
Query Complexity of Inversion Minimization on Trees

Ivan Hu∗ Dieter van Melkebeek† Andrew Morgan‡

Abstract

We consider the following computational problem: Given a rooted tree and a ranking of its leaves, what
is the minimum number of inversions of the leaves that can be attained by ordering the tree? This variation
of the well-known problem of counting inversions in arrays originated in mathematical psychology. It has the
evaluation of the Mann–Whitney statistic for detecting differences between distributions as a special case.

We study the complexity of the problem in the comparison-query model, the standard model for problems
like sorting, selection, and heap construction. The complexity depends heavily on the shape of the tree: for
trees of unit depth, the problem is trivial; for many other shapes, we establish lower bounds close to the
strongest known in the model, namely the lower bound of log2(n!) for sorting n items. For trees with n leaves
we show, in increasing order of closeness to the sorting lower bound:

(a) log2((α(1−α)n)!)−O(logn) queries are needed whenever the tree has a subtree that contains a fraction
α of the leaves. This implies a lower bound of log2((

k
(k+1)2

n)!)−O(logn) for trees of degree k.

(b) log2(n!)−O(logn) queries are needed in case the tree is binary.

(c) log2(n!) − O(k log k) queries are needed for certain classes of trees of degree k, including perfect trees
with even k.

The lower bounds are obtained by developing two novel techniques for a generic problem Π in the
comparison-query model and applying them to inversion minimization on trees. Both techniques can be
described in terms of the Cayley graph of the symmetric group with adjacent-rank transpositions as the
generating set, or equivalently, in terms of the edge graph of the permutahedron, the polytope spanned by all
permutations of the vector (1, 2, . . . , n). Consider the subgraph consisting of the edges between vertices with
the same value under Π. We show that the size of any decision tree for Π must be at least:

(i) the number of connected components of this subgraph, and

(ii) the factorial of the average degree of the complementary subgraph, divided by n.

Lower bounds on query complexity then follow by taking the base-2 logarithm. Technique (i) represents a
discrete analog of a classical technique in algebraic complexity and allows us to establish (c) and a tight lower
bound for counting cross inversions, as well as unify several of the known lower bounds in the comparison-query
model. Technique (ii) represents an analog of sensitivity arguments in Boolean complexity and allows us to
establish (a) and (b).

Along the way to proving (b), we derive a tight upper bound on the maximum probability of the distribution
of cross inversions, which is the distribution of the Mann–Whitney statistic in the case of the null hypothesis.
Up to normalization the probabilities alternately appear in the literature as the coefficients of polynomials
formed by the Gaussian binomial coefficients, also known as Gaussian polynomials.

∗University of Wisconsin-Madison.
†University of Wisconsin-Madison.
‡University of Wisconsin-Madison.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

1 Overview

The result of a hierarchical cluster analysis on a set X of items can be thought of as an unordered rooted tree
T with leaf set X. To visualize the tree, or to spell out the classification in text, one needs to decide for every
internal node of T in which order to visit its children. Figure 1a represents an example of a classification of eight
body parts from the psychology literature [Deg82]. It is obtained by repeatedly clustering nearest neighbors where
the distance between two items is given by the number of people in a survey who put the items into different
classes [Mil69]. The ordering of the resulting binary tree in Figure 1a is the output produced by a particular
implementation of the clustering algorithm.

knee thigh

toe chest waist cheek mouth

ear

(a) Initial tree ordering

ear

cheek mouth chest waist

thigh knee

toe

(b) Optimal tree ordering

Figure 1: Classification of body parts

Another ordering is given in Figure 1b; black marks the nodes whose children have been swapped from the
ordering in Figure 1a. Figure 1b has the advantage over Figure 1a that the leaves now appear in an interesting
global order, namely head-to-toe: ear, cheek, mouth, chest, waist, thigh, knee, toe. Indeed, Figure 1b makes
apparent that the anatomical order correlates perfectly with the clustering. In general, given a tree T and a
ranking ρ of its leaves, one might ask “how correlated” is T with ρ? Degerman [Deg82] suggests evaluating the
orderings of T in terms of the number of inversions of the left-to-right ranking σ of the leaves with respect to the
given ranking ρ, and use the minimum number over all orderings as a measure of (non)correlation.

Definition 1.1. (ranking, inversion, Inv·(·)) A ranking ρ of a set X of n items is a bijection from X to
[n]. Given two rankings σ and ρ, an inversion of σ with respect to ρ is a pair of items x1, x2 ∈ X such that
ρ(x1) < ρ(x2) but σ(x1) > σ(x2). The number of inversions is denoted by Invρ(σ). An inversion in an array A
of values is an inversion of σ with respect to ρ where σ denotes the ranking by array index and ρ the ranking by
value; in this setting we write Inv(A) for Invρ(σ).

The minimum number of inversions can be used to compare the quality of different trees T for a given ranking
ρ, or of different rankings ρ for a given tree T . This mimics the use of the number of inversions in applications like
collaborative filtering in recommender systems, rank aggregation for meta searching the web, and Kendall’s test
for dependencies between two random variables. In particular, the Mann–Whitney test for differences between
random variables can be viewed as a special case of our optimization problem. The test is widely used because of its
nonparametric nature, meaning that no assumptions need to be made about the distribution of the two variables;
the distribution of the statistic in the case of the null hypothesis (both variables have the same distribution) is
always the same. The test achieves this property by only considering the relative order of the samples. It takes
a sequence A of a samples from a random variable Y , a sequence B of b samples from another random variable
Z, and computes the statistic U

.
= min(XInv(A,B),XInv(B,A)) that is the minimum of the number XInv(A,B)

of cross inversions from A to B, and vice versa.

Definition 1.2. (cross inversions, XInv·(·, ·)) Let ρ be a ranking of X, and A,B ⊆ X. A cross inversion
from A to B with respect to ρ is a pair (x1, x2) ∈ A × B that is out of order with respect to ρ, i.e., such that
ρ(x1) > ρ(x2). The number of cross inversions is denoted by XInvρ(A,B). For two arrays A and B of values, a
cross inversion from A to B is a cross inversion from the set of entries in A to the set of entries in B where ρ
denotes the ranking by value; in this setting we write XInv(A,B) for XInvρ(A,B).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

· · · · · ·

a leaves b leaves

Figure 2: Mann–Whitney instance

The statistic U coincides with the optimum value of our optimization problem on input the tree T in Figure 2,
where the leftmost a leaves correspond to the samples A, the rightmost b leaves to the samples B, and the ranking
ρ to the value order of the combined a+ b samples.

We mainly study the value version of our optimization problem, which we denote by MinInv.

Definition 1.3. (inversion minimization on trees, MinInv(·, ·), Π·) Inversion minimization on trees is the
computational problem with the following specification:

Input: A rooted tree T with leaf set X of size n, and a ranking ρ of X.

Output: MinInv(T, ρ), the minimum of Invρ(σ) over all possible orderings of T , where σ denotes the left-to-right
ranking of X induced by the ordering of T .

For any fixed tree T with leaf set X, we use the short-hand ΠT to denote the computational problem that takes as
input a ranking ρ of X and outputs MinInv(T, ρ).

Degerman [Deg82] observes that the ordering at each internal node can be optimized independently in a
greedy fashion. In the setting of binary trees, for each node v, we can count the cross inversions from the leaves
in the left subtree of v to the leaves in the right subtree of v. Between the two possible orderings of the children
of a node v, we choose the one that yields the smaller number of cross inversions. Based on his observation,
Degerman presents a polynomial-time algorithm for the case of binary trees T . A more refined implementation
and analysis yields a running time of O(davg(T) · n), where davg(T) denotes the average depth of a leaf in T . For
balanced binary trees the running time becomes O(n log n). All of this can be viewed as variants of the well-known
O(n log n) divide-and-conquer algorithm for counting inversions in arrays of length n.

For trees of degree deg(T) > 2, the local greedy optimization at each internal node becomes more complicated,
as there are many ways to order the children of each internal node. Exhaustive search results in a running time
of O((deg(T)! + deg(T) · davg(T)) · n), which can be improved to O((deg(T)22deg(T) + deg(T) · davg(T)) · n) using
dynamic programming. The problem is closely related to the classical problem of minimum arc feedback set, and
becomes NP-hard without any constraints on the degree. We refer to the full version of the paper for more details.

Query complexity. Rather than running time in the Turing machine model, our focus lies on query
complexity in the comparison-query model. There we can only access the ranking ρ : X → [n] via queries
of the form: Is ρ(x1) < ρ(x2)? For any fixed tree T , we want to determine the minimum number of queries needed
to solve the problem.

The comparison-query model represents the standard model for analyzing problems like sorting, selection,
and heap construction. Sorting represents the hardest problem in the comparison-query model as it is tantamount
to knowing the entire ranking ρ. Its query complexity has a well-known information-theoretic lower bound of
log2(n!) = n log2(n/e) +

1
2 log2(n) + O(1). Standard algorithms such as mergesort and heapsort yield an upper

bound of log2(n!) +O(n), which has been improved to log2(n!) + o(n) recently [Ser21]. We refer to Section 2 for
an overview of results and techniques for lower bounds in the model.

Information theory only yields a very weak lower bound on the query complexity of inversion minimization
on trees: log2

(
n
2

)
= 2 log2(n)−O(1). The complexity of the problem critically depends on the shape of the tree

T and can be significantly lower than the one for sorting. For starters, the problem becomes trivial for trees of
depth one as their leaves can be arranged freely in any order. More precisely, the trees T for which the answer

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

is identically zero, irrespective of the ranking ρ, are exactly those such that all root-to-leaf paths have only the
root in common.

Arguably, the simplest nontrivial instances of inversion minimization are for trees T of the Mann–Whitney
type in Figure 2 with a = 1 and b = n− 1. Depending on the rank r of the isolated leaf, an optimal ordering of
T is either the left or the right part in Figure 3, where the label of each leaf is its rank under ρ.

r 1 2
. . .

n r1 2
. . .

n

Figure 3: Rank instance

As the ordering on the left has r− 1 inversions and the one on the right n− r, the answer is min(r− 1, n− r).
Thus, this instance of inversion minimization on trees is essentially equivalent to rank finding, which has query
complexity exactly n− 1.

Results. We prove that for many trees T , inversion minimization on T is nearly as hard as sorting. First,
we exhibit a common structure that guarantees high complexity, namely a subtree that contains a fairly balanced
fraction of the leaves. We make use of the following notation.

Definition 1.4. (leaf set, L(·), and subtree) For a tree T , the leaf set of T , denoted L(T), is the set of
leaves of T . For a node v to T , Tv denotes the subtree of T rooted at v.

The quantitative statement references the gamma function Γ, which is a proxy for any convex real function that
interpolates the factorial function on the positive integers. More precisely, we have that Γ(n+ 1) = n! for every
integer n ≥ 1.

Theorem 1.1. (lower bound for general trees) Let T be a tree with n leaves, and v a node with |L(Tv)| =
ℓ. The query complexity of inversion minimization on T is at least log2(Γ(

ℓ(n−ℓ)
n +1)). In particular, the complexity

is at least log2(Γ(
k

(k+1)2 · n+ 1)) where k denotes the degree of T .

For trees of constant degree, Theorem 1.1 yields a lower bound that is as strong as the one for sorting up to
a constant multiplicative factor. For the important case of binary trees (like the classification trees from the
motivating example), we obtain a lower bound that is only a logarithmic additive term shy of the lower bound
for sorting.

Theorem 1.2. (lower bound for binary trees) For binary trees T with n leaves, the query complexity of
inversion minimization on T is at least log2(n!)−O(log n).

The logarithmic loss can be reduced to a constant for certain restricted classes of trees. The full statement is
somewhat technical. First, it assumes that the tree has no nodes of degree 1. This is without loss of generality, as
we can short-cut all degree-1 nodes in the tree without affecting the minimum number of inversions. For example,
trivial trees for inversion minimization have depth 1 without loss of generality. Second, the strength of the lower
bound depends on the maximum size of a leaf child set, defined as follows.

Definition 1.5. (leaf child set, LC(·)) The leaf child set LC(v) of a vertex v in a tree T is the set LC(v) of
all the children of v that are leaves in T .

Most importantly, the result requires certain fragile parity conditions to hold. That said, there are interesting
classes satisfying all requirements, and the bounds are very tight.

Theorem 1.3. (lower bound for restricted classes) Let T be a tree without nodes of degree 1 such that
the leaf child sets have size at most k, at most one of them is odd, and if there exists an odd one, say LC(v∗),
then all ancestors of v∗ have empty leaf child sets. The query complexity of inversion minimization on T is at
least log2(n!)−O(k log k). In particular, the lower bound applies to:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

◦ perfect trees of even degree k, and

◦ full binary (k = 2) trees with at most one leaf without a sibling leaf.

Recall that a tree of degree k is full if every node has degree 0 or k. It is perfect if it is full and all leaves have
the same depth.

For the Mann–Whitney statistic, Theorem 1.1 provides an Ω(n log n) lower bound for balanced instances, i.e.,
when a and b are Θ(n). For unbalanced instances there is a more efficient way to count cross inversions and thus
evaluate the statistic: Sort the smaller of the two sides, and then do a binary search for each item of the larger
side to find its position within the sorted smaller side so as to determine the number of cross inversions that it
contributes. For a ≤ b the approach makes b log2(a) + O(a log a) comparisons. We establish a lower bound that
shows the approach is optimal up to a constant multiplicative factor.

Theorem 1.4. (lower bound for counting cross inversions) Counting cross inversions from a set A of
size a to a set B of size b ≥ a with respect to a ranking ρ of X

.
= A ⊔B requires Ω((a+ b) log(a)) queries in the

comparison-query model, as does inversion minimization on the tree of Figure 2.

Techniques. We obtain our results by developing two new query lower bound techniques for generic problems
Π in the comparison-query model, and then instantiating them to the problem ΠT of inversion minimization on
a fixed tree T . Both techniques follow the common pattern of lower bounding the number of distinct execution
traces that any algorithm for Π needs to have.

Definition 1.6. (execution trace, complexity measures D(·) and Q(·)) Consider an algorithm A for a
problem Π in the comparison-query model. An execution trace of A is the sequence of comparisons that A makes
on some input ρ, as well as the outcomes of the comparisons. The complexity D(Π) is the minimum over all
possible algorithms for Π of the number of distinct traces the algorithm has over the set of all inputs ρ. The
complexity Q(Π) is the minimum, over all possible algorithms for Π of the maximum number of comparisons that
the algorithm makes over the set of all inputs ρ.

The complexity measure Q is what we refer to as query complexity. Since the maximum number of queries
that an algorithm A makes is at least the base-2 logarithm of the number of execution traces, we have that
Q(Π) ≥ log2(D(Π)). Note that, in order to avoid confusion with the tree T specifying an instance of inversion
minimization, we refrain from the common terminology of decision trees in the context of the complexity measure
D. In those terms, we lower bound the number of leaves of any decision tree for Π, and use the fact that the
depth of this binary decision tree is at least the base-2 logarithm of the number of leaves.

Both techniques proceed by considering the effect on the output of perturbations to the input ranking ρ that
are hard for queries to observe. More specifically, we consider the following perturbations:

Definition 1.7. (adjacent-rank transposition, affected items) An adjacent-rank transposition is a
permutation τ of [n] of the form τ = (r, r+1), where r ∈ [n− 1] and n denotes the number of items. Given τ and
a ranking ρ : X → [n], the affected items are the two elements x ∈ X for which τ(ρ(x)) ̸= ρ(x), i.e., the items
with ranks r and r + 1 under ρ.

As with any permutation of the set of ranks, the effect of τ on a ranking ρ is the ranking τρ. Adjacent-rank
transpositions are the least noticeable perturbations one can apply to a ranking in the following sense: If two
rankings differ by an adjacent-rank transposition, then the only query that distinguishes them is the query that
compares the affected items.

Sensitivity. Our first technique turns this observation around to obtain a lower bound on query complexity.
We adopt the terminology of sensitivity from Boolean query complexity.

Definition 1.8. (sensitivity, average sensitivity, s(·)) Let Π be a computational problem in the
comparison-query model on a set X of items. For a fixed ranking ρ and adjacent-rank transposition τ , we say that
Π is sensitive to τ at ρ if Π(ρ) ̸= Π(τρ). The sensitivity of Π at ρ is the number of adjacent-rank transpositions
τ such that Π is sensitive to τ at ρ. The average sensitivity of Π, denoted s(Π), is the average sensitivity of Π at
ρ when ρ is drawn uniformly at random from all rankings of X.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

On input a ranking ρ, any algorithm for Π needs to make a number of queries that is at least the sensitivity of
Π at ρ. Indeed, consider an adjacent-rank transposition τ to which Π is sensitive at ρ. If the algorithm does not
make the query that compares the affected items, then it must output the same answer on input τρ as on input ρ.
Since the value of Π differs on both inputs, this means the algorithm makes a mistake on at least one of the two.
It follows that the average number of queries that any algorithm for Π makes is at least the average sensitivity
s(Π). A fortiori, Q(Π) ≥ s(Π).

As sensitivity cannot exceed n−1, the best lower bound on query complexity that we can establish based on the
above basic observation alone, is n−1. The following improvement yields a the lower bound D(Π) ≥ n!/n = (n−1)!,
and therefore Q(Π) ≥ log2(n!) − log2(n) for problems Π of maximum average sensitivity s(Π) = n − 1. The
argument hinges on an efficient encoding of rankings that share the same execution trace. See Section 3 for more
details.

Lemma 1.1. (Sensitivity Lemma) For any problem Π in the comparison-query model with n items, D(Π) ≥
Γ(s(Π) + 2)/n.

The lower bound for general trees T in Theorem 1.1 and the strengthening for binary trees in Theorem 1.2
follow from corresponding lower bounds on the average sensitivity s(ΠT). Theorem 1.1 only requires a short
analysis to establish the sensitivity lower bound needed for the application of the Sensitivity Lemma; this illustrates
the power of the lemma and of the lower bound technique. Theorem 1.2 requires a more involved sensitivity
analysis, but then yields a very tight lower bound. Owing to the average-case nature of the underlying measure,
the technique also exhibits some degree of robustness. For the particular problem of inversion minimization on
trees, we show that small changes to the tree T do not affect the average sensitivity s(ΠT) by much. See Section 4
and Section 5.

For sorting, counting inversions, and inversion parity, the average sensitivity reaches its maximum value of
n−1, and Lemma 1.1 recovers the standard lower bounds up to a small loss. In contrast, for selection, the average
sensitivity equals 1 for ranks 1 and n, and 2 for other ranks, so the bound from Lemma 1.1 is no good. This
reflects that, just like in the Boolean setting, (average) sensitivity is sometimes too rough of a measure and not
always capable of proving strong lower bounds. Our second technique looks at a more delicate structural aspect,
which enables it to sometimes yield stronger lower bounds.

(4,1,2,3)
(4,2,1,3)

(3,2,1,4)

(3,1,2,4)

(2,1,3,4)

(1,2,3,4)

(1,2,4,3)

(1,3,2,4)

(2,1,4,3)

(2,3,1,4)

(3,1,4,2)

(4,1,3,2)

(4,2,3,1)

(3,2,4,1)
(2,4,1,3)

(1,4,2,3)

(1,3,4,2)

(2,3,4,1)

(1,4,3,2)

(2,4,3,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(3,4,1,2)

Figure 4: Permutahedron for n = 4 items

Permutahedron graph. Before introducing our
second technique, we cast our first technique in graph
theoretic terms. In fact, both our techniques can be
expressed naturally in subgraphs of the graph with the
rankings as vertices and adjacent-rank transpositions
as edges. The latter graph can be viewed as the
Cayley graph of the symmetric group with adjacent-
rank transpositions as the generating set. It is also
the edge graph of the permutahedron, the convex
polytope spanned by all permutations of the vertex
(1, 2, . . . , n) in Rn. The permutahedron resides inside
the hyperplane where the sum of the coordinates equals(
n
2

)
, has positive volume inside that hyperplane, and

can thus be represented naturally in dimension n− 1;
see Figure 4 for a rendering of the instance with n = 4
[Epp07].

We think of coloring the vertices of the permuta-
hedron with their values under Π and make use of the
subgraph with the same vertex set but only containing the monochromatic edges, i.e., the edges whose end points
have the same value under Π. We also consider the the complementary subgraph containing all bichromatic edges.

Definition 1.9. (permutahedron graph, G(·), G(·)) Let Π be a computational problem in the comparison-
query model on a set X of items. The permutahedron graph of Π, denoted G(Π), has the rankings of X as vertices,
and an edge between two rankings ρ1 and ρ2 if Π(ρ1) = Π(ρ2) and there exists an adjacent-rank transposition such
that ρ2 = τρ1. The complementary permutahedron graph of Π, denoted G(Π), is defined similarly by replacing
the condition Π(ρ1) = Π(ρ2) by its complement, Π(ρ1) ̸= Π(ρ2).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Our first technique looks at degrees in the complementary permutahedron graph G(Π), and more specifically at
the average degree degavg(G(Π))

.
= E(degG(Π)(ρ)), where the expectation is with respect to a uniform choice of

the ranking ρ. Our second technique looks at the connected components of the permutahedron graph G(Π).
Connectivity. Our second technique is reminiscent of a result in algebraic complexity theory, where the

number of execution traces of an algorithm for a problem Π in the algebraic comparison-query model is lower
bounded in terms of the number of connected components that Π induces in its input space Rn [BO83]. In the
comparison-query setting, we obtain the following lower bound.

Lemma 1.2. (Connectivity Lemma) For any problem Π in the comparison-query model, D(Π) is at least the
number of connected components of G(Π).

The Connectivity Lemma allows for a simple and unified exposition of many of the known lower bounds.
For counting inversions and inversion parity the argument goes as follows. Every adjacent-rank transposition
changes the number of inversions by exactly one (up or down), and therefore changes the output of Π, so all n!
vertices in G(Π) are isolated. This means that any algorithm for Π actually needs to sort and has to make at
least log2(n!) queries. See Section 7 for a proof of the Connectivity Lemma and more applications to classical
problems, including the Ω(n) lower bound for median finding.

The Connectivity Lemma also enables us to establish strong lower bounds for inversion minimization on
special types of trees T , namely those of Theorem 1.2 and the Mann–Whitney instances in Theorem 1.4, closely
related to counting inversions. Both theorems involve an analysis of the size of the connected component of a
random ranking ρ in G(ΠT), and Theorem 1.2 uses the delicate parity conditions of its statement to keep G(ΠT)
as sparse as possible. See Section 8 for more details.

The Mann–Whitney setting illustrates well the relative power of our techniques. In the Mann–Whitney
instances of inversion minimization, the leaves are naturally split between a subtree containing a of them and a
subtree containing b of them. The argument behind Theorem 1.1 yields a lower bound of ab

a+b on the sensitivity

s(ΠT). The true sensitivity is just O(1) below the one for counting cross inversions, which is 2ab
a+b . The resulting

lower bounds on the query complexity in case a ≤ b are Θ(a log a), which roughly account for sorting the smaller
side but not for the b log2(a) comparisons used in the subsequent binary searches for counting cross inversions.
Our approach based on the Connectivity Lemma yields a lower bound that includes both terms. On the other
hand, it is easier to estimate and obtain the lower bound via the Sensitivity Lemma than to argue the query lower
bound via the Connectivity Lemma or from scratch.

Other modes of computation. We stated our lower bounds for the standard, deterministic mode of
computation. Both of our techniques provide lower bounds for the number of distinct execution traces that are
needed to cover all input rankings, irrespective of whether these execution traces derive from a single algorithm.
Such execution traces can be viewed as certificates or witnesses for the value of Π on a given input ρ, or as valid
execution traces of a nondeterministic algorithm for Π. We define the minimum number of traces needed to cover
all input rankings for a problem Π as the nondeterministic complexity of Π and denote it by N(Π), along the lines
of the Boolean setting [JRSW99]. All of our lower bounds on D(Π) actually hold for N(Π). See Remark 3.1 and
Remark 7.1 for further discussion.

Since randomized algorithms with zero error are also nondeterministic algorithms, all of our lower bounds
apply verbatim to the former mode of computation, as well. As for randomized algorithms with bounded error, we
argue in Section 6 that our lower bounds on the query complexity of inversion minimization on trees that follow
from the Sensitivity Lemma carry over modulo a small loss in strength. We do so by showing generically that
high average sensitivity implies high query complexity against such algorithms.

The fact that our techniques yield lower bounds on N(Π) and not just D(Π) also explains why our approaches
sometimes fail. For example, for the problem Π of finding the minimum of n items, a total of n certificates suffice
and are needed, namely one for each possible item being the minimum. This means that our techniques cannot
give a lower bound on the query complexity of Π that is better than log2(n). In contrast, as reviewed in Section 2,
D(Π) = 2n−1 and the number of queries needed is n− 1.

Cross-inversion distribution. As a technical result in the sensitivity analysis for inversion minimization on
binary trees (Theorem 1.2), we need a strong upper bound on the probability that the number of cross inversions
XInvρ(A,B) takes on any particular value when the ranking ρ of the set X = A ⊔ B is chosen uniformly at
random. This is the distribution of the Mann–Whitney statistic under the null hypothesis. Mann and Whitney
[MW47] argued that it converges to a normal distribution with mean µ = ab/2 and variance σ2 = ab(a+ b+1)/12

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

as a
.
= |A| and b

.
= |B| grow large. Since the normal distribution has a maximum density of 1/(

√
2πσ), their

result suggests that the maximum of the underlying probability distribution is O(1/σ) = O(1/
√

ab(a+ b+ 1)).
Takács [Tak86] managed to formally establish such a bound for all pairs (a, b) with |a− b| = O(

√
a+ b), Stanley

and Zanello [SZ16] for all pairs (a, b) with min(a, b) bounded, and Melczer, Panova, and Pemantle [MPP20] for all
pairs (a, b) with |a− b| ≤ α · (a+ b) for some constant α < 1. However, these results do not cover all regimes and
leave open a single bound of the same form that applies to all pairs (a, b), which is what we need for Theorem 1.2.
We establish such a bound in the full version of the paper. The counts of the rankings ρ with a particular value
for XInvρ(A,B) appear as the coefficients of the Gaussian polynomials. Our bound can be stated equivalently as
a bound on those coefficients.

Organization. We have organized the material so as to provide a shortest route to a full proof of Theorem 1.1.
Here are the sections needed for the different main results:

◦ Theorem 1.1 (lower bound for general trees): 3, 4.

◦ Theorem 1.2 (lower bound for binary trees): 3, 5.

◦ Theorem 1.3 (lower bound for restricted classes): 7, 8 up to 8.2 inclusive.

◦ Theorem 1.4 (lower bound for counting cross inversions): 7, 8 but not 8.1 nor 8.2.

In Section 2, we provide some background on known lower bounds in the comparison-query model, several of
which are unified by the Sensitivity Lemma and Connectivity Lemma.

2 The Comparison-Query Model

In this section we provide an overview of known results and techniques for lower bounds in the comparison-query
model. This section can be skipped without a significant loss in continuity.

Tight bounds have been established for problems like sorting, selection, and heap construction.

◦ We already discussed the central problem of sorting in Section 1.

◦ In selection we are told a rank r, and must identify the item with rank r. The query complexity is known
to be Θ(n) [BFP+73, DZ99, DZ01]. There is also multiple selection, in which one is given multiple ranks
r1, . . . , rk, and must identify each of the corresponding items. The query complexity of multiple selection is
likewise known up to a Θ(n) gap between the upper and lower bounds [KMMS05].

◦ In heap construction we must arrange the items as nodes in a complete binary tree such that every node
has a rank no larger than its children. The query complexity is known to be Θ(n).

All the problems above can be cast as instantiations of a general framework known as partial order
production [Sch76]. Here, in addition to query access to the ranking ρ of the items, we are given n slots and
regular access to a partial order <slot on the slots. The objective is to put each item into a slot, one item per slot,
so that whenever two slots, s1 and s2, are related by s1 <slot s2, we also have ρ(s1) < ρ(s2). Sorting coincides
with the case where <slot is a total order. In selection of rank r, there is a designated slot s∗, and there are
exactly r− 1 slots s with s <slot s

∗ and exactly n− r slots s with s∗ <slot s; there are no other relations in <slot.
Multiple selection is similar. For heap construction, <slot matches the complete binary tree arrangement.

There is a generic lower bound for partial order production, the information-theoretic limit. For each way
of putting items into slots, the number of input rankings ρ for which that way is a correct answer is bounded
by e(<slot), the number of ways to extend <slot to a total order. Therefore, there must be at least n!/e(<slot)
distinct execution traces. Since each execution trace is determined by the outcomes of its queries, and each query
has only two outcomes, we conclude that λ(<slot)

.
= log2(n!/e(<slot)) queries are necessary to solve partial order

production. Complementing this lower bound there exists an upper bound of (1 + o(1)) · λ(<slot) +O(n) queries
[CFJ+10]. One may assume without loss of generality the relationship λ(<slot) ≥ n−1, in which case O(λ(<slot))
queries always suffices. Thus, the complexity of partial order production is Θ(λ).

Not every problem of interest in the comparison model is an instance of partial order production. Here are a
few examples.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

◦ In rank finding there is a designated item x∗, and we have to compute its rank. The rank can be computed
by comparing x∗ with each of the n − 1 other items. Any combination of less than n − 1 queries leaves at
least one item of which the relative ranking with x∗ remains undetermined. Thus, the query complexity is
exactly n− 1.

◦ In counting inversions the items are arranged in some known order σ and the objective is to count the
number of inversions of σ with respect to ρ. As we reviewed in Section 1, counting inversions has exactly
the same query complexity as sorting.

◦ The problem of inversion parity is the same as counting inversions except that one need only count the
number of inversions modulo 2. This problem, as well as counting inversions modulo m for any integer
m > 1, also has exactly the same complexity as sorting.

For each of the three problems above, information theory does not provide a satisfactory lower bound. For
example, in the inversion parity problem there are only two possible outputs, which yields a lower bound of
log2(2) = 1. It so happens that for each of the preceding three examples, the query complexity is known quite
precisely; however, the known arguments are rather problem-specific.

Inversion minimization on trees is another example that does not fit the framework of partial order generation,
and for which information theory only yields a weak lower bound: log2

(
n
2

)
= 2 log2(n)−Θ(1). In contrast to the

above examples, a strong lower bound does not seem to follow from a simple ad-hoc argument nor from a literal
equivalence to sorting.

3 Sensitivity Lemma

In this section we develop Lemma 1.1. We actually prove a somewhat stronger version.

Lemma 3.1. (Strong Sensitivity Lemma) Consider an algorithm A in the comparison-based model with n
items, color each vertex of the permutahedron with its execution trace under A, and let H denote the subgraph
with the same vertex set but only containing the bichromatic edges. The number of distinct execution traces of A
is at least g(degavg(H) + 1)/n, where g : [1,∞)→ R is any convex function with g(x) = x! for x ∈ [n].

The Sensitivity Lemma follows from Lemma 3.1 because the coloring with execution traces of an algorithm A for
Π is a refinement of the coloring with Π, so every edge of the permutahedron that is bichromatic under Π is also
bichromatic under A, and

s(Π)
.
= E(degG(Π)(ρ)) ≤ E(degH(ρ))

.
= degavg(H).

Provided g is nondecreasing, it follows that D(Π) ≥ g(degavg(H) + 1)/n ≥ g(s(Π) + 1)/n.
In the Sensitivity Lemma we set g(x) = Γ(x+ 1). An optimal (but less elegant) choice for g is the piece-wise

linear function that interpolates the prescribed values at the integral points in [n], namely

g(x)
.
= (x− ⌊x⌋) · (⌈x⌉!) + (1− (x− ⌊x⌋)) · (⌊x⌋!).

For the proof of Lemma 3.1 we take intuition from a similar result in the Boolean setting [O’D14, Exercise 8.43],
where the hypercube plays the role of the permutahedron in our setting.

Fact 3.1. Let A be a query algorithm on binary strings of length n. Color each vertex of the n-dimensional
hypercube by its execution trace under A, and let H denote the subgraph with the same vertex set but only
containing the bichromatic edges. Then the number of distinct execution traces is at least 2degavg(H).

One way to argue Fact 3.1 is to think of assigning a weight w(x) to each x ∈ {0, 1}n so as to maximize the
total weight on all inputs, subject to the constraint that the total weight on each individual execution trace is at
most 1. Then the number of distinct execution traces must be at least the sum of all the weights. If the weight
only depends on the degree, i.e., if we can write w(x) = f(degH(x)) for some function f : [0,∞) → R, then we
can lower bound the number k of distinct execution traces as follows:

(3.1) k ≥
∑
x

w(x) =
∑
x

f(degH(x)) ≥ 2n · f(E(deg(x))) = 2n · f(degavg(H)),

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

where the last inequality holds provided f is convex.
In the Boolean setting, the set R of inputs x ∈ {0, 1}n with a particular execution trace forms a subcube

of dimension n − ℓ, where ℓ denotes the length of the execution trace, i.e., the number of queries. Each x ∈ R
has degree ℓ in H; this is because a change in a single queried position results in a different execution trace,
and a change in another position does not. Therefore, a natural choice for the weight of x ∈ R is w(x) = f(ℓ)
where f(x) = 1/2n−ℓ. It satisfies the constraint that the total weight on R is (at most) one, and f is convex.

We conclude by (3.1) that the number of distinct execution traces is at least 2n · f(degavg(H)) = 2degavg(H), as
desired.

Proof. [Proof of Lemma 3.1] Let k denote the number of distinct execution traces of A, and let R1, . . . , Rk denote
the corresponding sets of rankings. Following a similar strategy, we want to find a convex function f : [0,∞)→ R
such that the weight function w(ρ) = f(degH(ρ)) does not assign weight more than 1 to any one of the sets Ri.
The following claim, to be proven later, is the crux of this.

Claim 3.1. Let R denote the set of all rankings ρ that follow a particular execution trace on A, and let
d ∈ {0, . . . , n− 1}. The number of rankings ρ ∈ R with degH(ρ) = d is at most n!

(d+1)! .

Based on Claim 3.1, a natural choice for f is any convex function that satisfies f(x) = 1
n

(x+1)!
n! for

x ∈ {0, . . . , n − 1}. The factor of 1
n comes from the fact that there are n terms to sum together after the

weights have been normalized. For every i ∈ [k] we then have

∑
ρ∈Ri

w(ρ) =

n−1∑
d=0

|{ρ ∈ Ri : degH(ρ) = d}| · f(d) ≤
n−1∑
d=0

1

n

(d+ 1)!

n!
· n!

(d+ 1)!
=

n−1∑
d=0

1

n
= 1.

Similar to (3.1) we conclude

(3.2) k ≥
k∑

i=1

∑
ρ∈Ri

w(ρ) =
∑
ρ

w(ρ) =
∑
ρ

f(degH(ρ)) ≥ n! · f(E(degH(ρ))) = n! · f(degavg(H)).

Setting f(x) = 1
n

g(x+1)
n! turns the requirements for f into those for g in the statement of the lemma, and yields

that k ≥ n! · f(degavg(H)) = g(degavg(H) + 1)/n.

We now turn to proving Claim 3.1. The comparisons and outcomes that constitute a particular execution
trace of A can be thought of as directed edges between the items in X. We refer to the resulting digraph on
the vertex set X as the comparison graph C. Since the outcomes of the comparisons are consistent with some
underlying ranking, the digraph C is acyclic. The rankings in R are in one-to-one and onto correspondence
with the linear orderings of the DAG C. For a given ranking ρ ∈ R, the degree degH(ρ) equals the number of
r ∈ {2, . . . , n} such that swapping ranks r − 1 and r in ρ results in a ranking ρ′ = τρ that is not in R, where τ
denotes the adjacent-rank transposition (r − 1, r). The ranking ρ′ not being in R means that it is inconsistent
with the combined comparisons and outcomes of the underlying execution trace, which happens exactly when
there is a path in C from the item ρ−1(r − 1) of rank r − 1 in ρ to the item ρ−1(r) with rank r in ρ. Thus, the
degree degH(ρ) equals the number of r ∈ {2, . . . , n} such that there is a path from ρ−1(r − 1) to ρ−1(r) in C.
See Figure 5 for an illustration, where a squiggly edge u ⇝ v denotes that there exists a path from u to v in C.
We only draw squiggly edges from one position to the next, so degH(ρ) equals the number of squiggly edges in
Figure 5.

rank 1 2 3 4 5 . . . r − 1 r . . . n

ρ−1

Figure 5: Ranking encoding

Our strategy is to give a compressed encoding of the rankings in R such that there is more compression as
the number of squiggly edges increases. Our encoding is based on the well-known algorithm to compute a linear
order of a DAG. Algorithm 3.1 provides pseudocode for the algorithm, which we refer to as BuildRanking.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3.1. (BuildRanking(C))

Input: DAG C on vertex set X
Output: ranking of X that is a linear order of C
1: T ← ∅
2: for r = 1 to n do
3: x← arbitrary element of S

.
= {v ∈ X | there is no u ∈ X \ T with u⇝ v in G}

4: ρ−1(r)← x
5: T ← T ∪ {x}
6: end for

In our formulation, BuildRanking is nondeterministic: There is a choice to make in step 3 for each r = 1, . . . , n.
The possible executions of BuildRanking are in one-to-one and onto correspondence with the linear orders of C,
and thus with the rankings in R.

Our encoding is a compressed description of how to make the decisions in BuildRanking such that the output
is ρ. Note that if ρ−1(r − 1) ⇝ ρ−1(r), then the item x with rank r cannot enter the set S before iteration r.
This is because before ρ−1(r − 1) is removed from T at the end of iteration r − 1, the edge ρ−1(r − 1)⇝ ρ−1(r)
prevents x from being in S. Thus, whenever ρ−1(r − 1)⇝ ρ−1(r), the item x = ρ−1(r) is lucky in the sense that
it gets picked in step 3 as soon as it enters the set S. In fact, the lucky items with respect to a ranking ρ ∈ R are
exactly those for which ρ−1(r − 1)⇝ ρ−1(r) for some r ∈ {2, . . . , n}, as well as the item ρ−1(1) with rank 1. In
Figure 5 the lucky items are marked black. Their number equals degH(ρ) + 1.

In order to generate a ranking ρ using BuildRanking, it suffices to know:

(a) the lucky items (as a the set, not their relative ordering), and

(b) the ordering of the non-lucky items (given which items they are).

This information suffices to make the correct choices in step 3 of Algorithm 3.1:

◦ If the set S contains a lucky item, there will be a unique lucky item in S; pick it as the element x.

◦ Otherwise, pick for x the first item in the ordering of the non-lucky items that is not yet in T . Such an
element will exist, and all the items that come after it in the ordering are not yet in T either.

If ρ has degree d = degH(ρ), then there are d+ 1 lucky items, so there are at most
(

n
d+1

)
choices for (a), and at

most (n− d− 1)! choices for (b), resulting in a total of at most
(

n
d+1

)
· (n− d− 1)! = n!

(d+1)! choices. This proves

Claim 3.1.

Remark 3.1. Suppose we allow an algorithm A to have multiple valid execution traces on a given input ρ, and
let Ri denote the set of rankings on which the i-th execution trace is valid. The proof of Claim 3.1 carries over
as it considers individually sets Ri, and only depends on the DAG that the comparisons in Ri induce. The rest
of the proof of Lemma 3.1 carries through modulo the first equality in (3.2), which no longer holds as the sets Ri

may overlap. However, the equality can be replaced by the inequality ≥, which does hold and is sufficient for the
argument. This means that we can replace D(Π) in the statement of the Sensitivity Lemma by its nondeterministic
variant N(Π).

4 Sensitivity Approach for General Trees

In this section we analyze the average sensitivity of the problem ΠT of inversion minimization on a tree T with
a general shape. In Section 4.1 we show that the existence of a subtree containing a fair fraction of the leaves
implies high sensitivity. The lower bound on query complexity for ΠT in Theorem 1.1 then follows from the
Sensitivity Lemma. In Section 4.3 we prove that the average sensitivity measure is Lipschitz continuous. For the
analysis, we make use of the decomposition of the objective of inversion minimization on trees mentioned earlier.
We describe the decomposition in more detail in Section 4.2; it will be helpful in later parts of this paper, as well.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

v

L(Tv)

L(T)

Figure 6: Subtree rooted at v

4.1 Subtree-induced sensitivity We first introduce a sensi-
tivity bound for inversion minimization based on the size of a
subtree.

Lemma 4.1. (subtree-induced sensitivity) Consider a tree
T with n

.
= |L(T)| leaves, and some node v in T with ℓ

.
= |L(Tv)|

leaves. We have

s(ΠT) ≥
ℓ(n− ℓ)

n
− 1.

Note that v is not necessarily a direct child of the root, as shown
in Fig. 6.

We now prove Lemma 4.1. Let ρ be a ranking of the leaves of
T , and let σmin be a tree ordering that minimizes the number of inversions with respect to ρ.

Claim 4.1. ρ is sensitive to the transposition τ = (r, r + 1) if σmin(ρ
−1(r)) > σmin(ρ

−1(r + 1)).

Proof. If σmin(ρ
−1(r)) > σmin(ρ

−1(r + 1)), then Invτρ(σmin) = Invρ(σmin)− 1. Since Invρ(σmin) = MinInv(T, ρ),
this means that MinInv(T, τρ) < MinInv(T, ρ), or that ρ is sensitive to τ .

In the case of general trees, a tree ordering σ that minimizes the number of inversions with respect to ρ is
NP-hard to find. Our strategy is to find a lower bound on the number of r for which σ(ρ−1(r)) > σ(ρ−1(r + 1))
that applies regardless of σ.

Claim 4.2. For any ordering σ, the number of r such that σ(ρ−1(r)) > σ(ρ−1(r + 1)) is at least one less than
the number of s such that ρ−1(s) ∈ L(Tv) and ρ−1(s+ 1) ̸∈ L(Tv).

Proof. For all except at most one value of s (the maximum s for which ρ−1(s) ∈ L(Tv)), there exists a
minimal s′ > s such that ρ−1(s′) ∈ L(Tv). We claim that at least one value of r = s, . . . , s′ − 1 satisfies
σ(ρ−1(r)) > σ(ρ−1(r+1)). If not, then σ would rank ρ−1(s), ρ−1(s+1), . . . , ρ−1(s′) in increasing order. Because
σ is a tree ordering, the leaves of L(Tv) must be mapped into a contiguous range by σ, as shown in Fig. 7.
However, we have ρ−1(s), ρ−1(s′) ∈ L(Tv) but ρ−1(s + 1) ̸∈ L(Tv), which violates this property since σ ranks a
leaf outside L(Tv) between two leaves inside L(Tv).

Because each value of r is found between consecutive pairs of values in L(Tv), the values of r are distinct.

2 7

v

1 5 4 6

8

3 9

(a) Leaves in σ-order, labeled with ρ-ranks.

ρ

σ

L(Tv)

r1 r2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

s1 s′1 s2 s′2

(b) Corresponding plot of ρ, σ for each leaf.

Figure 7: σ maps leaves of L(Tv) in a contiguous range.

Claim 4.3. Over a uniformly random ρ, the expected number of s such that ρ−1(s) ∈ L(Tv) and ρ−1(s+1) ̸∈ L(Tv)

is ℓ(n−ℓ)
n .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. For s = 1, . . . , n− 1, the probability that ρ−1(s) ∈ L(Tv) is
ℓ
n , and the probability that ρ−1(s+1) ̸∈ L(Tv)

given that ρ−1(s) ∈ L(Tv) is n−ℓ
n−1 . Using linearity of expectation on the indicator random variables for

ρ−1(s) ∈ L(Tv) and ρ−1(s+ 1) ̸∈ L(Tv), the expected number of s satisfying this property is

(n− 1)

(
ℓ(n− ℓ)

n(n− 1)

)
=

ℓ(n− ℓ)

n
.

Combining Claim 4.1, Claim 4.2, and Claim 4.3, we can conclude with Lemma 4.1.
Bounded degree. We apply our analysis to the case of trees of degree k. Observe that for fixed n, Lemma 4.1

is strongest when ℓ = n/2. Not every tree T has a subtree with exactly n/2 leaves, but Lemma 4.1 still gives a
useful bound for subtrees that do not contain too few or too many leaves. In the case of trees of bounded degree,
there always exists a subtree Tv that contains a fairly balanced fraction of the leaves. The following quantification
is folklore. We include a proof for completeness.

Fact 4.1. If T is a tree of degree k with n leaves, there exists a node v in T such that ℓ
.
= |L(Tv)| = α · n, where

1
k+1 ≤ α ≤ k

k+1 .

Proof. Let r be the root of T and construct a sequence v1 = r, v2, v3, . . . such that vi is a child of vi−1 that
maximizes ℓi

.
= |L(Tvi)|, with ties broken arbitrarily. Notice that {ℓi} is a decreasing sequence, and since T has

degree k, ℓi ≤ kℓi+1 for all i. We claim that some vi in this sequence satisfies the conditions of the claim. If not,
then for some i, ℓi >

k
k+1 · n and ℓi+1 < 1

k+1 · n, which contradicts the fact that ℓi ≤ kℓi+1.

By choosing a subtree satisfying Fact 4.1, we can apply Lemma 4.1 and conclude that s(ΠT) ≥ k
(k+1)2 ·n− 1.

The Sensitivity Lemma then gives the “in particular” part of Theorem 1.1.

4.2 Decomposition of the objective function For use in this section as well as later parts of the paper, we
now explain how the objective of inversion minimization on trees decomposes. We introduce the notion of root
inversion along the way, and observe the effect of adjacent-rank transpositions on the decomposition.

The objective MinInv(T, ρ) can be written as the sum of contributions from each of the individual nodes. A
node v contributes those inversions that reside in the subtree Tv and go through the root v of Tv. We refer to
them as the root inversions in Tv.

Definition 4.1. (root inversions, RInv(·, ·, ·), MinRInv(·, ·)) Given a tree T , a ranking ρ of the leaves of T ,
and an ordering σ of T , a root inversion of σ with respect to ρ is an inversion (ℓ1, ℓ2) of σ with respect to ρ for
which the lowest common ancestor LCA(ℓ1, ℓ2) is the root of T . The number of root inversions of σ with respect
to ρ in T is denoted by RInv(T, ρ, σ). The minimum number of root inversion in T with respect to ρ is denoted

(4.3) MinRInv(T, ρ)
.
= min

σ
RInv(T, ρ, σ),

where σ ranges over all possible orderings of T .

The only aspect of the ordering σ of Tv that affects RInv(Tv, ρ, σ) is the relative order of the children of v. For
a node v with k children u1, . . . , uk, by abusing notation and using σ to also denote the ranking of the children
induced by the ordering of the tree, we have

(4.4) RInv(T, ρ, σ)
.
=

∑
1≤i<j≤k

XInvρ(Lσ(i), Lσ(j)),

where Li is a short-hand for the leaf set L(Tui). The contributions of the nodes can be optimized independently:

(4.5) MinInv(T, ρ) =
∑
v

MinRInv(Tv, ρ),

where v ranges over all nodes of T with degree degT (v) > 1.
When we apply an adjacent-rank transposition τ to a ranking ρ, at most one of terms in the decomposition

(4.5) can change, and the change is at most one unit. We capture this obervation for future reference as it will
be helpful in several sensitivity analyses.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proposition 4.1. Let ρ be a ranking of the leaf set X of a tree T , τ an adjacent-rank transposition, and ℓ1 and
ℓ2 be the affected leaves. Then

MinRInv(Tv, ρ) = MinRInv(Tv, τρ)

for all nodes v in T except possibly v = LCA(ℓ1, ℓ2). Moreover, the difference is at most 1 in absolute value.

Proof. Since the ranks of ℓ1 and ℓ2 under ρ are adjacent, for any leaf ℓ other than ℓ1 and ℓ2, the relative order of ℓ
under ρ is the same with respect to ℓ1 as it is with respect to ℓ2. This means that the adjacent-rank transposition
τ does not affect whether a pair of leaves constitutes an inversion unless that pair equals {ℓ1, ℓ2}. As a result, the
only term on the right-hand side of (4.5) that can be affected by the transposition τ is the one corresponding to
the node v, and it can change by at most one unit.

4.3 Lipschitz continuity Average-case notions typically do not change much under small changes to the
input. This is indeed the case for the average sensitivity when “small” is interpreted as affecting few of the
subtrees. The following lemma quantifies the property and can be viewed as a form of Lipschitz continuity.

v

v∗

ℓ1 ℓ2

X

Y

Figure 8: Effects of changing Tv∗

Lemma 4.2. Given a tree T , if a subtree Tv∗ with ℓ leaves is replaced
with a tree T ′

v∗ with the same number of leaves, resulting in the tree
T ′, then

|s(ΠT)− s(ΠT ′)| ≤ ℓ(ℓ− 1)

n
.

Proof. We think of the leaf sets of T and T ′ as being the same set
X = L(T) = L(T ′), and fix a ranking ρ of X. Consider an ordering
of T and the ranking σ of X that it induces. Outside of T ′

v∗ we can
order T ′ in the same way as T . Irrespective of how we order T ′ inside
T ′
v∗ , the induced ranking σ′ of X agrees with σ on all leaves in X

except possibly those in Y
.
= L(Tv∗) = L(T ′

v∗). Moreover, under both
σ and σ′, the set Y gets mapped to the same contiguous interval. It
follows that for all pairs (ℓ1, ℓ2) of distinct leaves of which at least one
lies outside of Y , (ℓ1, ℓ2) constitutes an inversion of σ with respect
to ρ if and only if (ℓ1, ℓ2) constitutes an inversion of σ′ with respect to ρ. For any node v outside of Tv∗ , root
inversions in Tv cannot involve leaves that are both in Y

.
= L(Tv∗). See Figure 8 for an illustration. Thus, for

such nodes v, RInv(Tv, ρ, σ) = RInv(T ′
v, ρ, σ

′). By taking the minimum over all orderings, we conclude:

Claim 4.4. MinRInv(Tv, ρ) = MinRInv(T ′
v, ρ) holds for every node v outside of Tv∗ (or equivalently, outside of

T ′
v∗).

Consider a ranking ρ and an adjacent-rank transposition τ = (r, r + 1). We claim that, unless (ℓ1, ℓ2)
.
=

(ρ−1(r), ρ−1(r + 1)) ∈ Y × Y , ΠT is sensitive to τ at ρ if and only if ΠT ′ is sensitive to τ at ρ. This is because
by Proposition 4.1 the only term in the decomposition (4.5) of MinInv(T, ρ) that can be affected by τ is the
contribution MinRInv(Tv, ρ) for v = LCA(ℓ1, ℓ2). If at least one of ℓ1 or ℓ2 is not inside Tv∗ , then v is not
inside Tv∗ either, so by Claim 4.4, MinRInv(Tv, ρ) = MinRInv(T ′

v, ρ). By the same token, MinRInv(Tv, τρ) =
MinRInv(T ′

v, τρ). It follows that MinInv(T, ρ) ̸= MinInv(T, τρ) if and only if MinInv(T ′, ρ) ̸= MinInv(T ′, τρ).
We bound the expected number of values of r for which (ρ−1(r), ρ−1(r + 1)) ∈ Y × Y with Y

.
= L(Tv) when

ρ is chosen uniformly at random. For r ∈ [n− 1], the probability that ρ−1(r) ∈ Y is ℓ
n , and the probability that

ρ−1(r + 1) ∈ Y given that ρ−1(r) ∈ Y is ℓ−1
n−1 . Using linearity of expectation on the indicators, the expected

number of said r is

(n− 1)

(
ℓ(ℓ− 1)

n(n− 1)

)
=

ℓ(ℓ− 1)

n
.

Lemma 4.2 helps to extend query lower bounds based on average sensitivity to larger classes. Suppose we
have established a good lower bound on the sensitivity s(ΠT) for a class C of trees. Consider a class C ′ obtained

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

by taking a tree T in class C and replacing some of the subtrees Tv by other subtrees T ′
v on the same number of

leaves. For this new class C ′ the same lower bound on the sensitivity of inversion minimization applies modulo the
Lipschitz loss. For example, Theorem 1.2 holds by virtue of a lower bound of the form s(ΠT) ≥ (n− 1)− c log(n)
for every binary tree T with n leaves, where c is a universal constant. If we allow some of the subtrees of T to be
replaced by, say freely arrangeable ones on the same leaves, applying Lemma 4.2 for each of the modified subtrees
in sequence shows that the resulting new tree T ′ has

s(ΠT ′) ≥ s(ΠT)−
αn(αn− 1)

n
≥ (n− 1)− c log(n)− α2(n− 1) = (1− α2)(n− 1)− c log(n),

where α denotes the fraction of leaves that belong to one of the replaced subtrees.

5 Refined Sensitivity Approach for Binary Trees

In this section we show how to refine the sensitivity approach for lower bounds on the query complexity of the
problem ΠT of inversion minimization on trees in the important special case of binary trees T . In Section 5.1 we
first develop a criterion for when a particular ranking ρ is sensitive to a particular adjacent-rank transposition τ .
We then analyze the root sensitivity of binary trees in Section 5.2 and finally establish a strong lower bound on
the average sensitivity in Section 5.3. An application of the Sensitivity Lemma then yields Theorem 1.2.

5.1 Sensitivity criterion Recall the decomposition of the objective function MinInv(T, ρ) into contributions
attributed to each node v of degree degT (v) > 1, as given by (4.5) in Section 4.2. In the case of binary trees, the
contribution of node v can be calculated simply as

(5.6) MinRInv(Tv, ρ) = min(XInvρ(L1, L2),XInvρ(L2, L1)),

where u1 and u2 denote the two children of v, and L1
.
= L(Tu1) and L2

.
= L(Tu2) their leaf sets. This simplicity

makes a precise analysis of sensitivity feasible, as we will see next.
For a given ranking ρ of T and a given adjacent-rank transposition τ , we would like to figure out the effect of

τ on the objective MinInv(T, ·), in particular when MinInv(T, τρ) = MinInv(T, ρ). Let ℓlo and ℓhi denote the two
leaves that are affected by the transposition τ on the ranking ρ, where the subscript “lo” indicates the lower of the
two leaves with respect to ρ, and “hi” the higher of the two. Let v be the lowest common ancestor LCA(ℓlo, ℓhi).
We use the same subscripts “lo” and “hi” for the two children of v: ulo denotes the child whose subtree contains
ℓlo, and uhi its sibling. Similarly, we denote by Llo the leaf set of Tulo

, and by Lhi the leaf set of Tuhi
. See Figure 9

for the subsequent analysis.

v

ulo uhi

ℓlo ℓhi

Llo Lhi

Llo = {ℓlo} ⊔A

A = A< ⊔A>

ρ(A<) < ρ(ℓlo) < ρ(A>)

Lhi
.
= {ℓhi} ⊔B

B = B< ⊔B>

ρ(B<) < ρ(ℓhi) < ρ(B>)

Figure 9: Sensitivity analysis for binary trees

By Proposition 4.1, the situation before and after the application of τ is as follows, where x
.
= XInvρ(Llo, Lhi)

and y
.
= XInvρ(Lhi, Llo).

ranking RInv(Tv, ·, σ(ℓlo) < σ(ℓhi)) RInv(Tv, ·, σ(ℓhi) < σ(ℓlo)) MinRInv(Tv, ·)
ρ x y min(x, y)
τρ y − 1 x+ 1 min(y − 1, x+ 1)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

The objective function remains the same iff min(x, y) = min(y − 1, x+ 1), which happens iff x− y = −1, or
equivalently iff

(5.7) DInvρ(Llo, Lhi) = DInvρ({ℓlo}, {ℓhi}),

where we introduce the following short-hand:

Definition 5.1. (cross inversion difference, DInv·(·, ·)) For a ranking ρ of a set X, and two subsets
A,B ⊆ X,

DInvρ(A,B)
.
= XInvρ(A,B)−XInvρ(B,A).

We can split Llo as Llo = {ℓlo} ⊔ A = A< ⊔ {ℓlo} ⊔ A>, where A< contains all leaves in Llo that ρ ranks before
ℓlo, and A> contains all the leaves in Llo that ρ ranks after ℓlo. We similarly split Lhi, as indicated in Figure 9.
We have that

DInvρ(Llo, Lhi) = DInvρ({ℓlo}, {ℓhi}) + DInvρ({ℓlo}, B) + DInvρ(A, {ℓhi}) + DInvρ(A,B).

Since the ranks of ℓlo and ℓhi under ρ are adjacent, we have that DInvρ({ℓlo}, B) = |B<| − |B>| and
DInvρ(A, {ℓhi}) = |A>| − |A<|. Plugging everything into (5.7) we conclude:

Proposition 5.1. Let T be a binary tree, ρ a ranking of the leaves of T , τ an adjacent-rank transposition, ℓlo
and ℓhi the two leaves affected by τ under ρ such that ρ ranks ℓlo before ℓhi. Referring to the notation in Figure 9,
we have that

MinInv(T, ρ) = MinInv(T, τρ)⇔ DInvρ(Llo, Lhi) = DInvρ({ℓlo}, {ℓhi})(5.8)

⇔ DInvρ(A,B) = |A<| − |A>|+ |B>| − |B<|.(5.9)

5.2 Root sensitivity Given a ranking ρ and an adjacent-rank transposition τ , we know by Proposition 4.1
that at most one of the terms in the decomposition (4.5) of MinInv(T, ρ) is affected by the transposition, namely
MinRInv(Tv, ρ) where v is the lowest common ancestor of the affected leaves ℓlo and ℓhi. It follows that we can
write the average sensitivity of ΠT

.
= MinInv(T, ·) as the following convex combination:

s(ΠT) = (n− 1) · P[MinInv(T, ρ) ̸= MinInv(T, τρ)]

= (n− 1)
∑
v

P[v = LCA(ℓlo, ℓhi)] · P[MinRInv(Tv, ρ) ̸= MinRInv(Tv, τρ) | v = LCA(ℓlo, ℓhi)],(5.10)

where the probability is over a uniformly random choice of the ranking ρ and the adjacent-rank transposition
τ , and ℓlo and ℓhi denote the affected leaves. The conditional probability on the right-hand side of (5.10) only
depends on the subtree Tv. The ranking ρ of all leaves induces a ranking ρ′ of the leaves of Tv that is uniform
under the conditioning. Similarly, the adjacent-rank transposition τ for ρ induces an adjacent-rank transposition
τ ′ for ρ′; the distribution of τ ′ under the conditioning is independent of ρ′ and uniform among all adjacent-rank
transpositions such that the affected leaves live in subtrees of different children of v. Thus, the probability on the
right-hand side of (5.10) coincides with the following notion for the subtree Tv.

Definition 5.2. (root sensitivity) Let T be a tree. The root sensitivity of T is the probability that
MinRInv(Tv, ρ) ̸= MinRInv(Tv, τρ) when ρ is a uniform random ranking of L(T), and τ a uniform random
adjacent transposition with the condition that the affected leaves are in subtrees of different children of the root of
T .

Note that the only nodes v that need to be considered in the sum on the right-hand side of (5.10) are those that
can appear as lowest common ancestor of two leaves, and such that Tv is not freely arrangeable. In the case of
binary trees, this means that we only need to consider nodes v of degree 2 such that Tv contains more than 2
leaves. In this section we prove a strong lower bound on the root sensitivity of such trees Tv.

Consider the binary tree T with root v in Figure 9. The distribution underlying Definition 5.2 can be generated
as follows: Pick a leaf on each side of the root v uniformly at random, and let ρ be a ranking of the leaves of T that
is uniform random with the condition that the selected leaves receive adjacent ranks; τ then is the adjacent-rank

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

transposition that swaps the two selected leaves. The root sensitivity of T is the complement of the probability
that the right-hand side of (5.9) holds under this distribution. Let us analyze the left-hand side of (5.9) further.
As A = A< ⊔A> and B = B< ⊔B>, we have that

DInvρ(A,B) = DInvρ(A<, B<) + DInvρ(A<, B>) + DInvρ(A>, B<) + DInvρ(A>, B>).

By the defining properties of the sets involved (see Figure 9), we know that DInvρ(A<, B>) = −a< b> and
DInvρ(A>, B<) = a> b<, where a<

.
= |A<|, a>

.
= |A>|, b<

.
= |B<|, and b>

.
= |B>|. Thus, we can rewrite criterion

(5.9) as:

(5.11) DInvρ(A<, B<) + DInvρ(A>, B>) = a< b> − a> b< + a< − a> + b> − b<.

A critical observation that helps us to bound the probability of (5.11) is that, conditioned on all four values a·
and b·, the right-hand side of (5.11) is fixed, but the left-hand side still contains a lot of randomness. In fact,
under the conditioning stated, the ranking that ρ induces on A<⊔B< is still distributed uniformly at random, the
same holds for the ranking that ρ induces on A> ⊔B>, and both distributions are independent. This means that,
under the same conditioning, the left-hand side of (5.11) has the same distribution as the sum Xa<,b< +Xa>,b>

of two independent random variables of the following type:

Definition 5.3. (cross inversion distribution, X·,·) For nonnegative integers a and b, Xa,b denotes the
random variable XInv(A,B) that counts the number of cross inversions from A to B, where A is an array of
length a, B an array of length b, and the concatenation AB is a random permutation of [a+ b].

In the full version of the paper, we establish the following upper bound on the probability that the number of
cross inversions takes on any specific value.

Lemma 5.1. There exists a constant C such that for all integers a, b ≥ 1 and 0 ≤ k ≤ ab,

(5.12) P[Xa,b = k] ≤ C√
ab(a+ b)

.

Using Lemma 5.1 we can establish an upper bound of the same form as the right-hand side of (5.12) for the
probability that (5.11) holds: For some constant C ′

(5.13) P[Xa<,b< +Xa>,b> = a< b> − a> b< + a< − a> + b> − b<] ≤
C ′√

ab(a+ b)
,

where a
.
= a< + a> ≥ 1 and b

.
= b< + b> ≥ 1. We consider several cases based on the relative sizes of a< vs a>,

and b< vs b>.

(i) In case both a< ≥ ηa and b< ≥ ηb, the bound (5.13) follows from (5.12) as long as C ′ ≥ C/η3/2.

(ii) By reverting the order in (i), the same holds true in case both a> ≥ ηa and b> ≥ ηb.

(iii) In case a> ≤ ηa and b< ≤ ηb, the left-hand side of (5.11) is at most 2ηab, whereas the right-hand side is at
least

(1− η)2ab− η2ab+ (1− η)a− ηa+ (1− η)b− ηb = (1− 2η)(ab+ a+ b).

As long as 2η ≤ 1− 2η, or equivalently, η ≤ 1/4, this case cannot occur.

(iv) By reverting the role of A and B in (iii), the same holds true in case b> ≤ ηb and a< ≤ ηa.

As long as η ≤ 1/2, it holds that either a< ≥ ηa or a> ≥ ηa, and either b< ≥ ηb or b> ≥ ηb. Distributing the
“and” over the “or”, we obtain the four cases we considered, which are therefore exhaustive. We conclude that
(5.13) holds for C ′ = 43/2C whenever a

.
= |A| ≥ 1 and b

.
= |B| ≥ 1.

In the case where a = 0 and b ≥ 1, the right-hand side of (5.9) vanishes, as do |A<| and |A>|, so (5.9) holds
if and only if |B<| = |B>|, or equivalently, the leaf ℓhi is ranked exactly in the middle of the leaf set Lhi. As the
ranking ρ is chosen uniformly at random, this happens with probability 1/(b+ 1) where b

.
= |B| = |Lhi| − 1. The

case where a ≥ 1 and b = 0 is symmetric. The remaining case, a = b = 0, is one we do not need to consider as
the tree T then only has two leaves. In all other cases we obtain a strong upper bound on the probability that
(5.9) holds, and by complementation a strong lower bound on the root sensitivity. We capture the lower bound
in the following single expression that holds for all cases under consideration.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 5.2. There exists a constant c such that for every binary tree T with at leaves 3 leaves and a root of
degree 2, the root sensitivity of T is at least

(5.14) 1− c√
n1n2(n1 + n2)

,

where n1 and n2 denote the number of leaves in the subtrees rooted by the two children of the root.

5.3 Average sensitivity We are now ready to establish that, except for trivial cases, the average sensitivity
of a binary tree is close to maximal. The trivial cases are those where the tree has at most two leaves, in which
case the sensitivity is zero.

Lemma 5.3. The average sensitivity of ΠT for binary trees T with n ≥ 2 leaves is n−O(1).

Proof. We use the expression (5.10) for the average sensitivity of ΠT , where v ranges over all nodes of degree
2 such that Tv contains as least two leaves. Consider a node v of degree 2 such that Tv contains nv,1 leaves
one one side and nv,2 leaves on the other side, where nv,1 + nv,2 ≥ 3. If we choose the ranking ρ and the
adjacent-rank transposition τ uniformly at random, each of the

(
n
2

)
pairs of leaves are equally likely to be the

affected pair. As there are nv,1 · nv,2 choices that result in v as their lowest common ancestor, we have that

P[v = LCA(ℓlo, ℓhi)] =
2nv,1nv,2

n(n−1) . Combining this with the root sensitivity lower bound given by (5.14), we have

that

s(ΠT) ≥ (n− 1)
∑
v

2nv,1nv,2

n(n− 1)
·

(
1− c√

nv,1nv,2(nv,1 + nv,2)

)

= (n− 1)− 2c

n

∑
v

√
nv,1nv,2

nv,1 + nv,2
.

The following claim then completes the proof.

Claim 5.1. There is a constant c′ such that for all binary trees T with n leaves

(5.15)
∑
v

√
nv,1nv,2

nv,1 + nv,2
≤ c′n,

where the sum ranges over all nodes v of degree 2 such that Tv contains at least 3 leaves.

Proof. [Proof of Claim 5.1] We use structural induction to prove a somewhat stronger claim, namely that

(5.16)
∑
v

√
nv,1nv,2

nv,1 + nv,2
≤ c′n− d′

√
n

for some constants c′ and d′ to be determined. As the base case we consider binary trees T with at most two
leaves. In this case, the left-hand side of (5.16) is zero and the right-hand side is non-negative provided c′ ≥ d′,
so (5.16) holds.

For the inductive step, the case where the root of T has degree 1 immediately follows from the inductive
hypothesis for the subtree Tu rooted by the child u of the root of T . The remaining case is where the root of T
has degree 2. Let u1 and u2 be the two children for the root, n1 = |L(Tu1

)|, and n2 = |L(Tu2
)|. The sum on the

left-hand side of (5.16) has three contributions:
√

n1n2

n1+n2
from the root, and the contributions from Tu1

and Tu2
,

to which we can individually apply the inductive hypothesis. This gives us an upper bound of√
n1n2

n1 + n2
+ (c′n1 − d′

√
n1) + (c′n2 − d′

√
n2) =

√
n1n2

n1 + n2
+ c′(n1 + n2)− d′(

√
n1 +

√
n2),

which we want to upper bound by

c′n− d′
√
n = c′(n1 + n2)− d′

√
n1 + n2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Writing n1 = αn for some α ∈ [0, 1] and rearranging terms, the upper bound holds if and only if√
α(1− α) ≤ d′(

√
α+
√
1− α− 1).

We claim that the upper bound holds for d′ = (
√
2 + 1)/2. Let

F (α)
.
= d′(

√
α+
√
1− α− 1)−

√
α(1− α).

It suffices to show that F (α) ≥ 0. Since F is continuous on [0, 1], it attains a minimum on [0, 1]. On (0, 1), F
is differentiable. It can be verified that F ′ has a unique zero in (0, 1/2), which needs to be a maximum as F is
increasing at α = 0. By the symmetry F (α) = F (1−α), it follows that the minimum of F on [0, 1] is attained at
the midpoint α = 1/2 or at one of the endpoint α = 0 or α = 1. At all three points F (α) = 0. We conclude that
(5.16) holds for any constants d′ ≥ (

√
2 + 1)/2 and c′ ≥ d′.

6 Sensitivity Approach for Bounded Error

In this section, we apply the sensitivity approach to obtain lower bounds on the query complexity of problems in
the comparison-query model against randomized algorithms with bounded error. We derive a generic result that
query lower bounds against deterministic algorithms that are based on the Sensitivity Lemma, also hold against
bounded-error randomized algorithms with a small loss in strength. The approach works particularly well when
we have linear lower bounds on the average sensitivity, in which case there is only a constant-factor loss in the
strength of the query lower bound. Among others, this applies to the Ω(n log n) query lower bound for inversion
minimization on trees of bounded degree.

Generic lower bound. Our approach is based on Yao’s minimax principle [Yao77], which lower bounds
worst-case complexity against randomized algorithms with bounded error by average-case complexity against
deterministic algorithms with bounded distributional error. We view a deterministic algorithm with small
distributional error for a problem Π as an exact deterministic algorithm for a slightly modified problem Π′. The
idea is to then apply the sensitivity approach to Π′, and capitalize on the closeness of the average sensitivities of
Π and Π′ to obtain a lower bound in terms of the sensitivity of Π. By using the Sensitivity Lemma as a black-box,
the approach yields a lower bound on the query complexity of bounded-error algorithms that is worst-case with
respect to the input and with respect to the randomness, i.e., the lower bound holds for some input and some
computation path on that input. By delving into the proof of the Sensitivity Lemma, we are able to obtain a
lower bound that is worst-case with respect to the input but average-case with respect to the randomness, i.e.,
the lower bound holds for the expected number of queries on some input.1

We first define the notions of randomized complexity and distributional complexity.

Definition 6.1. (randomized and distributional query complexity, RQ·(·) and DistQ·(·, ·)) Let Π be
a problem in the comparison-query model and ε ∈ [0, 1].

A randomized algorithm R for Π is said to have error ε if on every input ρ, the algorithm outputs Π(ρ) with
probability at least 1 − ε. The query complexity of R is the maximum, over all inputs ρ, of the expected number
of queries that R makes on input ρ. The ε-error randomized query complexity of Π, denoted RQε(Π), is the
minimum query complexity of R over all ε-error randomized algorithms R for Π.

Let D be a probability distribution on the inputs ρ. A deterministic algorithm A for Π has error ε with respect
to D if the probability that A(ρ) = Π(ρ) is at least 1 − ε where the input ρ is chosen according to D. The query
complexity of A with respect to D is the expected number of queries that A makes on input ρ when ρ is chosen
according to D. The ε-error distributional query complexity of Π with respect to D, denoted DistQε(Π,D), is the
minimum query complexity of A with respect to D over all deterministic algorithms A for Π that have error ε
with respect to D.

The relationship between randomized complexity and distributional complexity is described by Yao’s principle.

1In fact, the approach yields a lower bound that is average-case with respect to the input (chosen uniformly at random) as well
as the randomness. This follows because the proof of Yao’s minimax principle allows us to replace the left-hand side of (6.17) by the

average of the expected number of queries with respect to the distribution D, which we pick to be uniform in our application of the
principle.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 6.1. (Yao’s minimax principle [Yao77]) Let Π be a problem in the comparison-query model, ε ∈
[0, 1/2], and D a distribution on the inputs ρ.

(6.17) RQε(Π) ≥ 1

2
DistQ2ε(Π,D).

We now prove lower bounds on the distributional query complexity, and thus on randomized query complexity,
of comparison-query problems Π based on average sensitivity bounds. For these bounds, we always set D to be
the uniform distribution, the distribution underlying the notion of average sensitivity.

We start by studying average-case query complexity, i.e., zero-error distributional query complexity, and its
relationship to the average sensitivity. We follow a strategy similar to the one in the proof of the Sensitivity
Lemma. Whereas a bound on deterministic complexity Q follows purely from the number of execution traces D,
here, the execution traces are weighted by their depth and their probability of occurring.

Recall that g in the statement of the Strong Sensitivity Lemma denotes any convex function g : [1,∞) → R
with g(x) = x! for x ∈ [n]; for deriving the Sensitivity Lemma from the Strong Sensitivity Lemma we also need g
to be nondecreasing. One such function is g(x) = Γ(x+1). To prove a lower bound on the zero-error distributional
complexity, we need the function g to be not only convex, but log-convex, i.e., log2 g(x) needs to be convex. The
function g(x) = Γ(x+ 1) satisfies this constraint, as well.

Proposition 6.1. Let Π be a problem in the comparison-query model with n items, D the uniform distribution
on the inputs ρ, and g : [1,∞)→ R a nondecreasing log-convex function with g(x) = x! for x ∈ [n].

DistQ0(Π,D) ≥ log2(g(s(Π) + 1)/n)

Proof. Let k be the number of distinct execution traces of a deterministic algorithm A for Π, and let R1, . . . , Rk

denote the corresponding sets of rankings. Interpreting A as a binary decision tree, let d(Ri) be the depth of the
execution trace corresponding to Ri. By Kraft’s inequality,

k∑
i=1

2−d(Ri) ≤ 1.

Let f(x) = 1
n

g(x+1)
n! and define the weight function w(ρ) = f(degH(ρ)), where H refers to the notation of the

Strong Sensitivity Lemma: H denotes the subgraph of the full permutahedron that only consists of the bichromatic
edges when the vertices are colored with their execution trace under A. By Claim 3.1, the sum of the weights of
all rankings ρ in Ri is at most 1. Therefore, ∑

ρ

2−d(ρ)w(ρ) ≤ 1.

Dividing both sides by n! and taking the logarithm of both sides, we get that

(6.18) log2 E
[
2−d(ρ)w(ρ)

]
≤ log2(1/n!),

where the expectation is with respect to a uniform distribution over the inputs ρ. By Jensen’s inequality, since
log is concave, we get

log2 E
[
2−d(ρ)w(ρ)

]
≥ E

[
log2

(
2−d(ρ)w(ρ)

)]
= E[−d(ρ)] + E[log2 w(ρ)],

which, in combination with (6.18), implies

E[log2 w(ρ)] ≤ E[d(ρ)] + log2(1/n!).

Note that since g is log-convex, so is f . By applying Jensen’s inequality again,

E[log2 w(ρ)] = E[log2 f(degH(ρ))] ≥ log2 f(E[degH(ρ)]),

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

implying

log2

(
1

n
·
g(E[degH(ρ)] + 1)

n!

)
≤ E[d(ρ)] + log2(1/n!),

or equivalently,

E[d(ρ)] ≥ log2(g(E[degH(ρ)] + 1)/n).

The result follows since A is an arbitrary deterministic algorithm for Π, E[d(ρ)] equals the query complexity of A
with respect to the uniform distribution D, E[degH(ρ)] ≥ E[degG(Π)(ρ)] = s(Π), and g is nondecreasing.

Proposition 6.1 allows us to prove a lower bound on the ε-error distributional query complexity of Π with
respect to the uniform distribution. In order to do so, we view a deterministic algorithm with distributional error
ε for Π as an exact deterministic algorithm for a modified problem Π′, apply Proposition 6.1, and lower bound
the sensitivity of Π′ in terms of the sensitivity of Π.

Proposition 6.2. Let Π be a problem in the comparison-query model with n items, D the uniform distribution
on the inputs ρ, ε ∈ [0, 1], and g : [1,∞)→ R a nondecreasing log-convex function with g(x) = x! for x ∈ [n].

(6.19) DistQε(Π,D) ≥ log2

(
g(s(Π) + 1− 2(n− 1)ε)

n

)
Proof. Consider any algorithm A with error ε for Π, or in other words, P[A(ρ) ̸= Π(ρ)] ≤ ε. Let ΠA be the
problem of determining the output of A. We prove that

s(ΠA) ≥ s(Π)− 2(n− 1)ε,

which implies the desired result by Proposition 6.1, since A is a deterministic algorithm for ΠA and g is
nondecreasing.

Let G denote the full permutahedron graph for n items. We use the fact that s(Π) = (n−1) ·Pe∈G[e ∈ G(Π)],
and similarly, s(ΠA) = (n−1) ·Pe∈G[e ∈ G(ΠA)], where all the underlying distributions are uniform. Suppose the
endpoints of e are ρ1 and ρ2. Note that if e ∈ G is picked uniformly at random, then the marginal distributions
of both ρ1 and ρ2 are also uniform. If A(ρ1) = Π(ρ1), A(ρ2) = Π(ρ2), and e ∈ G(ΠA), then e ∈ G(Π), as well.
By a union bound, the probability that A(ρ1) ̸= Π(ρ1) or A(ρ2) ̸= Π(ρ2) is at most 2ε.

Pe∈G[e ∈ G(ΠA)] ≥ Pe∈G[e ∈ G(Π)]− Pe∈G[A(ρ1) ̸= Π(ρ1) or A(ρ2) ̸= Π(ρ2)]

≥ Pe∈G[e ∈ G(Π)]− 2ε.

Multiplying both sides by n− 1 gives s(ΠA) ≥ s(Π)− 2(n− 1)ε.

Since s(Π) ≤ n − 1, Proposition 6.2 only yields nontrivial lower bounds for small ε. In order to establish
lower bounds for the standard ε = 1/3, we first reduce the error using standard techniques. Doing so such that
the argument of g on the right-hand side of (6.19) remains Ω(s(Π)), and picking g(x) = Γ(x+ 1), we conclude:

Lemma 6.2. (Bounded-Error Sensitivity Lemma) For any problem Π in the comparison-query model with
n items,

RQ1/3(Π) = Ω

(
s log s

log(2n/s)

)
,

where s
.
= s(Π).

Proof. By taking the majority vote of multiple independent runs and a standard analysis, e.g, based on Chernoff
bounds, we have that RQε(Π) = O(log(1/ε))RQ1/3(Π) for any ε ≤ 1/3. Combining this with Lemma 6.1 and
Proposition 6.2, we have:

RQ1/3(Π) = Ω

(
RQε(Π)

log(1/ε)

)
= Ω

(
DistQ2ε(Π)

log(1/ε)

)
= Ω

(
log(g(s+ 1− 4(n− 1)ε)/n)

log(1/ε)

)
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Setting ε such that 4nε = s/2 yields

RQ1/3(Π) = Ω

(
log(g(s/2 + 1)/n)

log(8n/s)

)
.

Picking g(x) = Γ(x+ 1) and using the fact that Γ(x) ≥
√
2πx

(
x
e

)x
, we obtain

RQ1/3(Π) = Ω

(
(s/2) log(s/(2e))− log n

log(8n/s)

)
= Ω

(
s log s

log(2n/s)

)
,

where the simplification can be verified by considering the cases of large s (say s ≥
√
n) and small s separately.

We can apply Lemma 6.2 to the sensitivity lower bounds of Lemma 4.1 and produce randomized lower bounds
for inversion minimization on bounded-degree trees. Using Fact 4.1 we obtain:

Theorem 6.1. (lower bound against bounded-error for inversion minimization on trees) Let T be

a tree with deg(T) ≤ k. The query complexity of ΠT for bounded-error randomized algorithms is Ω(n log(n/k)
k log(k)).

7 Connectivity Lemma

In this section we establish Lemma 1.2 and use it to present some of the known lower bounds in a unified
framework. We actually prove the following somewhat stronger result.

Lemma 7.1. (Strong Connectivity Lemma) Consider an algorithm A in the comparison-based model, color
each vertex of the permutahedron with its execution trace under A, and let H denote the subgraph with the same
vertex set but only containing the monochromatic edges. The number of distinct execution traces of A equals the
number of connected components of H.

The Connectivity Lemma follows from Lemma 7.1 because the coloring with execution traces of an algorithm A for
Π is a refinement of the coloring with Π. Note that the counterpart of Lemma 7.1 in the Boolean setting is trivial.
This is because an execution trace in the Boolean setting is specified by values for a subset of the input bits, so the
set of inputs that follow a particular execution trace form a subcube of the hypercube, the Boolean counterpart
of the permutahedron. Subcubes are trivially connected inside the hypercube. In the comparison-query model,
the sets of inputs that follow a particular execution trace can be more complicated, and their connectedness is no
longer trivial but still holds.

Proof. [Proof of Lemma 7.1] Two rankings ρ1 and ρ2 that have distinct execution traces under A cannot be
connected because any path between them needs to contain at least one bichromatic edge. For the remainder of
the proof, we consider two rankings ρ1 and ρ2 that have the same execution trace under A, and construct a path
from ρ1 to ρ2 in H.

If ρ1 = ρ2, we do not need to make any move and use an empty path.
Otherwise, there exists a rank r < n such that ρ1 and ρ2 agree on ranks less than r and disagree on rank r.

We have the following situation, where the item yr with rank r under ρ2, has rank s > r under ρ1.

rank 1 · · · r − 1 r · · · s− 1 s · · · n

ρ−1
1 x1 · · · xr−1 xr · · · xs−1 xs = yr · · ·

= = = ̸=

ρ−1
2 y1 · · · yr−1 yr · · · · · ·

Considering ranking ρ1, we have that ρ1(xs−1) = s − 1 < s = ρ1(xs). Considering ranking ρ2, since xs−1

differs from yi = xi for every i ∈ [r − 1] and also differs from yr, we have that ρ2(xs−1) > r = ρ2(yr) = ρ2(xs).
Thus, the relative ranks of xs−1 and xs under ρ1 and ρ2 differ. As ρ1 and ρ2 have the same execution trace, this
means that the algorithm does not compare xs−1 and xs on either input, and on ρ1 in particular. Let ρ′1 be the
ranking obtained from ranking ρ1 by applying the adjacent-rank transposition τ = (s− 1, s). Since the algorithm
does not compare the affected items, the execution trace for ρ′1 and ρ1 are the same, so the edge from ρ1 to ρ1 is

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

monochromatic and in H. We use this edge as the first on the path from ρ1 to ρ2 in H. What remains is to find
a path from ρ′1 to ρ2 in H. The situation is the same as the one depicted above but with r increased by one in
case s = r + 1, and with the same r and s decreased by one, otherwise. The proof then follows by induction on
the ordered pair (r, n− s).

Remark 7.1. Suppose we allow an algorithm A to have multiple valid execution traces on a given input ρ, and
let R denote the set of rankings on which a particular execution trace is valid. The construction in the proof of
Lemma 7.1 yields a path in the permutahedron between any two rankings in R such that the path entirely stays
within R. This means that we can replace D(Π) in the statement of the Connectivity Lemma by its nondeterministic
variant N(Π).

We already explained in Section 1 how the Connectivity Lemma shows that counting inversions and inversion
parity amount to sorting, and require at least log(n!) queries. We now illustrate its use for a classical problem
that is easier than sorting, namely median finding.

Let Π denote the selection problem with rank r = ⌈n/2⌉. For any ranking, the adjacent-rank transpositions
τ that change the item with rank r are the two that involve rank r: τ = (r − 1, r) and τ = (r, r + 1). Those
transpositions are the ones that correspond to missing edges in the permutahedron graph G(Π). As a result, for
any two rankings, there exists a path between them in G(Π) if and only if they have the same median as well
as the same set of items with rank less than r (and also the same set of items with rank greater than r). As
there are n possibilities for the median and, for each median,

(
n−1
r−1

)
possibilities for the set of items that have

rank less than r, G(Π) has n ·
(
n−1
r−1

)
connected components. It follows that any algorithm for Π has at least

n ·
(
n−1
r−1

)
= Ω(

√
n · 2n) distinct execution paths, and therefore needs to make at least n+ 1

2 log(n)−O(1) queries.
As a side note, this example clarifies a subtlety in the equivalence between ordinary selection and the

instantiation of partial order production that is considered equivalent to selection. Whereas selection of rank
r ordinarily requires outputting only the item of rank r, the instantiation of partial order production additionally
requires partitioning the remaining items according to whether their ranks are less than or greater than r. The
above analysis implies that it is impossible for the algorithm to know the item of rank r without also knowing
how to partition the remaining items into those of rank less than and greater than r. It follows that, in the
comparison-based model, ordinary selection and the instantiation of partial order production are equivalent.

8 Connectivity Approach

In this section we develop the connectivity approach to obtain query lower bounds for problems Π in the
comparison-query model. Our main focus is the problem ΠT of inversion minimization on certain types of trees
T , for which we derive the very strong query lower bounds of Theorem 1.3. While developing the application, we
observe that some parts carry through for a broader class of problems. This allows us to apply the same ideas to
the problem of counting cross inversions, for which we obtain the query lower bound of Theorem 1.4, as well as
the closely related problem of inversion minimization on the Mann–Whitney trees of Figure 2.

In order to obtain good lower bounds on D(ΠT) using the Connectivity Lemma, it is sufficient to find good
upper bounds on the size of the connected components of a typical vertex in G(ΠT). Assume without loss of
generality that T has no internal nodes of degree 1, i.e., no nodes with exactly one child. ΠT is always insensitive to
an adjacent-rank transposition τ at a ranking ρ when the affected leaves are siblings in T . Thus, the corresponding
edges from the permutahedron are always present in G(ΠT). From the perspective of ensuring small connected
components in G(ΠT), the ideal situation would be if there were no other edges in G(ΠT). That is to say, ΠT

is sensitive at ρ to every adjacent-rank transposition τ except when the affected leaves are siblings. We will
investigate conditions on T that guarantee this situation in the next subsections. For now, let us investigate the
size of the connected components of G(ΠT) when T is of the desired type.

To facilitate the analysis, recall our notation for the maximal sets of sibling leaves.

Definition 8.1. (leaf child set, LC) The leaf child set LC(v) of a vertex v in a tree T is the set LC(v) of
all the children of v that are leaves in T .

Let LC1,LC2, . . . denote the leaf child sets in T . See Figure 10a for an example. As the only steps we can take
in G(ΠT) correspond to adjacent-rank transpositions τ that swap leaves in the same leaf child set LCi, the sets
LCi remain invariant, irrespective of the ranking ρ we start from.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Depending on ρ, there may be more structure inside each leaf child set LCi; the leaf child set may be broken
up into smaller sets that are each invariant. Figure 10b illustrates how this happens for a particular leaf child
set containing 7 leaves. We list the elements of the child leaf set in order of increasing rank under ρ, and include
an edge between elements that have successive ranks. We introduce the term “successor graph” to capture this
structure, viewed as a graph with the ranks as vertices.

Definition 8.2. (successor graph, S(·, ·)) Let Π be a computational problem in the comparison-query model
on a set X of n items, and ρ a ranking of X. The successor graph of Π on ρ, denoted S(Π, ρ), has vertex set
[n] and contains all edges of the form (r, r + 1) with r ∈ [n − 1] such that Π(ρ) = Π(τρ), where τ denotes the
adjacent-rank transposition (r, r + 1).

4 12 6 5 10

11 2 3 9 14 7 8

1 13

LC1 LC2

LC3

LC4

(a) Leaf child sets and leaf ranks under ρ

r 2 3 7 8 9 11 14

ρ(r)

(b) Inside leaf child set LC3

Figure 10: Connected component analysis

The connected components of the successor graph S(Π, ρ) in Figure 10b correspond to subsets of LCi that
each remain invariant. Within each of the subsets, every possible ordering can be reached, independently for each
subset. This is because for any adjacent-rank transposition τ , the successor graphs S(Π, ρ) and S(Π, τρ) are the
same, and every ordering can be realized by a sequence of swaps of adjacent elements. Thus, if the sizes of the
connected components of S(Π, ρ) over all possible leaf child sets LCi are n1, n2, . . . , the size of the connected
component of ρ in G(ΠT) equals

∏
j(nj !).

For future reference, we abstract the property that we need for the above analysis the carry through.

Definition 8.3. (partition property) A computational problem Π in the comparison-query model on a set
X of n items has the partition property if the set X can be partitioned into sets Xi such that for any ranking
ρ of X and adjacent-rank transposition τ = (r, r + 1) with r ∈ [n − 1], Π(ρ) = Π(τρ) if and only if ρ−1(r) and
ρ−1(r + 1) belong to the same partition class Xi.

In the case of the problem ΠT , the partition classes Xi correspond to the leaf child sets LCi. We have shown:

Proposition 8.1. Let Π be a computational problem in the comparison-query model on the set X, and let ρ be
a ranking of X. If Π has the partition property, then the connected component of ρ in G(Π) has size

∏
j(nj !),

where the nj’s denote the sizes of the connected components of S(Π, ρ).

Returning to instances of the problem ΠT with the partition property, if each leaf child set LCi has size at
most k, then each of the connected components of S(Π, ρ) has size nj ≤ k, irrespective of ρ. The maximum value
that

∏
j(nj !) can take under the constraints

∑
j nj = n and nj ≤ k is no more than (k!)n/k. By the Connectivity

Lemma, we conclude that D(ΠT) ≥ n!/(k!)n/k, and that the query complexity is at least log2(n!)−O(n log(k)).
We can do better by observing that, for a random ranking ρ, the number of adjacent-rank transpositions τ

that do not jump from one leaf child set to another one, is not much larger than the average size of the leaf child
sets. More precisely, for any rank r ∈ [n − 1], the probability that ρ−1(r) and ρ−1(r + 1) belong to the same

leaf child set equals
∑

i
|LCi |

n
|LCi |−1

n−1 , which is at most k−1
n−1 when each leaf child set LCi is of size at most k. It

follows that the expected number of adjacent-rank transpositions τ that do not change leaf child sets, is at most
k − 1, so for a fraction at least half of the rankings ρ the number is at most 2(k − 1).

The number of adjacent-rank transpositions τ that do not change leaf child sets for a given ranking ρ equals
the number of edges in the successor graph S(ΠT , ρ). This is the number of edges in Figure 10b, summed over

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

all leaf child sets LCi. In terms of the sizes nj , the number equals
∑

j(nj − 1). We are considering rankings ρ for
which the sum is at most 2(k − 1). The maximum of

∏
j(nj !) under the constraints that

∑
j(nj − 1) ≤ 2(k − 1)

and that each individual nj ≤ k, is reached when two of the nj ’s equal k and the rest are 1. Thus, if each of the
leaf child sets LCi are of size at most k, for a fraction at least half of the rankings ρ, the size of the connected
component of ρ in G(ΠT) is at most (k!)2. It follows that the number of connected components of G(Π) is at
least n!/(2(k!)2). By the Connectivity Lemma, we conclude:

Lemma 8.1. Let T be a tree with n leaves. If ΠT satisfies the partition property, then D(Π) ≥ n!/(2(k!)2).

This yields a lower bound of log(n!) − O(k log(k)) on the query complexity of ΠT whenever ΠT satisfies the
partition property.

Next we find sufficient conditions on the tree T that guarantee that ΠT has the partition property. For
didactic reasons we first develop the conditions for binary trees, and then generalize them to arbitrary trees.

8.1 Binary trees In the case of binary trees T , the sensitivity analysis of Section 5.1 leads to a simple sufficient
condition for the partition property to hold for ΠT . Recall that we are assuming without loss of generality that
T has no internal nodes of degree 1, which in the case of binary trees is equivalent to saying that the tree is full:
Every internal node has the maximum degree of 2.

Consider criterion 5.8 in Proposition 5.1. The right-hand side is always −1. As for the left-hand side, we
know the following.

Fact 8.1. For all disjoint sets A,B ⊆ X and any ranking ρ of X, DInvρ(A,B) = |A| · |B| mod 2.

Proof. As every pair in A×B constitutes a cross-inversion for either A to B, or B to A, we have XInvρ(A,B) +
XInvρ(B,A) = |A| · |B|. Thus,

DInvρ(A,B)
.
= XInvρ(A,B)−XInvρ(B,A)

= (XInvρ(A,B) + XInvρ(B,A))− 2XInvρ(B,A)

= |A| · |B| − 2XInvρ(B,A).(8.20)

As XInvρ(B,A) in an integer, the claim follows.

Fact 8.1 implies that whenever at least one of the leaf sets Llo or Lhi is of even cardinality, then (5.8) fails to hold,
and ΠT is sensitive to the underlying τ at ρ. Thus, we can guarantee that ΠT satisfies the partition property
provided that for any two siblings u1 and u2 in T that are not both leaves, at least one of |L(Tu1

)| or |L(Tu2
)| is

even. We refer to the latter condition as the product condition. In trees without nodes of degree 1, the product
condition can be expressed alternately in terms of the leaf child sets. We state and prove the result for arbitrary
trees as it will help us in the next subsection to generalize the analysis.

Proposition 8.2. Let T be a tree without nodes of degree 1. The following two conditions are equivalent:

(a) For any two siblings u1 and u2 that are not both leaves, at least one of |L(Tu1)| or |L(Tu2)| is even.

(b) At most one leaf child set is odd, and if there exists a node v∗ with an odd leaf child set LC(v∗), then all
ancestors of v∗ have an empty leaf child set.

In the case of binary trees, (b) can be simplified to: At most one leaf has a non-leaf sibling.

Proof. We establish the two directions of implication separately.

⇒: We argue the contrapositive. Suppose that at least two of the leaf child sets are odd. Start with the root of
T as the node v, and iterate the following: If v has a child u such that Tu contains at least two nodes with an
odd leaf child set, replace v by such a child u. When the process ends, one of the following situations applies:

◦ There are two distinct children u1 and u2 of v that are not leaves and each contain a single node with an
odd leaf child set. In this case both Tu1

and Tu2
contain an odd number of leaves, violating (a).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

◦ There exists a unique child u1 of v that is not a leaf and contains a single node with an odd leaf child set,
and v itself has an odd number of leaf children. In this case, setting u2 to any one leaf child of v (which
exists as their number is odd), leads to a violation of (a).

Next, suppose that there exists a unique node v∗ that has an odd leaf child set, and that an ancestor v of v∗ has
a leaf child u1. Setting u2 to the child of v that contains v∗ in its subtree, yields a violation of (a) as Tu2 contains
an odd number of leaves.

⇐: If neither u1 nor u2 are leaves, the first condition of (b) guarantees that at most one of Tu1
or Tu2

contains
an odd number of leaves. If u1 is a leaf and u2 is not, then the second condition of (b) implies that Tu2

cannot
contain a node with an odd leaf child set, and therefore has an even number of leaves.

In the case of binary trees, the first condition of (b) implies the second one, which can therefore be dropped
from the equivalence statement. Moreover, for binary trees the first condition of (b) can be expressed as: At most
one leaf has a non-leaf sibling.

1

3 6

2

4 5

Figure 11: Tree insensitive to non-sibling
transposition

By Proposition 8.2, in a binary tree the condition that at
most one leaf has no sibling is equivalent to the product condition,
which implies the partition property of ΠT , so the lower bound of
Lemma 8.1 applies. This establishes Theorem 1.3 in the case of
binary trees.

As a side note, Fig. 11 shows the simplest example of a full
binary tree T and a ranking ρ for which there exists an adjacent-
rank transposition τ to which ΠT is insensitive at ρ while the
affected leaves are not siblings. The tree has two leaves without
siblings, namely 1 and 2. The adjacent-rank transposition (3, 4)
acts on nodes that are not siblings, but leaves the minimum
number of inversions at 4.

8.2 General trees For general trees T the sensitivity analysis of ΠT becomes more complicated than for
binary trees, and we do not know of a simple sensitivity criterion like Proposition 5.1, but we can nevertheless
extend the result for binary trees to arbitrary trees with similar constraints. For a given ranking ρ of L(T) and
a given adjacent-rank transposition τ , we would like to figure out the effect of τ on the objective MinInv(T, ·), in
particular when MinInv(T, τρ) = MinInv(T, ρ). Recall the decomposition (4.5) of MinInv(T, ·) from Section 4.2.
By Proposition 4.1 the only term on the right-hand side of (4.5) that can be affected by the transposition τ is

MinRInv(Tv, ρ)
.
= min

σ
RInv(T, ρ, σ)

corresponding to the node v that is the least common ancestor LCA(ℓlo, ℓhi) of the two leaves ℓlo and ℓhi that are
affected by τ under ρ. In Section 5 we considered the two possible relative orderings σ1 and σ2 of the children of
v, and derived a criterion for when the lowest cost does not change under τ . More precisely, when

(8.21) min(RInv(T, ρ, σ1),RInv(T, ρ, σ2)) = min(RInv(T, τρ, σ1),RInv(T, τρ, σ2)).

There are two complications in generalizing this approach from binary to general trees.

◦ The expression (4.4) for RInv(T, ρ, σ) involves multiple terms instead of just one as in (5.6). This complicates
probabilistic analyses like the one we did in Section 5 because the difference in cost of the two relative
orderings of two children is also affected by parts of the tree outside of their combined subtrees. The issue
did not matter for the analysis in Section 4. We will be able to manage it here, as well.

◦ There now are not just two but multiple possible orderings σ, and it is not clear what pairs (σ1, σ2) we need
to impose (8.21) on in order to guarantee that MinRInv(Tv, ρ) = MinRInv(Tv, τρ) but no more.

In Section 4 we circumvented the second issue by only considering sensitivities that decrease the objective function,
and establishing a lower bound on their occurrence independent of the ordering σ. Here we are also able to handle
the second issue by shooting for a sufficient condition for sensitivity rather than a criterion. We do so by requiring

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

that for no pair of distinct orderings σ1 and σ2, condition (8.21) holds (unless the two affected leaves are siblings).
Similar to the case of binary trees, we guarantee that (8.21) fails based on parity considerations given the product
condition.

For the analysis we again assume without loss of generality that T has no nodes of degree 1. We use the
same notation as in Section 5: Let ℓlo denote the affected leaf that is smaller with respect to ρ, and ℓhi the other
affected leaf. Let Li denote the leaf set Li

.
= L(Tui), where u1, . . . , uk are the children of v = LCA(ℓlo, ℓhi). We

also write ulo for the child of v that contains ℓlo in its subtree, and Llo for the leaf set of the subtree rooted at
ulo, and define ℓhi, uhi, and Lhi similarly. See Figure 12 for a sketch of the setting.

v

u1 · · · ulo · · · · · · uhi · · · uk

ℓlo ℓhi

k

Figure 12: Sensitivity for general trees

We slightly abuse notation and let σ denote both the ordering of the entire tree T as well as the ranking of
the children of v. By the analysis of Section 5, we have that for two orderings σ1 and σ2 the situation (8.21) can
only occur if σ1(ulo) < σ1(uhi), σ2(ulo) > σ2(uhi), and

(8.22) RInvρ(Tv, ρ, σ1)− RInvρ(Tv, ρ, σ2) = −1 = DInvρ({ℓlo}, {ℓhi}).

For any two disjoint sets of leaves, (8.20) lets us write

(8.23) XInvρ(A,B) =
1

2
DInvρ(A,B) +

1

2
|A| · |B|.

Applying (8.23) to all the terms involved in (4.4), we have

RInvρ(Tv, ρ, σ) =
∑

1≤i<j≤k

XInvρ(Li, Lj) · I[σ(i) < σ(j)]

+
∑

1≤i<j≤k

XInvρ(Lj , Li) · I[σ(i) > σ(j)]

=
1

2

∑
1≤i<j≤k

(
DInvρ(Li, Lj) · (−1)I[σ(i>σ(j)] + |L1| · |L2|

)
RInvρ(Tv, ρ, σ1)− RInvρ(Tv, ρ, σ2) =

∑
1≤i<j≤k

σ1(i)<σ2(j)
σ2(i)>σ2(j)

DInvρ(Li, Lj) +
∑

1≤i<j≤k
σ1(i)>σ2(j)
σ2(i)<σ2(j)

DInvρ(Li, Lj)

By combining the last equation with (8.22) and separating out the term for (i, j) = (lo,hi), we obtain the following
necessary condition for (8.21) to hold:

(8.24) DInvρ(Llo, Lhi)−DInvρ({ℓlo}, {ℓhi}) = −
∑

1≤i<j≤k
σ1(i)<σ2(j)
σ2(i)>σ2(j)
(i,j)̸=(lo,hi)

DInvρ(Li, Lj) +
∑

1≤i<j≤k
σ1(i)>σ2(j)
σ2(i)<σ2(j)

DInvρ(Li, Lj).

In order for ΠT to have the partition property, it suffices to ensure that (8.24) fails whenever ulo and uhi

are not both leaves. By (8.20) each of the terms DInvρ(Li, Lj) in (8.24) has the same parity as |Li| · |Lj |. Since

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

DInvρ({ℓlo}, {ℓhi}) is odd, it follows that (8.24) fails whenever at most one of the leaf sets Li involved is odd,
which is condition (a) in Proposition 8.2. Switching to the equivalent condition (b) from Proposition 8.2 allows
us to conclude via Lemma 8.1:

Theorem 8.1. Let T be a tree without nodes of degree 1 such that the leaf child sets have size at most k, at most
one of them is odd, and if there exists an odd one, say LC(v∗), then all ancestors of v∗ have empty leaf child sets.
Then D(ΠT) ≥ n!/(2(k!)2).

Theorem 1.3 follows by taking the base-2 logarithm of the bound.

8.3 Counting cross inversions and evaluating the Mann–Whitney statistic We now apply the
connectivity approach that we captured in Proposition 8.1 to the problem ΠXInv of computing the number of cross
inversions between two disjoint sets A and B with respect to a ranking ρ of X = A ⊔B. Note that this problem
is a refinement of evaluating the Mann–Whitney statistic, or equivalently, of inversion minimization on the tree
T of Figure 2: Any algorithm that solves ΠXInv with q queries, can be transformed into an algorithm for ΠT with
q queries, namely by transforming the output y of the algorithm for ΠXInv to min(y, |A| · |B| − y). Viewed in the
contrapositive, a lower bound for ΠXInv is easier to obtain than one for ΠT on the tree T of Figure 2. We first
establish a lower bound for ΠXInv and then see how it extends to ΠT .

One can think of ΠXInv as inversion minimization on the Mann–Whitney tree without allowing swapping the
two children of the root. As a result, the problem ΠXInv is sensitive to every adjacent-rank transposition between
non-siblings, and therefore automatically satisfies the partition property (with A and B being the partition
classes), so Proposition 8.1 applies. In contrast, the problem ΠT of minimizing inversions on the Mann–Whitney
tree may not have the partition property. This is why analyzing ΠXInv is a bit simpler, and why we handle it
first.

Let a
.
= |A| and b

.
= |B|. By the partition property, the average sensitivity of ΠXInv equals 2ab

a+b , which via
the Sensitivity Lemma yields a query lower bound of Ω(a log(a)) for a ≤ b. To obtain the stronger lower bound
of Ω((a+ b) log(a)) we need a more detailed analysis of the connectivity of the permutahedron graph G(ΠXInv).

For a given ranking ρ, let x1, . . . , xa be the elements of A listed in increasing order, and similarly for y1, . . . , yb
for the elements of B. We define m1, . . . ,mb+1 such that for each i, mi is the number of elements of A between
yi−1 and yi. (Here, y0 and yb+1 serve as sentinels with an infinitely low and infinitely high rank.) Similarly, we
define n1, . . . , na+1 as the number of elements in B between successive elements of A. The numbers mi and ni are
the sizes of the connected components of the successor graph S(ΠXInv, ρ) (possibly with some additional zeroes).
By Proposition 8.1, the connected component of ρ in G(ΠXInv) has size

(8.25) (m1)! · · · (mb+1)!(n1)! · · · (na+1)!.

Depending on the values of m1, . . . ,mb+1, n1, . . . , na+1, some connected components may be much larger than
others. We apply the Connectivity Lemma in a similar way as in Lemma 8.1 and only count the rankings ρ that
are in small connected components, which are the rankings for which m1, . . . ,mb+1, n1, . . . , na+1 are bounded.
Let m∗ and n∗ be the minimum integers for which

P[m1, . . . ,mb+1 ≤ m∗] ≥ 3

4
and P[n1, . . . , na+1 ≤ n∗] ≥ 3

4
.

By a union bound, the probability that both of these events hold is at least 1/2. In other words, there are least
(a+ b)!/2 rankings ρ for which m1, . . . ,mb+1 ≤ m∗ and n1, . . . , na+1 ≤ n∗.

Proposition 8.3.

(8.26) D(ΠT) ≥
(a+ b)!

2(m∗)!a/m∗(n∗)!b/n∗ .

Proof. We consider the rankings for whichm1, . . . ,mb+1 ≤ m∗ and n1, . . . , na+1 ≤ n∗. We first argue the following
upper bound on the size (8.25) of the connected component in G(ΠXInv) of any such ranking ρ:

(8.27) (m1)! · · · (mb+1)!(n1)! · · · (na+1)! ≤ (m∗)a/m
∗
(n∗)b/n

∗
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

For nonnegative integers n, n!1/n is increasing. This can be seen by noticing that log(n!1/n) is the average of
log(1), . . . , log(n). As a result, for i ∈ [b+ 1], (mi)!

1/mi ≤ (m∗)!1/m
∗
, or equivalently, (mi)! ≤ (m∗)mi/m

∗
. Using

the fact that m1 + · · ·+mb+1 = a,

(m1)! · · · (mb+1)! ≤ (m∗)!(m1+···+mb+1)/m
∗
= (m∗)!a/m

∗
.

We can apply similar reasoning to get (n1)! · · · (na+1)! ≤ (n∗)!b/n
∗
. From this, we conclude that the size of the

connected components among the rankings under consideration is at most the right-hand side of (8.27).
Since there are at least (a+ b)!/2 of the rankings under consideration, we derive the stated bound on D(ΠT)

by applying the Connectivity Lemma.

Now, we find concrete bounds on m∗ and n∗.

Proposition 8.4.

max

(
1,

a

b+ 1

)
≤ m∗ ≤ a+ b

b
ln(4(b+ 1)).

Symmetrically,

max

(
1,

b

a+ 1

)
≤ n∗ ≤ a+ b

a
ln(4(a+ 1)).

Proof. We first prove the upper bound on m∗. Let k be a positive integer. We compute the probability, over an
average ranking ρ, that mi > k for a specific i. Notice that there is a one-to-one correspondence between ranking
ρ and the corresponding sequence of nonnegative integers m1, . . . ,mb+1 such that m1 + · · ·+mb+1 = a, because
the ranks of B can be uniquely recovered as m1 + 1,m1 +m2 + 2, . . . , and the remaining ranks form A. By stars
and bars, there are

(
a+b
b

)
such sequences. Now, if mi > k, then mi − (k + 1) is an arbitrary nonnegative integer,

and m1 + · · ·+ (mi − (k + 1)) + · · ·+mb+1 = a− k − 1. By stars and bars, there are
(
a+b−k−1

b

)
such sequences.

Therefore, the probability that mi > k is
(
a+b−k−1

b

)
/
(
a+b
b

)
. Continuing,

P[mi > k] =
(a+ b− k − 1) · · · (a− k)

(a+ b) · · · (a+ 1)
≤
(
a+ b− k − 1

a+ b

)b

≤ exp

(
−b · k + 1

a+ b

)
,

where the last step uses the bound 1 + x ≤ exp(x). By a union bound and taking the complement,

(8.28) P[m1, . . . ,mb+1 ≤ k] ≥ 1− (b+ 1) exp

(
−b · k + 1

a+ b

)
.

If k is such that the right-hand side of (8.28) is at least 3/4, we know that m∗ ≤ k. Solving for k yields the stated
bound on m∗.

For the lower bounds, m∗ ≥ 1 because at least one of m1, . . . ,mb+1 is at least 1, and m∗ ≥ a
b+1 because

m1 + · · ·+mb+1 = a, and m∗ is greater than or equal to the average term in the sum.

The first part of Theorem 1.4 now comes from taking the logarithm of D(ΠXInv) in Proposition 8.3 and using
the bounds in Proposition 8.4.

Proof. [Proof of the first part of Theorem 1.4] We mainly make use of the following approximation based on
Stirling’s formula.

(8.29) ln(n!) =

(
n+

1

2

)
ln(n)− n+O(1).

In order to estimate lnD(ΠXInv), we need to estimate ln((a+ b)!)− a
m∗ ln(m∗)− b

n∗ ln(n∗). By (8.29),

ln((a+ b)!) =

(
a+ b+

1

2

)
ln(a+ b)− (a+ b) +O(1)(8.30)

a

m∗ ln((m∗)!) =
(
a+

a

2m∗

)
ln(m∗)− a+

a

m∗O(1)(8.31)

b

n∗ ln((n∗)!) =

(
b+

b

2n∗

)
ln(n∗)− b+

b

n∗O(1)(8.32)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

We can use the lower bounds in Proposition 8.4, namely that m∗ ≥ 1 and n∗ ≥ b
a+1 , to simplify the occurrences

of m∗ and n∗ in the denominators of (8.31) and (8.32). Therefore,

lnD(ΠXInv) ≥ a ln

(
a+ b

m∗

)
+ b ln

(
a+ b

n∗

)
− a

2
ln(m∗)− a+ 1

2
ln(n∗) +

1

2
ln(a+ b)−O(a)

= a ln

(
a+ b

m∗
√
m∗n∗

)
+

(
b+

1

2

)
ln

(
a+ b

n∗

)
−O(a).

Using the upper bounds in Proposition 8.4, absorbing low-order terms, and using the condition that a ≤ b, we
get

logD(ΠXInv) ≥ Ω

(
a log

(
b
√
ab

a+ b

)
+ b log(a)

)
≥ Ω(a log(

√
ab/2) + b log(a)) = Ω((a+ b) log(a)).

Evaluating the Mann–Whitney statistic. We now argue how the second part of Theorem 1.4 follows,
i.e., that the lower bound of Ω((a + b) log(a)) holds for inversion minimization on the Mann–Whitney tree T of
Figure 2 with a ≤ b. We do so by tweaking our lower bound argument for ΠXInv to the setting of ΠT .

How does the permutahedron graph for ΠT relate to the one for ΠXInv? The problem ΠT is a coarsening of
the problem ΠXInv: Output values y and ab − y for ΠXInv are both mapped to min(y, ab − y) under ΠT . This
means that all edges present in G(ΠXInv) are also present in G(ΠT), but there may be more, and some of the
connected components in G(ΠXInv) corresponding to output value y, may be merged in G(ΠT) with some of the
connected components of G(ΠXInv) corresponding to output value ab − y. However, by the reasoning behind
Proposition 4.1, edges in G(ΠXInv) can only go between rankings whose value under ΠXInv differ by at most one.
This means that the above merging of connected components can only happen if the difference between y and
ab− y is 1, i.e., for the values ⌊ab/2⌋ and ⌈ab/2⌉, and only if ab is odd. In fact, this is exactly the situation that
we analyzed in Figure 9, where v coincides with the root of T .

If we ignore the rankings with value ⌊ab/2⌋ or ⌈ab/2⌉ under ΠXInv, our lower bound argument for ΠXInv

carries over verbatim to ΠT , except that on the right-hand side of Proposition 8.3 the factor of 1
2 is replaced by

1
2 −W , where W represents the fraction of rankings with value ⌊ab/2⌋ or ⌈ab/2⌉ under ΠXInv. Lemma 5.1 tells

us that W ≤ 2C/
√
ab(a+ b), where C denotes the constant from the lemma. Thus, we obtain a lower bound for

D(ΠT) that is a negligible fraction smaller than the one for D(ΠXInv). Taking logarithms, we obtain the same
lower bound for the query complexity up to an additive term. In particular, we obtain a query lower bound of
Ω((a+ b) log(a)) for ΠT in case a ≤ b. This is the second part of Theorem 1.4.

Acknowledgements

We would like to thank Greta Panova, Robin Pemantle, and Richard Stanley for pointers regarding Gaussian
polynomials, Stasys Jukna for answering questions about the complexity measureN , and the anonymous reviewers
for helpful suggestions.

References

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. Time bounds for
selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

[BO83] Michael Ben-Or. Lower bounds for algebraic computation trees. Proceedings of the 15th Annual Symposium on
Theory of Computing (STOC), pages 80–86, 01 1983.

[CFJ+10] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro. An efficient algorithm
for partial order production. SIAM Journal on Computing, 39(7):2927–2940, 2010.

[Deg82] Richard Degerman. Ordered binary trees constructed through an application of Kendall’s tau. Psychometrika,
47(4):523–527, 1982.

[DZ99] Dorit Dor and Uri Zwick. Selecting the median. SIAM Journal on Computing, 28(5):1722–1758, 1999.
[DZ01] Dorit Dor and Uri Zwick. Median selection requires (2+ϵ)n comparisons. SIAM Journal on Discrete Mathematics,

14(3):312–325, 2001.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[Epp07] David Eppstein. A permutohedron. Wikipedia User Gallery, 2007.
[JRSW99] Stasys Jukna, Alexander A. Razborov, Petr Savický, and Ingo Wegener. On P versus NP cap co-np for decision

trees and read-once branching programs. Computational Complexity, 8:357–370, 1999.
[KMMS05] Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders. Towards optimal multiple selection. In

International Colloquium on Automata, Languages, and Programming (ICALP), pages 103–114, 2005.
[Mil69] George A. Miller. Psychological method to investigate verbal concepts. Journal of Mathematical Psychology,

6:169–191, 1969.
[MPP20] Stephen Melczer, Greta Panova, and Robin Pemantle. Counting partitions inside a rectangle. SIAM Journal on

Discrete Mathematics, 34(4):2388–2410, 2020.
[MW47] Henry B. Mann and Donald R. Whitney. On a test of whether one of two random variables is stochastically larger

than the other. The Annals of Mathematical Statistics, 18(1):50–60, 1947.
[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
[Sch76] Arnold Schönhage. The production of partial orders. Astérisque, 38–39:229–246, 1976.
[Ser21] Igor S. Sergeev. On the upper bound of the complexity of sorting. Computational Mathematics and Mathematical

Physics, 61(2):329–346, 2021.
[SZ16] Richard P. Stanley and Fabrizio Zanello. Some asymptotic results on q-binomial coefficients. Annals of

Combinatorics, 20(3):623–634, 2016.
[Tak86] Lajos Takács. Some asymptotic formulas for lattice paths. Journal of Statistical Planning and Inference,

14(1):123–142, 1986.
[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th Annual

Symposium on Foundations of Computer Science (FOCS), pages 222–227, 1977.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Overview
	The Comparison-Query Model
	Sensitivity Lemma
	Sensitivity Approach for General Trees
	Subtree-induced sensitivity
	Decomposition of the objective function
	Lipschitz continuity

	Refined Sensitivity Approach for Binary Trees
	Sensitivity criterion
	Root sensitivity
	Average sensitivity

	Sensitivity Approach for Bounded Error
	Connectivity Lemma
	Connectivity Approach
	Binary trees
	General trees
	Counting cross inversions and evaluating the Mann–Whitney statistic

