
Is Valiant–Vazirani’s Isolation Probability Improvable?

Holger Dell∗ Valentine Kabanets† Dieter van Melkebeek∗ Osamu Watanabe‡

∗Department of Computer Sciences
University of Wisconsin

Madison, WI 53711, USA
{holger,dieter}@cs.wisc.edu

†School of Computing Science
Simon Fraser University

Burnaby, BC, Canada V5A 1S6
kabanets@cs.sfu.ca

‡Dept. of Math. Comput. Sci.
Tokyo Institute of Technology

Meguro-ku Ookayama, Tokyo 152, Japan
watanabe@is.titech.ac.jp

Abstract—The Valiant–Vazirani Isolation Lemma [TCS,
vol. 47, pp. 85–93, 1986] provides an efficient procedure for
isolating a satisfying assignment of a given satisfiable circuit:
Given a Boolean circuit C on n input variables, the procedure
outputs a new circuit C′ on the same n input variables such that
(i) every satisfying assignment of C′ also satisfies C, and (ii) if C
is satisfiable, then C′ has exactly one satisfying assignment.
In particular, if C is unsatisfiable, then (i) implies that C′ is
unsatisfiable. The Valiant–Vazirani procedure is randomized,
and when C is satisfiable it produces a uniquely satisfiable
circuit C′ with probability Ω(1/n).

Is it possible to have an efficient deterministic witness-
isolating procedure? Or, at least, is it possible to improve
the success probability of a randomized procedure to a large
constant? We argue that the answer is likely ‘No’. More
precisely, we prove that there exists a non-uniform randomized
polynomial-time witness-isolating procedure with success prob-
ability bigger than 2/3 if and only if NP ⊆ P/poly. Thus, an
improved witness-isolating procedure would imply the collapse
of the polynomial-time hierarchy. We establish similar results
for other variants of witness isolation, such as reductions that
remove all but an odd number of satisfying assignments of a
satisfiable circuit.

We also consider a blackbox setting of witness isolation
that generalizes the setting of the Valiant–Vazirani Isolation
Lemma, and give an upper bound of O(1/n) on the success
probability for a natural class of randomized witness-isolating
procedures.

Keywords-Isolation Lemma, Unique Satisfiability, Parity Sat-
isfiability, Derandomization

I. INTRODUCTION

The Isolation Lemma of Valiant and Vazirani [20] (as well
as the related Isolation Lemma of Mulmuley et al. [13] and
its refinement by Chari et al. [4]) is a basic tool with many
important applications in complexity theory. See, e.g., [3, 16,
19] for just a few such applications. The lemma provides an
efficient randomized algorithm to “isolate” a single object
from a collection of objects satisfying a given efficiently
decidable property. More precisely, given a Boolean circuit
C(x1, . . . , xn), the algorithm produces a new Boolean cir-
cuit C ′(x1, . . . , xn) such that (i) every satisfying assignment
of C ′ also satisfies C with probability one (over the internal
randomness of the algorithm), and (ii) if C is satisfiable,
then, with probability Ω(1/n), C ′ has exactly one satisfying
assignment. Thus, in case C is satisfiable, the unique sat-
isfying assignment for C ′ is an “isolated” assignment from

among the satisfying assignments for C.
An obvious question is whether efficient determinis-

tic isolation is possible. That is, is there a determinis-
tic polynomial-time algorithm that maps an input circuit
C(x1, . . . , xn) to an output circuit C ′(x1, . . . , xn) such that
(i) every satisfying assignment of C ′ also satisfies C, and
(ii) if C is satisfiable, then C ′ has exactly one satisfying
assignment? Another natural question is whether the suc-
cess probability Ω(1/n) for randomized isolation can be
improved to, say, a large constant probability. We show that
the answer to both questions is likely negative.

A. Our results

If NP = P, then efficient deterministic isolation is
trivially possible: Given a circuit C, one can use the stan-
dard “search-to-decision” reduction to find in deterministic
polynomial time some satisfying assignment w for C, and
then construct a circuit C ′ so that C ′ accepts the single
input w. Naı̈vely, it seems impossible to produce, efficiently
deterministically, a circuit C ′ with exactly one satisfying
assignment that also satisfies C, without actually finding
such an assignment efficiently deterministically. In other
words, naı̈vely it seems that efficient deterministic isolation
must be equivalent to NP = P.

We show that such an equivalence is actually true in the
non-uniform setting! We prove that if there is a non-uniform
family of polynomial-size circuits that achieve deterministic
isolation (in the sense defined above), then every language in
NP can be decided by a non-uniform family of polynomial-
size circuits, i.e., NP ⊆ P/poly. Since the standard “search-
to-decision” reduction for NP can be run also in the non-
uniform setting, we immediately get the other direction:
if NP ⊆ P/poly, then non-uniform efficient deterministic
isolation is possible.

Given that deterministic isolation is unlikely, what can
we say about the existence of a better randomized isolation
algorithm? A natural question is whether one can obtain
randomized isolation with success probability better than
Ω(1/n) achieved in [20]. For example, can one obtain (large)
constant success probability?

We show that the answer is likely negative. In fact,
we extend the result for deterministic isolation and prove



that if there is a (non-uniform) randomized isolation al-
gorithm with success probability greater than 2/3, then
NP ⊆ P/poly (and, consequently, the polynomial-time
hierarchy collapses). We also consider more restricted and
more relaxed notions of witness isolation, such as reductions
that remove all but an odd number of satisfying assignments
of a satisfiable circuit. For each of these notions, we prove
that their existence implies some collapse of NP, namely
NP = P, NP ⊆ P/poly, NP = coNP, or NP ⊆ coNP/poly,
and in most cases the collapse is actually equivalent to the
existence.

Finally, we consider a natural blackbox setting for isola-
tion that generalizes the setting of [20], and we observe that
O(1/n) is an upper bound on the success probability for
randomized isolation in this blackbox setting.

B. Our techniques

We now sketch the proof of one of our main results –
that efficient randomized isolation with success probability
above 2/3 implies NP ⊆ P/poly. The proof consists of two
steps. Assuming the existence of such a witness-isolating
procedure, we show how to
[Step 1] efficiently reduce satisfiability to prUSAT, the

promise version of satisfiability on instances with at
most one satisfying assignment, and

[Step 2] efficiently solve prUSAT.
Both steps run in P/poly, which results in a P/poly-
algorithm for satisfiability and thus for all languages in NP.

Deterministic setting. For reasons of exposition, we first
consider the simpler deterministic setting. Suppose there is
a deterministic P/poly-algorithm A that achieves isolation.
That is, given a circuit C(x1, . . . , xn), A outputs a circuit
C ′(x1, . . . , xn) on the same number of variables such that
(i) every satisfying assignment of C ′ also satisfies C, and
(ii) if C is satisfiable, then C ′ has exactly one satisfying
assignment.

In this setting, Step 1 is trivial as A represents an
efficient mapping reduction from satisfiability to prUSAT.
For Step 2, we mimic an argument due to Ko [12] and devise
a P/poly-algorithm for prUSAT. The two steps combined
put satisfiability in P/poly.

Ko [12] proved that if satisfiability has a selector function
computable in P/poly, then satisfiability is in P/poly. A
selector for satisfiability is a function that takes two input
circuits C1 and C2, and selects the one that is “most likely”
to be satisfiable. More precisely, the function always outputs
one of its two inputs, and if exactly one of the two inputs
is satisfiable, then it outputs that input. Such a function
induces a binary relation R on the set of all inputs, where
R(C1, C2) holds if and only if the selector outputs C2 on
input (C1, C2). The relation R has the following “Ko”-
properties:
(K1) If C1 is satisfiable and R(C1, C2), then C2 is satis-

fiable.

(K2) If C1 and C2 are satisfiable instances of the same
length, then R(C1, C2) or R(C2, C1).

(K3′) R can be decided in polynomial time with oracle
access to the selector.

Property (K2) actually holds in a stronger form, but the
weaker form is all we need in Ko’s argument to deduce that
the directed graph induced by R on the set of satisfiable
instances of length ` has a dominating set D` of size
polynomial in `. Combined with property (K1), this gives us
the following criterion for satisfiability on inputs of length `:

C ∈ SAT ⇔ (∃C∗ ∈ D`)R(C∗, C) . (1)

By property (K3′), criterion (1) yields a polynomial-time
algorithm for satisfiability when given oracle access to the
selector and advice D`. Thus, we obtain a P/poly-algorithm
for satisfiability if satisfiability has a selector computable
in P or in P/poly.

Now consider the setting where we have a deterministic
isolation algorithm A for circuits. If at least one of C1

or C2 is satisfiable and the sets of satisfying assignments are
disjoint, the action of A on C .

= C1∨C2 or on C .
= C2∨C1

can be viewed as that of a selector: It selects the unique Ci
that has a satisfying assignment in common with A(C).
As a selector ought to act on the unordered pair {C1, C2},
we actually apply A to C

.
= min(C1, C2) ∨ max(C1, C2),

where min(C1, C2) denotes the lexicographically smaller of
the two circuits C1 and C2, and similarly max(C1, C2) the
lexicographically larger of the two circuits.

In general, we can define a binary relation R with similar
properties as above: R(C1, C2) holds if and only if
(a) C1 and C2 have a common satisfying assignment, or

(b′) C1 and A(C) have no common satisfying assignment,
where C .

= min(C1, C2) ∨max(C1, C2).
This relation R satisfies the properties (K1) and (K2).
Since these properties were all that was needed to arrive
at criterion (1), the criterion still holds. Property (K3′) may
no longer hold, but we can guarantee the following instead:
(K3) Whether R(C1, C2) holds can be decided in polyno-

mial time with oracle access to A if the set of satisfying
assignments of C1 is given as advice.

Thus, criterion (1) yields a polynomial-time algorithm for
satisfiability when given oracle access to A as well as the
following advice at input length `: for every C∗ ∈ D`,
the circuit C∗ as well as all its satisfying assignments.
In general, the advice may be of superpolynomial length
because the circuits C∗ may have a superpolynomial number
of satisfying assignments. Since Step 1 allows us to reduce
the number of satisfying assignments to at most one, we can
restrict our attention to the set of all inputs with at most one
satisfying assignment. This way, the length of the advice
becomes polynomially bounded, and we obtain a P/poly-
algorithm for prUSAT whenever A is computable in P or
in P/poly.



Randomized setting. Suppose there is an efficient random-
ized isolation algorithm A with success probability at least p.
That is, on input a circuit C(x1, . . . , xn), A outputs a circuit
C ′(x1, . . . , xn) such that (i) every satisfying assignment
of C also satisfies C ′, and (ii) if C is satisfiable, then, with
probability at least p, the circuit C ′ is a successful isolation
of C, i.e., C ′ has a unique satisfying assignment.

For Step 2, we first apply Adleman’s argument to trans-
form A into a P/poly-algorithm B that takes a circuit C
and outputs a list of circuits C ′ such that (i) every satisfying
assignment of C ′ also satisfies C, and (ii) if C is satisfiable,
then at least a fraction p′ of the circuits C ′ are successful
isolations of C, where p′ is somewhat smaller than p.
We adapt the relation R from the deterministic setting by
replacing the condition (b′) by the following:
(b) fewer than a fraction p′ of circuits C ′ on the list B(C)

are such that C ′ and C1 have a common satisfying
assignment, where C .

= min(C1, C2) ∨max(C1, C2).
Thus we let R(C1, C2) hold if and only if (a) or (b) holds.
This modified relation R still has property (K1). The main
reason is that if C1 is satisfiable and (b) holds, then B(C)
contains at least one successful isolation C ′ that is not
satisfied by any satisfying assignment of C1 but is satisfiable,
and therefore has to be satisfied by a satisfying assignment
of C2.

As for property (K2), suppose that C1 and C2 are
satisfiable but that neither R(C1, C2) nor R(C2, C1) holds.
By (a), this means that the sets of satisfying assignments
of C1 and C2 are disjoint. By (b) and inclusion-exclusion,
at least a fraction 2p′ − 1 of the circuits C ′ in B(C) is
satisfied by a satisfying assignment of C1 as well as by a
satisfying assignment of C2. Therefore, at least a fraction
2p′ − 1 of the circuits C ′ have at least two satisfying
assignments. This contradicts the success rate p′ of B as
long as 2p′ − 1 > 1− p′. Thus, (K2) is guaranteed to hold
provided p′ > 2/3.

Property (K3) also holds for the new R. Since all three
properties (K1), (K2), and (K3) hold whenever p′ > 2/3,
and since we can set p′ > 2/3 when p is a constant
exceeding 2/3, Ko’s argument gives us a P/poly-algorithm
for prUSAT whenever p is a constant larger than 2/3. This
completes Step 2.

Step 1 is no longer trivial in the randomized setting but we
can appeal to an unconditional P/poly reduction that takes
a circuit C and outputs a list of circuits C ′ such that (i) if C
is unsatisfiable then every C ′ is also unsatisfiable, and (ii)
if C is satisfiable then at least one C ′ has a unique satisfying
assignment. Such a reduction follows by applying Adleman’s
argument to the Valiant–Vazirani isolation procedure. On
input C, we cycle over all circuits C ′ on the list and apply
the prUSAT-algorithm from Step 2 to each C ′. We accept
iff our prUSAT-algorithm accepts on at least one circuit C ′.
Note that for an unsatisfiable C, all circuits C ′ are also
unsatisfiable, and will be rejected by the prUSAT-algorithm.

For a satisfiable C, at least one of the circuits C ′ is uniquely
satisfiable, and hence will be accepted by the prUSAT-
algorithm. Thus we get a P/poly-algorithm for satisfiability.

C. Related work

Chari, Rohatgi, and Srinivasan [4] consider the problem
of minimizing the number of random bits that are used
in the isolation lemma. They design an isolation lemma
that improves upon the pruning procedure of Mulmuley,
Vazirani, and Vazirani [13], and they show that, in the
blackbox setting, their improved isolation lemma uses the
least possible number of random bits while still achiev-
ing non-negligible success probability. Our blackbox result
shows that it is impossible to increase the success probability
beyond O(1/n).

The problem of efficient deterministic isolation is re-
lated to the problem of multi-valued vs. single-valued NP-
computable functions [17], which received considerable at-
tention in the 1990’s. In fact, it easily follows from the work
of Hemaspaandra et al. [7] that efficient deterministic isola-
tion yields a collapse of the polynomial-time hierarchy. More
precisely, [7] implies that efficient deterministic isolation
leads to NP ⊆ (NP∩coNP)/poly, which in turn is known to
imply the collapse of the polynomial-time hierarchy to the
second level. In contrast, we prove that the same assumption
implies NP ⊆ P/poly. This conclusion is stronger, and, as
observed above, is actually equivalent to the existence of
efficient non-uniform deterministic isolation.

The problem of efficient deterministic isolation as defined
above is different from the problem of derandomizing the
Valiant–Vazirani Isolation Lemma as studied, e.g., in [11].
In the setting of [11], randomized isolation is defined via
the existence of an efficient randomized algorithm that maps
an input circuit C to a list of circuits C ′1, . . . , C

′
t such that

(i) every satisfying assignment of the C ′i also satisfies C,
and (ii) if C is satisfiable, then, with high probability,
at least one of the C ′i is uniquely satisfiable. This kind
of randomized isolation follows from the Valiant–Vazirani
Isolation Lemma.

Derandomizing such isolation means designing an ef-
ficient deterministic algorithm that produces the list
C ′1, . . . , C

′
t. One of the results in [11] is that this kind of

derandomization is likely to exist since it follows from some
plausible circuit complexity assumptions. However, if we
want to get a single circuit C ′ that is uniquely satisfiable if C
is satisfiable, no better way is known other than to pick one
of the circuits on the list at random. But then we end up with
a randomized isolation procedure with inverse-polynomial
success probability. Thus, while it may be possible to design
an efficient deterministic algorithm mapping a given input
circuit C to a list of circuits C ′1, . . . , C

′
t achieving isolation

in the sense of [11], it is unlikely that there is an efficient
deterministic isolation mapping C to a single circuit C ′.
Also, by our results, it is unlikely that there is a [11]-



style randomized isolation algorithm mapping a satisfiable
circuit C to a list of circuits where more than 2/3 of the
circuits on the list are uniquely satisfiable.

The question whether efficient deterministic isolation ex-
ists is also related to the question whether NP = UP, that
is, whether every language in NP can be decided by an
NP-machine that has at most one accepting computation
path for every input. Clearly, if deterministic polynomial-
time isolation is possible, then NP = UP. However, the
converse is not known to be true. It remains an open
question whether the assumption NP = UP yields any
unexpected consequences, e.g., if it implies any collapse of
the polynomial-time hierarchy.

For some applications of the isolation lemma, such as
Toda’s theorem [19], it suffices to efficiently reduce NP to
⊕P, i.e., to map circuits C to circuits C ′ such that C is
satisfiable if and only if C ′ has an odd number of satisfy-
ing assignments. A single application of Valiant–Varizani’s
isolation lemma gives a randomized such reduction with
success probability Ω(1/n), but in this setting better results
are known: Naik et al. [14] achieve success probability
arbitrarily close to 1/2, and Gupta [6] actually reaches 1/2.
All of these reductions have the property that the satisfying
assignments of C ′ also satisfy C. For such reductions, our
results imply that the success probability cannot be improved
beyond 2/3 unless NP ⊆ P/poly.

In general, the pruning property need not hold, and the
circuit C ′ can have more inputs than C. As observed in,
e.g., [14, first paragraph of section 3], this freedom allows
us to achieve success probability 1 − 1/ exp in the setting
of ⊕P. The key is the following operation, which effi-
ciently transforms a list C ′1, . . . , C

′
t of circuits into a single

circuit C ′ such that C ′ has an odd number of satisfying
assignments if and only if some C ′i has an odd number
of satisfying assignments: (i) modify each circuit C ′i into
a circuit C ′′i by adding a single new satisfying assignment;
(ii) construct a circuit C ′′ whose number of satisfying
assignments is the product of those of the circuits C ′′i by
defining C ′′(x1, . . . , xt)

.
= ∧ti=1C

′′
i (xi), where each xi is

of the input size for C ′′i ; (iii) obtain C ′ by adding a single
new satisfying assignment to C ′′. Starting from the output
C ′1, . . . , C

′
t of polynomially many independent runs of any

of the above pruning procedures, we obtain a randomized re-
duction from NP to ⊕P with success probability 1−1/ exp.
In a similar way, using Adleman’s argument, we obtain a
deterministic P/poly reduction from NP to ⊕P, and under
the circuit complexity assumption from [11], a deterministic
polynomial-time reduction from NP to ⊕P.

D. Organization of the paper

Section II contains basic definitions and notation, the
various notions of witness isolation we consider, and lemmas
that capture Adleman’s argument and Ko’s argument in a
way that is useful to us. We prove our conditional impos-

sibility results for deterministic and randomized isolation in
Section III, and categorize several variants based on which
collapse of NP they are equivalent to. In Section IV, we
prove our unconditional impossibility result in the blackbox
setting. We suggest some directions for further research in
Section V. Due to space constraints, some proofs have been
omitted in this extended abstract and can be found in the
full version [5].

II. PRELIMINARIES

A. Basic definitions and notation

Complexity classes. We use standard definitions and no-
tation for complexity classes such as P, NP, and P/poly
(see, e.g., [1]), which we view as classes of languages over
the alphabet {0, 1}, or as classes of Boolean functions on
{0, 1}∗. By a slight abuse of notation, we extend the nota-
tion P and P/poly to not necessarily Boolean functions from
{0, 1}∗ to {0, 1}∗. Thus, a function f : {0, 1}∗ → {0, 1}∗
is called P-computable if it is computable by some deter-
ministic polynomial-time algorithm, and f is called P/poly-
computable if it is computable by a family of polynomial-
size circuits.

Boolean circuits. We let SAT denote the satisfiability
problem for deterministic Boolean circuits: Given a deter-
ministic circuit C(x1, . . . , xn) with n variables x1, . . . , xn,
decide whether it has a satisfying assignment, that is, a
binary string w ∈ {0, 1}n with C(w) = 1. If C has
exactly one satisfying assignment, we say that C is uniquely
satisfiable.

A nondeterministic circuit C(x1, . . . , xn) is a determinis-
tic circuit D(x1, . . . , xn, y1, . . . , ym) with additional “non-
deterministic” variables y1, . . . , ym. An assignment w ∈
{0, 1}n to the x-variables satisfies C if and only if there
exists an assignment w′ ∈ {0, 1}m to the y-variables such
that D(w,w′) = 1. We say that C is uniquely satisfiable if
there exists exactly one such w.

Throughout this paper, we write n for the number of
(deterministic) variables of a circuit and ` for the length of
binary encodings. We assume that the encoding is efficient
so that, e.g., for circuits C1 and C2 of length ` each, the
circuit C1 ∨C2 can be computed in polynomial time and is
of length at most O(`).

Promise problems. A promise problem is a pair Π =
(Yes,No) of disjoint subsets Yes ∪̇ No ⊆ {0, 1}∗. For the
promise problem of unique satisfiability for deterministic
Boolean circuits, prUSAT, the set Yes is the set of all
uniquely satisfiable deterministic circuits, and No is the set
of all unsatisfiable deterministic circuits.

We say that an algorithm A decides Π if it accepts all
x ∈ Yes, rejects all x ∈ No, and behaves arbitrarily for
all other inputs. In terms of complexity classes, we write
Π ∈ C if there exists a language L ∈ C such that Yes ⊆ L
and No ⊆ L, where L .

= {0, 1}∗\L denotes the complement
of L.



B. Notions of isolation

We study isolation and several variations that are all
motivated by the question whether NP coincides with UP,
unambiguous polynomial time. Because of this connection,
we use the generic term “disambiguation” to refer to all
variants.

UP = NP is equivalent to the existence of a polynomial-
time verifier V (C,w) for SAT such that each input circuit C
has at most one valid witness w with V (C,w) = 1. Since
the computation of V (C, .) for each fixed C can be modeled
as a polynomial-size Boolean circuit C ′, the UP = NP
question is equivalent to the existence of a polynomial-
time transformation of a deterministic circuit C into a
deterministic circuit C ′ such that (i) if C is unsatisfiable,
then C ′ is unsatisfiable, and (ii) if C is satisfiable, then C ′

has exactly one satisfying assignment.
More generally, we define a disambiguation for a class C

of Boolean circuits as follows, where natural choices for C
are Boolean formulas, deterministic Boolean circuits, and
nondeterministic Boolean circuits.

Definition 1 (Disambiguation). A disambiguation for a
class C of Boolean circuits is a randomized algorithm that
maps a given circuit C ∈ C to a circuit C ′ ∈ C such that:

Perfect Soundness: if C is unsatisfiable, then C ′ is also
unsatisfiable (with probability one).

p-Completeness: If C is satisfiable, then with probability
at least p the circuit C ′ has a unique satisfying assign-
ment.

Here p = p(`) ∈ [0, 1] is the success probability of the
disambiguation, and may depend on the input length `.
We typically want an efficient disambiguation; we consider
disambiguations computable in P or in P/poly1. We call a
disambiguation deterministic if it does not use any random-
ness and satisfies the above conditions with p = 1. We call
a disambiguation satisfiability-preserving if C ′ is satisfiable
whenever C is satisfiable.

For general disambiguations, no specific relationship be-
tween the satisfying assignments of C and the satisfying
assignments of C ′ is required. In this paper we study notions
of disambiguation that additionally impose such restrictions.
In decreasing order of restrictiveness we consider witness-
isolating disambiguation, or isolation for short, and witness-
recoverable disambiguation. We now specify the respective
additional conditions as strengthenings of the requirements
in Definition 1.

Isolation. An isolation is a disambiguation that maps
circuits C to circuits C ′ on the same set of variables as C,
in such a way that every satisfying assignment of C ′ also
satisfies C, with probability one. Any particular output C ′

1As explained in Section II-C, in contrast to the standard setting of
decision procedures, the combination “randomized P/poly” does make
sense in the setting of disambiguation procedures.

of an isolation is a successful isolation of a satisfiable
circuit C if C ′ has a unique satisfying assignment. In a
minimal witness isolation, we additionally require the unique
satisfying assignment of a successful isolation C ′ to be the
lexicographically smallest satisfying assignment of C. The
procedures of Valiant and Vazirani [20], Mulmuley, Vazirani,
and Vazirani [13], and Chari, Rohatgi, and Srinivasan [4]
yield randomized polynomial-time isolations with success
probabilities p = Ω(1/n), p = Ω(1/n2), and p = Ω(1/n8),
respectively.

Witness-recoverable disambiguation. A witness-
recoverable disambiguation is a disambiguation that
maps circuits C to circuits C ′ on a potentially different set
of variables. Furthermore, there has to exist a deterministic
polynomial-time witness recovery algorithm W such that,
if C is satisfiable, then with probability at least p the
following two conditions hold simultaneously:
◦ C ′ has a unique satisfying assignment, say w, and
◦ given C, C ′, and w, the algorithm W outputs a satis-

fying assignment for C.
Every isolation is a witness-recoverable disambigua-

tion: The witness recovery algorithm can just out-
put W (C,C ′, w) = w since isolation guarantees that any
satisfying assignment w of C ′ also satisfies C. For nonde-
terministic circuits, the reverse direction also holds, so the
notions of isolation and witness-recoverable disambiguation
are actually equivalent for nondeterministic circuits. The
reverse direction follows because a nondeterministic cir-
cuit C ′′ can guess and verify a satisfying assignment w′

for the circuit C ′ that the witness-recoverable reduction
produces, and C ′′ can further compute w .

= W (C,C ′, w′)
and check that w satisfies C. (See the full version of this
paper for more details.)

A witness-recoverable disambiguation for deterministic
circuits yields a witness-recoverable disambiguation for non-
deterministic circuits – simply apply the former to the
deterministic circuit underlying the nondeterministic circuit,
and recover the actual input bits. (See the full version of this
paper for more details.) Combined with the above argument,
a witness-recoverable disambiguation for deterministic cir-
cuits yields an isolation for nondeterministic circuits. This
motivates the study of isolation for nondeterministic circuits.
If we were to require the uniqueness condition after recovery
rather than before, witness-recoverable disambiguation for
deterministic and for nondeterministic circuits would be
equivalent to each other, as well as to isolation for non-
deterministic circuits.

C. Adleman’s argument

We deal with randomness by transforming randomized
algorithms into deterministic algorithms with small advice.
In the case of decision algorithms, Adleman’s argument
turns any BPP-machine into a P/poly-algorithm that decides
the same language, and it does not really make sense to talk



about randomized P/poly-algorithms since BPP/poly =
P/poly. For transformations such as randomized disam-
biguations, the notions of randomized P/poly-algorithms
and deterministic P/poly-algorithms do seem to be different.
Adleman’s argument allows us to list-derandomize random-
ized P/poly transformations in the sense of the following
lemma.

Lemma 1 (Adleman). Let A be a randomized P/poly-
algorithm that maps strings x to strings y. Let p1, p2 : N→
[0, 1] be functions and let P1(x, y) and P2(x, y) be proper-
ties such that, for all inputs x of length ` = |x|, P1

(
x, y
)

holds with probability at least p1(`) and P2

(
x, y
)

holds with
probability at least p2(`) over the internal randomness of A.

Then, for every δ > 0, there exists a deterministic P/poly-
algorithm B that, on input x of length `, produces a list
y1, . . . , yt such that P1(x, yi) holds for at least p′1(`) · t
many i ∈ [t] and P2(x, yi) holds for at least p′2(`) · t many
i ∈ [t], where p′j(`) = 1 whenever pj(`) = 1, and p′j(`) =
pj(`)− δ`δ otherwise.

D. Ko’s argument

The following lemma captures the main argument in Ko’s
proof that the existence of a P-selector for a language L
implies L ∈ P/poly. The notion of a P-selector is due to
Selman [18] and Ko [12] proved the lemma for languages.
We formulate it for promise problems so that we can apply
it to prUSAT.

Lemma 2 (Ko). Let Π = (Yes,No) be a promise problem,
and let R be a binary relation over {0, 1}∗ satisfying the
following properties.
(K1) If x ∈ Yes and R(x, y), then y ∈ Yes.
(K2) If x, y ∈ Yes with |x| = |y|, then R(x, y) or R(y, x).
(K3) There exists a constant c > 0 such that for every

` ∈ N and every x ∈ Yes of length `, there is a circuit
Rx of size at most c·`c that decides on input y ∈ {0, 1}`
whether R(x, y) holds.

If the circuits Rx are deterministic, then there is a P/poly-
algorithm for Π.

If the circuits Rx are co-nondeterministic, then there is a
coNP/poly-algorithm for Π.

Proof: We fix the length ` of the input and design a
polynomial-size circuit that decides instances of length `. We
first argue that there is list a1, . . . , am ∈ Yes with 0 6 m 6
`+1 such that for all y ∈ Yes we have R(ai, y) for some i ∈
[m]. To see this, assume we already constructed a1, . . . , aj
for some j > 0, and let Sj =

{
y ∈ Yes∩ {0, 1}`

∣∣ R(ai, y)
does not hold for any i ∈ [j]

}
. Note that S0 6= ∅. If Sj is

empty, we are done and set m = j. Otherwise, Sj 6= ∅ and
we define aj+1 as follows. Property (K2) implies that, for
all x, y ∈ Sj , we have R(x, y) or R(y, x). Thus the average
out-degree of the directed graph that R induces on Sj is at
least |Sj |/2. In particular, there exists an element aj+1 ∈ Sj

such that at least half of all y ∈ Sj satisfy R(aj+1, y). Thus
|Sj+1| 6 1

2 |Sj | 6
1

2j+1 |S0|. Since |S0| 6 2`, this implies
that we reach Sm = ∅ for some m 6 ` + 1, and we are
done.

Now we devise an algorithm A for Π = (Yes,No) at
input length `.
◦ Given: y ∈ {0, 1}`.
◦ Advice: The list a1, . . . , am.
◦ Accept if and only if Rai(y) = 1 for some i ∈ [m].

If y ∈ No, then (K1) guarantees that R(a, y) = 0 for any
a ∈ Yes. Hence the circuit outputs Ra(x) = 0 and A rejects.
On the other hand, if y ∈ Yes, then the choice of the advice
guarantees that some i with R(ai, y) exists. In this case the
circuit Rai outputs Rai(y) = 1 and A accepts.

If the Rai ’s are deterministic, then A is a P/poly-
algorithm. If the Rai ’s are co-nondeterministic, then A can
simulate the Rai ’s in coNP/poly.

III. ISOLATION IS UNLIKELY TO EXIST

In this section we show that efficient witness isolation
and several other kinds of disambiguation imply unlikely
collapses of complexity classes, namely NP = P, NP ⊆
P/poly, NP = coNP, or NP ⊆ coNP/poly. In fact,
in many cases the reverse implication also holds, so we
obtain equivalences. Our results can therefore be viewed as
taxonomic – they show that the existence of seemingly very
restricted isolation procedures, such as deterministic non-
uniform minimal witness isolation, is actually equivalent to
the existence of more relaxed forms of isolation, such as
randomized non-uniform isolation with success probability
p > 2/3.

We obtain such results for both deterministic and nonde-
terministic circuits. We first consider deterministic circuits.

A. Uniform disambiguation for deterministic circuits

We argue that polynomial-time minimal witness isolation
for the class of deterministic circuits is a very strong notion.
In the uniform setting, its existence is equivalent to NP = P.
It is the only form of disambiguation from which we obtain
the collapse NP = P. The argument has a somewhat
different flavor than the main collapse result described in
the introduction.

Theorem 3. There is a P-computable minimal witness iso-
lation for deterministic circuits if and only if NP = P.

Proof: “⇒”. Consider the following polynomial-
time algorithm for SAT: Given a deterministic circuit
C(x1, . . . , xn), we halt and declare C satisfiable if
C(1, . . . , 1) = 1; otherwise, we construct the circuit
C̃(x1, . . . , xn)

.
=
(
C(x1, . . . , xn)∨(x1 = 1∧· · ·∧xn = 1)

)
.

We apply the minimal witness isolation to C̃ and ob-
tain a uniquely satisfiable deterministic circuit C ′. If
C ′(1, . . . , 1) = 0, we declare C satisfiable, and otherwise,
we declare C unsatisfiable.



For the correctness, first assume that C is satisfiable.
If C(1, . . . , 1) = 1, the algorithm declares this fact cor-
rectly. Otherwise we have C(1, . . . , 1) = 0 and C̃ has
some satisfying assignment other than (1, . . . , 1). Since C ′

isolates the lexicographically smallest satisfying assignment,
it does not have (1, . . . , 1) as a satisfying assignment. Thus
C ′(1, . . . , 1) = 0, and the algorithm correctly declares C
satisfiable. On the other hand, if C is unsatisfiable, then
C(1, . . . , 1) = 0 and C ′(1, . . . , 1) = 1, and the algorithm
correctly declares C ′ unsatisfiable.

“⇐”. Given a Boolean circuit C(x1, . . . , xn) and an
assignment w ∈ {0, 1}n, we can verify in PH that w is
the lexicographically smallest satisfying assignment of C.
If NP = P, we have PH = P and this verification can
be performed in P. Hence we can efficiently compute a
deterministic circuit C ′(x1, . . . , xn) that outputs 1 if and
only if its input is the lexicographically smallest satisfying
assignment of C. If C is satisfiable, then the constructed
circuit C ′ is uniquely satisfied by the lexicographically
smallest satisfying assignment of C. On the other hand,
if C is unsatisfiable, then C ′ is unsatisfiable. Since C ′

can be computed from C in polynomial time, this isolation
procedure runs in polynomial time.

B. Non-uniform disambiguation for deterministic circuits

Our main result shows that several P/poly-computable
notions of disambiguation are equivalent to NP ⊆ P/poly.
To prove the collapse direction, we follow the two-step
approach outlined in the introduction. The following lemma
implements Step 1, a reduction from SAT to prUSAT.

Lemma 4. If prUSAT ∈ P/poly then NP ⊆ P/poly.

The other direction in Lemma 4 trivially holds, but we only
need the stated direction.

Proof: Assume M is a P/poly-algorithm for prUSAT.
We claim that SAT ∈ P/poly. Recall that Valiant–Vazirani
gives a randomized isolation procedure A with success prob-
ability p = Ω

(
1
n

)
. Adleman’s argument (Lemma 1) yields a

P/poly-algorithm B that, given a circuit C, produces a list
of t = poly(n) circuits C ′1, . . . , C

′
t satisfying the following:

(i) if C is unsatisfiable, then each C ′i is unsatisfiable for
i ∈ [t], and (ii) if C is satisfiable then a fraction Ω(1/n) of
the C ′i are successful isolations of C, that is, are uniquely
satisfiable.

The following algorithm decides SAT. Given an input
circuit C, compute the list B(C) = (C ′1, . . . , C

′
t). If M(C ′i)

accepts for at least one i, where i ∈ [t], then accept;
otherwise, reject.

The described algorithm is clearly in P/poly. For correct-
ness, if C is unsatisfiable, then by (i) so are all C ′i, and
hence M must reject each of them. If C is satisfiable, then
by (ii) some C ′i is uniquely satisfiable, and hence M must
accept this C ′i.

We are now ready to prove our main result on disambigua-
tions for deterministic circuits in the non-uniform setting.

Theorem 5. Each of the following statements is equivalent
to NP ⊆ P/poly.

(i) There is a P/poly-computable minimal witness isola-
tion for deterministic circuits.

(ii) There is a randomized P/poly-computable isolation for
deterministic circuits with success probability p > 2

3 +
1

poly(`) .
(iii) There is a randomized P/poly-computable

satisfiability-preserving isolation for deterministic
circuits with success probability p > 1

poly(`) .

Obviously, the statements above are also equivalent to each
other. In particular, the implication (ii)⇒ (i) transforms
any randomized P/poly-computable isolation with success
probability p = p(`) into a deterministic minimal witness
isolation, the strongest notion of disambiguation that we
consider. This implication holds for all functions p : N →
[0, 1] for which there exists a constant δ > 0 such that
p(`) > 2/3 + δ · `δ for all ` ∈ N.

Proof: The proof that NP ⊆ P/poly implies (i) is as
in proof of Theorem 3, and the implications (i)⇒ (ii) and
(i)⇒ (iii) are immediate with p = 1.

(ii) ⇒ (NP ⊆ P/poly). This corresponds to Step 2
as sketched in the introduction. Let (Yes,No) denote the
promise problem prUSAT, i.e., Yes denotes the set of
uniquely satisfiable circuits, and No the set of unsatisfiable
circuits. Assume that there exists a randomized P/poly iso-
lation procedure A with success probability p > 2

3 + 1
poly(`) .

By Lemma 4, it suffices to show that prUSAT ∈ P/poly.
We apply Adleman’s argument (Lemma 1) to A, where P1

expresses the soundness property of A, and P2 its p-
completeness. We can set p1 = p′1 = 1 and p′ .= p′2(`) > 2

3
by picking δ > 0 sufficiently small. We obtain a deter-
ministic P/poly-algorithm B that maps any deterministic
circuit C to a list of deterministic circuits C ′1, . . . , C

′
t with

the following properties: (i) every satisfying assignment of
every C ′i also satisfies C, and (ii) if C is satisfiable, then at
least a p′-fraction of the circuits C ′i have a unique satisfying
assignment. We want to apply Ko’s argument, Lemma 2,
to prove prUSAT ∈ P/poly. For this, we construct the
following binary relation R ⊆ Yes × (Yes ∪ No). For
C1 ∈ Yes with the unique satisfying assignment w1 and
for C2 ∈ (Yes ∪ No), we set R(C1, C2) true if and only if
at least one of the following conditions holds:
(a) w1 satisfies C2.
(b) w1 satisfies less than a p′-fraction of the circuits C ′i on

the list B(C), where C .
= min(C1, C2)∨max(C1, C2).

It remains to verify the three conditions in Lemma 2.
For (K1), if R(C1, C2), then w1 satisfies C2 and hence
C2 ∈ Yes, or w1 satisfies less than a p′-fraction of all
circuits C ′i in the list B(C). The latter implies that the



list B(C) contains at least one successful isolation C ′i of C
that is not satisfied by w1. Since the unique satisfying
assignment of this C ′i is not w1, it must be a satisfying
assignment of C2. In either case, we have that C2 ∈ Yes.

To show (K2), assume for contradiction that there are
C1, C2 ∈ Yes such that neither R(C1, C2) nor R(C2, C1)
holds. Recall that the list (C ′1, . . . , C

′
t)

.
= B(C) depends

only on the set {C1, C2} and not on the order of the inputs.
By the assumption, we know that C1 and C2 have different
unique satisfying assignments w1 and w2 that each satisfy
at least a p′-fraction of the C ′i. Inclusion-exclusion yields
that at least a fraction 2 · p′− 1 of the circuits C ′i on the list
B(C) are satisfied by both assignments. Since 2 · p′ − 1 >
1/3 > 1 − p′, this contradicts the fact that B produces a
list of circuits, at least p′ of which have a unique satisfying
assignment. Hence R(C1, C2) or R(C2, C1) holds.

For (K3), note that, for a fixed C1 ∈ Yes, the membership
of (C1, C2) in R can be decided by a deterministic circuit
RC1

that uses C1, w1, and p′t as advice, and B as a
subroutine. The size of the circuit is a fixed polynomial
in the length of C1 and the circuit complexity of B.
Thus R satisfies the conditions of Lemma 2, and we get
prUSAT ∈ P/poly.

(iii)⇒ (NP ⊆ P/poly). This is analogous to the previous
case, with the exception that we slightly modify the defini-
tion of R. We start from a randomized P/poly-computable
satisfiability-preserving isolation A and transform it into a
deterministic algorithm B, again using Adleman’s argument,
where we can set p1 = p′1 = 1 and p′

.
= p′2(`) > 0 by

picking δ > 0 sufficiently small. On input C, the algo-
rithm B outputs a list of circuits C ′i such that: all satisfying
assignments of C ′i also satisfy C, and if C is satisfiable,
then each C ′i is satisfiable and at least one of the C ′i in the
list is uniquely satisfiable. For C1 ∈ Yes with the unique
satisfying assignment w1 and for C2 ∈ (Yes ∪ No), we set
R(C1, C2) true if and only if at least one of the following
conditions holds:
(a) w1 satisfies C2.
(b) Some circuit C ′i on the list B(C) is not satisfied by w1,

where C .
= min(C1, C2) ∨max(C1, C2).

To argue (K1), if R(C1, C2) holds, then w1 satisfies C2

and hence C2 ∈ Yes, or some circuit C ′i in the list
B(C) is not satisfied by w1. In the latter case, since B
is satisfiability-preserving, this implies that C2 ∈ Yes. For
(K2), if neither R(C1, C2) nor R(C2, C1) holds, then C1

and C2 have two distinct unique satisfying assignments w1

and w2, respectively, and every circuit C ′i is satisfied by both
assignments w1 and w2. This contradicts the fact that B
outputs at least one uniquely satisfiable C ′i. The efficiency
condition (K3) can be argued just as in the previous case.
Thus, by Ko’s argument, we have prUSAT ∈ P/poly.

Remark 6. We stated Theorem 5 for randomized isolation
and randomized satisfiability-preserving isolation, but the

proof does not make use of all properties of these notions.
For example, the algorithm A only ever gets invoked for
inputs C that have exactly one or exactly two satisfying
assignments, so we do not need to make any assumptions
on A’s behavior for other inputs. The soundness and p-
completeness conditions on those inputs can also be relaxed.
These observation allow us to generalize the theorem as fol-
lows. Assume that A is a randomized P/poly-algorithm that
maps a deterministic circuit C to a deterministic circuit C ′

such that the following two conditions hold:

(1) If C has a unique satisfying assignment w, then, with
probability at least p1, the circuit C ′ is satisfied by w.

(2) If C has exactly two satisfying assignments w1 and w2,
then, with probability at least p2, the circuit C ′ is not
satisfied by both assignments w1 and w2.

Note that in case (1), C ′ can have satisfying assignments
other than w, and in case (2), C ′ can be unsatisfiable or have
satisfying assignments other than w1 and w2. Using Adle-
man’s argument, we obtain from A a list-derandomization B
that achieves (1) with p1 replaced by p′1 = p1−ε (or p′1 = 1
if p1 = 1) and (2) with p2 replaced by p′2 = p2 − ε (or
p′2 = 1 if p2 = 1), where ε .= ε(`) is any function such that
ε(`) > 1/poly(`) and the probabilities are interpreted with
respect to the uniform distribution over the list B(C).

To adapt the proof of Theorem 5 to this more general
setting, we define R(C1, C2) for C1 uniquely satisfied by w1

and C2 having at most one satisfying assignment, by the
following conditions:

(a) w1 satisfies C2, or
(b) w1 satisfies less than a p′1-fraction of the C ′i in the list

B(C), where C .
= min(C1, C2) ∨max(C1, C2).

The relation R satisfies (K3) just as in the proof of The-
orem 5. We claim that R also satisfies (K1) and (K2) if
p′1+ 1

2p
′
2 > 1. The latter inequality can be achieved whenever

p1 + 1
2p2 > 1 + 1

poly(`) . By Ko’s argument, the existence of
such an algorithm A then implies NP ⊆ P/poly. We briefly
argue (K1) and (K2).

Proof of (K1). Let R(C1, C2) hold. If (a) holds, then C2

is satisfiable. Otherwise (b) holds, and we assume for
contradiction that C2 is unsatisfiable. Then C has the unique
witness w1, in which case (1) guarantees that a fraction at
least p′1 of the C ′i has w1 as a witness. But this contra-
dicts (b), so C2 must be satisfiable.

Proof of (K2). Assume neither R(C1, C2) nor R(C2, C1)
holds for some uniquely satisfiable C1 and C2. Then C has
exactly two witnesses w1 and w2, which must be distinct
since (a) does not hold. Because (b) does not hold, a fraction
at least 2p′1− 1 of the C ′i are satisfied by both assignments.
This contradicts (2) since 2p′1 − 1 > 1− p′2.

This view simultaneously generalizes the cases (ii) and
(iii) of the above theorem, and interpolates between them.



In particular, (ii) is captured by p1, p2 > 2
3 + 1

poly(`) , and
(iii) by p1 = 1 and p2 > 1/poly(`).

On the other hand, the Valiant–Vazirani isolation lemma
yields p1 = 1/2 and p2 = 3/4. Recall that the Valiant–
Vazirani isolation lemma intersects the solution space with a
random number of random hyperplanes. Applied to circuits
with at most two solutions, it suffices to fix the number
of hyperplanes to one. This achieves the above guarantees
since any given witness is on the hyperplane with probability
p1 = 1/2, and two distinct witnesses are not both on the
hyperplane with probability p2 = 3/4.

The remark also applies to randomized P/poly-reductions
that map satisfiable circuits C to circuits C ′ with an odd
number of satisfying assignments such that all satisfying
assignments of C ′ also satisfy C. A randomized polynomial-
time algorithm that achieves this with success probability
1/2 was given by Gupta [6]. Since such reductions satisfy (1)
and (2) where p1 = p2 is the success probability, our results
rule out the possibility of improving the success probability
to 2/3+1/poly(n), unless NP ⊆ P/poly. In fact, we obtain
the following corollary to the proof of Theorem 5.

Corollary 7. Each of the following statements is equivalent
to NP ⊆ P/poly.
(i) There is a randomized P/poly-computable reduction

that maps circuits C to circuits C ′ such that, if C is
satisfiable, then with probability at least p > 2

3 + 1
poly(`)

the circuit C ′ has an odd number of satisfying assign-
ments, each of which also satisfies C.

(ii) There is a randomized P/poly-computable reduction
that maps circuits C to circuits C ′ such that, if C is
satisfiable, then C ′ is satisfiable, and with probability
at least p > 1

poly(`) the circuit C ′ has an odd number of
satisfying assignments, each of which also satisfies C.

C. Uniform disambiguation for nondeterministic circuits

Similar to the case of deterministic circuits, we first show
that the existence of polynomial-time minimal witness iso-
lation for the class of nondeterministic circuits is equivalent
to NP = coNP.

Theorem 8. There is a P-computable minimal witness iso-
lation for nondeterministic circuits if and only if NP =
coNP.

D. Non-uniform disambiguation for nondeterministic cir-
cuits

We now develop the analog of our main result (Theo-
rem 5) for nondeterministic instead of deterministic circuits.
One motivation is the fact that a witness-recoverable disam-
biguation for deterministic circuits implies an isolation for
nondeterministic circuits.

To prove the collapse direction, we again follow the two-
step approach outlined in the introduction. The following
lemma corresponds to Step 1.

Lemma 9. If prUSAT ∈ coNP/poly then coNP ⊆
NP/poly.

The other direction in Lemma 9 trivially holds but we don’t
need it. Here is the analog of Theorem 5 for nondeterministic
circuits.

Theorem 10. Each of the following statements is equivalent
to coNP ⊆ NP/poly.

(i) There is a P/poly-computable minimal witness isola-
tion for nondeterministic circuits.

(ii) There is a randomized P/poly-computable isolation for
nondeterministic circuits with success probability p >
2
3 + 1

poly(`) .
(iii) There is a randomized P/poly-computable

satisfiability-preserving isolation for nondeterministic
circuits with success probability p > 1

poly(`) .
(iv) There is a randomized P/poly-computable witness-

recoverable disambiguation for nondeterministic cir-
cuits with success probability p > 2

3 + 1
poly(`) .

Furthermore, a randomized P/poly-computable witness-
recoverable disambiguation for deterministic circuits with
success probability p > 2

3 + 1
poly(`) also implies coNP ⊆

NP/poly.

Remark 11. We pointed out after the proof of Theorem 5
that a relaxed form of disambiguation is sufficient for the
proof of cases (ii) and (iii) to go through. The same
relaxation, this time for nondeterministic circuits, is possible
for the cases (ii) and (iii) of Theorem 10, for the same
reasons.

IV. BLACKBOX ISOLATION

We consider a general situation where some randomized
procedure is used to isolate one element in a given unknown
set W in some specified familyW of subsets of {0, 1}n. The
randomized procedure can be designed depending onW , but
it is not given any information on which W ∈ W is chosen.
The randomized procedure can check whether a given w ∈
{0, 1}n is chosen or not; in other words, it is specified as a
distribution D over subsets of {0, 1}n, where each D ∈ D is
the set of strings that the randomized procedure selects when
its random seed is fixed. This leads to the following type of
isolation. Below, for a distribution D and an element D from
the support of D, we denote by D ← D the fact that D is
chosen according to the distribution D.

Definition 2 (Blackbox isolation). For any family W of
nonempty subsets of {0, 1}n, a blackbox isolation procedure
is a distribution D over subsets D of {0, 1}n. For any
D ∈ D and any W ∈ W , we say that D succeeds on W if
|D ∩W | = 1.

The isolation probability of D for W is defined as
minW∈W PrD←D[ |D ∩W | = 1 ]. While this is regarded as
the “worst-case” isolation probability, we may also consider



an average isolation probability. For this, we regard W as a
distribution over subsets of {0, 1}n. For any distribution W
over subsets of {0, 1}n and any blackbox isolation proce-
dure D, the average isolation probability of D for W is
defined as EW←W [ PrD←D[ |D ∩ W | = 1 ] ]. Clearly, the
average isolation probability for a distributionW is an upper
bound on the isolation probability for the corresponding
subset family W .

We now construct a distributionW∗ for which the average
isolation probability of any blackbox isolation D is O(1/n).
In order to do so, we first analyze what happens with the
distribution WK defined as follows, where K is any integer
in the range 1 6 K 6 N

.
= 2n: We put each w ∈

{0, 1}n into W independently with probability pK
.
= K/N .

Roughly, W ←WK has K strings on average. That is, we
consider the isolation when we can approximate the target
set size well. The Valiant–Vazirani procedure achieves an
isolation probability of at least 1/8 when given an integer k
such that |W | ∈ [2k, 2k+1], and an isolation probability of
at least 1/4 when given an integer k such that |W | = 2k

(see, e.g., [15, p. 450–451]). We show that one cannot go
beyond (1+o(1))/e using any blackbox isolation procedure
when K = o(N). More precisely, we obtain the following
bound.

Theorem 12. For any blackbox isolation procedure D, its
average isolation probability for WK is at most (1 −
K
N )−1e−1.

Proof: Consider any set D with H elements. Then its
isolation probability for WK is

Pr
W←WK

[ |D ∩W | = 1 ] = H · pK (1− pK)
H−1

=
(

1− K

N

)−1
· HK
N
·
(

1− K

N

)H
(2)

6
(

1− K

N

)−1HK
N

e−HK/N 6
(

1− K

N

)−1
e−1 ,

where the last inequality follows since x · e−x has e−1 as
its maximum value, which is achieved for x = 1, i.e., for
H = N/K. Note that the upper bound is the same for any D.
Since the average isolation probability of D is a convex
combination of the probabilities that |D∩W | = 1, the result
follows.

We construct the distribution W∗ as a uniform superposi-
tion of the distributions WK , where K ranges over a well-
chosen set K. For K not too close to N , (2) shows that the
isolation probability for WK of a set D with H elements
is maximized for H around N/K, and decreases rapidly
when H deviates from N/K. This means that if we pick the
values of K in K such that their ratios remain far from 1,
then any set D can only have a significant contribution
to the isolation probability for WK for a few K ∈ K,
and the overall isolation probability of D for W∗ becomes
O(1/|K|). In particular, for a geometrically increasing set

of values K ∈ K, we obtain the tight upper bound of
Θ(1/ logN) = Θ(1/n) on the isolation probability of any
blackbox isolation for W∗.

The next theorem refers to the following specific dis-
tribution W∗: Choose K from K .

= {1, 2, 4, . . . , 2n−1}
uniformly at random, and then sample W according to the
distribution WK .

Theorem 13. For any blackbox isolation procedure D, its
average isolation probability for W∗ is O(1/n).

Proof: Since the average isolation probability of D is a
convex combination of the probabilities that |D∩W | = 1 for
all fixed D, it suffices to upper bound the latter probabilities.
Let D be any set with H elements. By (2), we have that

Pr
W←W∗

[ |D ∩W | = 1 ] =
1

n

∑
K∈K

Pr
W←WK

[ |D ∩W | = 1 ]

=
1

n
·
∑
K∈K

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H
.

To upper bound the right-hand side, we split the sum into
the cases K ≤ N/H and K > N/H . Then noting that
K ≤ 2n−1 = N/2, we have∑

K∈K

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H
≤
∑
K∈K

2HK

N

(
1− K

N

)H
≤

∑
K∈K

K≤N/H

2HK

N

(
1− K

N

)H

+
∑

K>N/H

2HK

N
e−HK/N

≤
∑
K∈K

K≤N/H

2HK

N

(
1− K

N

)H
+O(1) , (3)

where the last line follows from the fact that
∑
x≥1 xe

−x =
O(1). On the other hand, since we have

2HK

N

(
1− K

N

)H
≤ 2HK

N

(
1− HK

N
+

1

2

(HK
N

)2)
,

and ∑
K∈K

K≤N/H

2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)

≤ 2H

N
· 2N

H
− 2H2

N2
· 4N2

3H2
+

2H3

2N3
· 8N3

7H3
≤ 3 ,

we get that (3) is O(1) and obtain the desired bound.
One application of isolation is finding witnesses using

nonadaptive queries to a satisfiability oracle. The stan-
dard search-to-decision reduction constructs a witness bit-
by-bit using n adaptive queries to a satisfiability oracle.



If the witness is unique, then the queries can be made
in a nonadaptive fashion. The Valiant–Vazirani procedure
thus yields a nonadaptive search-to-decision procedure that
makes n queries and succeeds with probability Ω(1/n). By
running the procedure O(n) times in parallel, we obtain a
nonadaptive search-to-decision procedure that makes O(n2)
queries and succeeds with probability Ω(1). Ben-David et
al. [3] present an alternate procedure with similar behavior.
Recently, Kawachi, Rossman, and Watanabe [10] extended
our blackbox framework and showed that in that setting
every nonadaptive search-to-decision procedure with success
probability Ω(1) has to make Ω(n2) queries.

V. FURTHER DISCUSSION

Our result that an efficient deterministic isolation proce-
dure would imply NP ⊆ P/poly (Theorem 5) can be inter-
preted as saying that derandomizing the Isolation Lemma
(in the strong sense, where the output of the isolation
procedure is a single circuit) would imply circuit upper
bounds for NP. This is in contrast to the previous results
showing that derandomization would imply circuit lower
bounds for NEXP [2, 8, 9].

While we have argued that an efficient randomized iso-
lation with success probability p > 2/3 is unlikely to
exist, it remains an interesting open problem to consider
intermediate values of p, namely ω(1/n) < p 6 2/3.
Regarding more general mapping reductions from NP to
UP, does the assumption NP = UP lead to any surprising
consequences?

Our results also apply to mapping reductions from NP
to ⊕P that can only remove witnesses. In this setting the
open range for the success probability is 1/2 < p 6 2/3.
In contrast, general mapping reductions from NP to ⊕P
can have success probabilities arbitrarily close to 1, and are
therefore strictly more powerful unless NP ⊆ P/poly.

Acknowledgements. We would like to thank Leslie Valiant
for his insightful comments on the results presented in the
paper.

H. Dell partially supported by the Alexander von Hum-
boldt Foundation and by NSF grant 1017597. Most of V. Ka-
banets’ research was done during a visit to Tokyo Institute
of Technology in the Summer of 2011. D. van Melkebeek
partially supported by NSF grant 1017597.

REFERENCES

[1] S. Arora and B. Barak, Computational Complexity – A
Modern Approach. Cambridge University Press, 2009.

[2] V. Arvind and P. Mukhopadhyay, “Derandomizing the
isolation lemma and lower bounds for circuit size,” in
APPROX-RANDOM, Springer, 2008, pp. 276–289.

[3] S. Ben-David, B. Chor, O. Goldreich, and M. Luby,
“On the theory of average-case complexity,” JCSS,
vol. 44, no. 2, pp. 193–219, 1992.

[4] S. Chari, P. Rohatgi, and A. Srinivasan,
“Randomness-optimal unique element isolation
with applications to perfect matching and related
problems,” SICOMP, vol. 24, no. 5, pp. 1036–1050,
1995.

[5] H. Dell, V. Kabanets, D. van Melkebeek, and O.
Watanabe, “Is Valiant–Vazirani’s isolation probability
improvable?,” ECCC, TR11-151 Rev. 1, 2012.

[6] S. Gupta, “Isolating an odd number of elements
and applications in complexity theory,” Theory of
Computing Systems, vol. 31, pp. 27–40, 1998.

[7] L. A. Hemaspaandra, A. V. Naik, M. Ogihara, and A.
L. Selman, “Computing solutions uniquely collapses
the polynomial hierarchy,” SICOMP, vol. 25, no. 4,
pp. 697–708, 1996.

[8] R. Impagliazzo, V. Kabanets, and A. Wigderson,
“In search of an easy witness: Exponential time vs.
probabilistic polynomial time,” JCSS, vol. 65, no. 4,
pp. 672–694, 2002.

[9] V. Kabanets and R. Impagliazzo, “Derandomizing
polynomial identity tests means proving circuit lower
bounds,” C. Compl., vol. 13, no. 1–2, pp. 1–46, 2004.

[10] A. Kawachi, B. Rossman, and O. Watanabe, “Query
complexity and error tolerance of witness finding
algorithms,” ECCC, TR12-002, 2012.

[11] A. R. Klivans and D. van Melkebeek, “Graph noniso-
morphism has subexponential size proofs unless the
polynomial-time hierarchy collapses,” SICOMP, vol.
31, no. 5, pp. 1501–1526, 2002.

[12] K.-I. Ko, “On self-reducibility and weak P-
selectivity,” JCSS, vol. 26, pp. 209–211, 1983.

[13] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani,
“Matching is as easy as matrix inversion,” Combi-
natorica, vol. 7, no. 1, pp. 105–113, 1987.

[14] A. V. Naik, K. W. Regan, and D. Sivakumar, “On
quasilinear time complexity theory,” TCS, vol. 148,
no. 2, pp. 325–349, 1995.

[15] C. H. Papadimitriou, Computational Complexity.
Addison-Wesley, 1994.

[16] K. Reinhardt and E. Allender, “Making nondetermin-
ism unambiguous,” SICOMP, vol. 29, no. 4, pp. 1118–
1131, 2000.

[17] A. L. Selman, “A taxonomy of complexity classes of
functions,” JCSS, vol. 48, pp. 357–381, 1994.

[18] ——, “P-selective sets, tally languages, and the be-
havior of polynomial time reducibilities on NP,”
Math. Sys. Th., vol. 13, pp. 55–65, 1979.

[19] S. Toda, “PP is as hard as the polynomial-time hier-
archy,” SICOMP, vol. 20, no. 5, pp. 865–877, 1991.

[20] L. G. Valiant and V. V. Vazirani, “NP is as easy as
detecting unique solutions,” TCS, vol. 47, pp. 85–93,
1986.


