of integers M1, . . . ,MN , check whether there is are in-
dices c < d < e < f such that Mc = Me ̸= Md = Mf .

This is actually a data structure problem!

10 / 15

Problem E (cont)

Claim

If such position exists, we can pick c, d, e, f such that Mc = Me ̸= Md =
Mf , and for any g ∈ (c, e), h ∈ (d, f) we also getMg ̸= Mc andMh ̸= Md.
(In other words, only need to consider consecutive occurrences.)

Proof:
Let c < d < e < f have the property that Mc = Me ̸= Md = Mf . Let c

′ < d be
the last time Mc′ = Mc but before position d and e′ be the first time after d that
Me′ = Mc. Then, Mc′ = Me′ ̸= Md = Mf . Moreover, c′, e′ are consecutive
occurrences of Mc.
Similarly, we can also guarantee that d, f are consecutive occurrences as well.

11 / 15

Problem E (cont)

Consider the consecutive occurrences for each of the character. Note that the
total number of consecutive occurrences is at most N . The problem reduces to
the following.

Reformulated problem

Given N intervals, find the lexicographically first pair of intervals (A,B)
such that A intersects B but neither A contains B nor B contains A.

To check whether such pair exists or now, we can use stack (check if it’s in FILO
order or not). However, if we want minimal lexicographical order, a segment tree
is needed.

12 / 15

Problme E (cont)

Solution

1 First, ignore all the character that appears only once.

2 The idea is to sweep from left to right. Then, for each character
encountered, we just need to check, among active characters (that is a part
of ongoing interval), which one is the lowest lexicographically.

3 We will find the minimum along the active characters by keeping a segment
tree of active characters, and query the minimum.

4 Sweep a pointer along the array. We have two things to do. If the characters
we found is NOT its first occurrence, we look between the previous (directly
before this one) occurrence, and use RMQ to find a minimal lexicographical
pairs that we want. We deactivate (remove from the segment tree) the
previous occurrence.

5 If the characters we found is NOT its last occurrence, we activate (put in
segment tree) the current character.

Time Complexity O(|M | log |M |)
13 / 15

Problem F

Problem F

Given an empty array of size N (1−N). There are three types of queries.

1 +1 to all position from aj to bj

2 reverse one of the first operation (-1 to that range). Each operation
can be reversed at most once

3 report how many slot from 1 to n has value 0.

Solution:

1 Persistence segment tree: Link good explanation by SecondThread

2 Normal segment tree

14 / 15

https://www.youtube.com/watch?v=m3uEG4NgJx8

Problem F (cont)

Classical Problem

Given an array A originally consisted of 0. We have the following two
operations

1 Select interval [l, r] and an integer a, change A[x]← A[x] + a for
l ≤ x < r.

2 Give interval [l, r], answer a pair (a, b) when a = minx∈[l,r] A[x] and
how many x ∈ [l, r] such that A[x] = a.

Solution

1 Build a segment tree with three tags: minimum number, how many times
that minimum number appeared on that interval, and the current lazy
contribution that tagged on this node

2 To update is update like normal lazy segment tree

Observe that we never have to push the tag as we can keep the lazy tag
not-summed when we only care at about value 0.
Time complexity: O(N logN) 15 / 15

