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Abstract. A fundamental question in computational complexity asks
whether probabilistic polynomial-time algorithms can be simulated de-
terministically with a small overhead in time (the BPP vs. P problem).
A corresponding question in the realm of interactive proofs asks whether
Arthur-Merlin protocols can be simulated nondeterministically with a
small overhead in time (the AM vs. NP problem). Both questions are
intricately tied to lower bounds. Prominently, in both settings blackbox
derandomization, i.e., derandomization through pseudo-random gener-
ators, has been shown equivalent to lower bounds for decision problems
against circuits.
Recently, Chen and Tell (FOCS’21) established near-equivalences in the
BPP setting between whitebox derandomization and lower bounds for
multi-bit functions against algorithms on almost-all inputs. The key
ingredient is a technique to translate hardness into targeted hitting sets
in an instance-wise fashion based on a layered arithmetization of the
evaluation of a uniform circuit computing the hard function f on the
given instance. Follow-up works managed to obtain full equivalences
in the BPP setting by exploiting a compression property of classical
pseudo-random generator constructions. In particular, Chen, Tell and
Williams (FOCS’23) showed that derandomization of BPP is equiva-
lent to constructive lower bounds against algorithms that go through a
compression phase.
In this paper we develop a corresponding technique for Arthur-Merlin
protocols and establish similar near-equivalences in the AM setting. As
an example of our results in the hardness to derandomization direction,
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consider a length-preserving function f computable by a nondeterminis-
tic algorithm that runs in time na. We show that if every Arthur-Merlin
protocol that runs in time nc for c = O(log2 a) can only compute f cor-
rectly on finitely many inputs, then AM is in NP. We also obtain
equivalences between constructive lower bounds against Arthur-Merlin
protocols that go through a compression phase and derandomization
of AM via targeted generators. Our main technical contribution is the
construction of suitable targeted hitting-set generators based on prob-
abilistically checkable proofs of proximity for nondeterministic compu-
tations.
As a byproduct of our constructions, we obtain the first result indicat-
ing that whitebox derandomization of AM may be equivalent to the
existence of targeted hitting-set generators for AM, an issue raised by
Goldreich (LNCS, 2011). Byproducts in the average-case setting in-
clude the first uniform hardness vs. randomness tradeoffs for AM, as
well as an unconditional mild derandomization result for AM.

Keywords. Instance-wise hardness versus randomness, derandomiza-
tion, Arthur-Merlin protocol, targeted hitting-set generator

Subject classification. 68Q15

1. Introduction

The power of randomness constitutes a central theme in the the-
ory of computing. In some computational settings, such as key
generation in cryptography and tie-breaking in distributed com-
puting, randomness is indispensable for any algorithmic solution.
In others, such as estimating the integral of a function given as a
black-box, randomness is provably needed for attaining efficiency.
In yet others, the use of randomness leads to algorithms that run
faster than all known deterministic ones, but the question remains
open: Does an efficient deterministic algorithm exist?

In the context of decision problems, the key question is whether
probabilistic polynomial-time algorithms with bounded error (the
class BPP) can be simulated deterministically with a small over-
head in time. In the realm of interactive verification protocols, the
corresponding question asks whether Arthur-Merlin protocols (the
class AM) can be simulated nondeterministically with a small over-
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head in time. In both settings, polynomial overhead is conjectured
to suffice but even subexponential overhead remains open. Both
settings have intricate connections to the quest for lower bounds,
referred to as hardness vs. randomness tradeoffs. In some cases
equivalences are known. We first describe the situation for BPP
and then the one for AM, the focal point of this paper.

1.1. BPP setting. The first hardness vs. randomness trade-
offs were developed for blackbox derandomization, where a pseudo-
random generator (PRG) produces, in an input-oblivious way, a
small set of strings that “look random” to the process under con-
sideration on every input of a given length. A long line of research
established tight equivalences between blackbox derandomization
of prBPP (the promise version of the class BPP) and nonuni-
form lower bounds for exponential-time classes. At the low end
of the derandomization spectrum, subexponential-time blackbox
derandomizations of prBPP are equivalent to super-polynomial cir-
cuit lower bounds for EXP

.
= DTIME[2poly(n)] (Babai et al. 1993).

At the high end, polynomial-time blackbox derandomizations of
prBPP are equivalent to linear-exponential circuit lower bounds for
E

.
= DTIME[2O(n)] (Impagliazzo &Wigderson 1997). A smooth in-

terpolation between the two extremes exists and yields tight equiv-
alences over the entire derandomization spectrum (Umans 2003).
The results are also robust in the sense that if the circuit lower
bound holds at infinitely many input lengths (equivalent to the
separation EXP ̸⊆ P/poly at the low end), then the derandomiza-
tion works at infinitely many input lengths, and if the circuit lower
bound holds at almost-all input lengths, then the derandomization
works at almost-all input lengths.

A uniformization of the underlying arguments led to equiva-
lences between derandomizations that work on most inputs of a
given length, and uniform lower bounds, i.e., lower bounds against
algorithms. This derandomization setting is often referred to as
the average-case setting, where the underlying distribution may be
the uniform one or any other polynomial-time sampleable distribu-
tion. At the low end, there exist subexponential-time simulations
of BPP that work on all but a negligible fraction of the inputs
of infinitely many lengths if and only if EXP ̸⊆ BPP (Impagli-
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azzo & Wigderson 2001). Unfortunately, the known construction
does not scale well (see Chen et al. 2022, 2020; Trevisan & Vadhan
2007 for progress toward an equivalence at the high end) and is
not robust (a version for almost-all input lengths remains open).
On the other hand, the result holds for blackbox derandomization
as well as for general, “whitebox” derandomization, and implies
an equivalence between blackbox and whitebox derandomization
in this setting: If derandomization is possible at all, it can be done
through pseudo-random generators.

This left open the setting of whitebox derandomizations that
work for almost all inputs. For prBPP, such derandomizations are
equivalent to the construction of targeted pseudo-random genera-
tors, which take an input x for the underlying randomized process,
and produce a small set of strings that “look random” on that spe-
cific input x (Goldreich 2011). Recently, Chen & Tell (2021) raised
the question of an equivalent lower bound condition, and proposed
a candidate: uniform lower bounds for multi-bit functions (rather
than usual decision problems) that hold on almost-all inputs in the
following sense.

Definition 1.1 (Hardness on almost-all inputs). A computa-
tional problem f is hard on almost-all inputs against a class of
algorithms if for every algorithm A in the class there is at most a
finite number of inputs on which A computes f correctly.

Chen and Tell started from the following observation about deran-
domization to hardness at the high end of the spectrum.

Proposition 1.2 (Derandomization to hardness, Chen & Tell
2021). If prBPP ⊆ P, then for every constant c there ex-
ists a length-preserving function f that is computable in deter-
ministic polynomial time and is hard on almost-all inputs against
prBPTIME[nc].

Remarkably, they also established a converse, albeit with an ad-
ditional uniform-circuit depth restriction on the hard function f .
Their approach naturally yields a targeted hitting-set generator
(HSG), the counterpart of a pseudo-random generator for random-
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ized decision processes with one-sided error (the class RP and its
promise version prRP).

Theorem 1.3 (Hardness to derandomization, Chen & Tell 2021).
Let f be a length-preserving function computable by logspace-

uniform circuits of polynomial size and depth nb for some constant
b. If f is hard on almost-all inputs against prBPTIME[nb+O(1)],
where O(1) denotes some universal constant, then prRP ⊆ P.

Note that the hardness hypothesis of Theorem 1.3 necessitates the
depth nb of the uniform circuits computing the function f to be
significantly less than their size. Otherwise, there exists even a
deterministic algorithm that computes f in time nb+O(1).

The proof of Theorem 1.3 constructs a polynomial-time tar-
geted hitting-set generator for prRP, which generically implies
a polynomial-time targeted pseudo-random generator for prBPP,
and thus that prBPP ⊆ P (which is the high end). Theorem 1.3
scales smoothly over the entire derandomization spectrum for prRP.
Due to losses in the generic conversion from hitting sets to de-
randomizations for two-sided error, the corresponding result for
prBPP does not scale that well. In particular, a low-end variant of
Theorem 1.3 for prBPP remains open. That said, the results are
robust in a similar sense as above with respect to input lengths.
In fact, the approach inherently yields a much higher degree of ro-
bustness because it effectuates a hardness vs. randomness tradeoff
on an input-by-input basis, as we explain further in the overview
of our techniques (Section 1.3).

As a summary of the above discussion, Table 1.1 provides a
qualitative overview of the lower bound equivalences for each of
the three types of derandomization considered.

Derandomization Lower bound
blackbox, almost-all inputs non-uniform

most inputs uniform
whitebox, almost-all inputs uniform, almost-all inputs

Table 1.1: Equivalences between various types of derandomization
and lower bounds
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In the setting of the third line in Table 1.1, a full-fledged equiv-
alence along the lines of Chen and Tell remains open due to the
additional uniform-circuit depth requirement that is needed in the
direction from hardness to derandomization. As such, we refer to
their results as near-equivalences.

Later works managed to obtain full-fledged equivalences with
other hardness conditions, all related to compression. Liu and Pass
did so for hardness of separating high from low Levin-Kolmogorov
complexity (Liu & Pass 2022) as well as for hardness in the pres-
ence of efficiently-computable leakage (Liu & Pass 2023). Korten
(2022) established an equivalence with the existence of a determin-
istic polynomial-time algorithm for the following problem: Given
a probabilistic circuit Ccomp : {0, 1}n → {0, 1}n−1 and a deter-
ministic circuit Cdec : {0, 1}n−1 → {0, 1}n, find a string z ∈ {0, 1}n
such that Cdec(Ccomp(z)) differs from z with high probability. Chen
et al. (2023) viewed such an algorithm as a refuter for the iden-
tity function against a class A of algorithms that go through a
compression phase, reduced the class A, and extended the result
to efficiently computable multi-bit functions other than identity.
Their framework also captures the equivalences from Liu & Pass
(2022, 2023).

Theorem 1.4 (Refutation vs. derandomization, Chen et al. 2023).
The following are equivalent:

(i) For some constant ϵ ∈ (0, 1), there exists a polynomial-
time list-refuter for the identity function against the class
prBPTICOMP[n1+ϵ, nϵ].

(ii) For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a
function computable in deterministic time na that admits
a deterministic polynomial-time list-refuter against the class
prBPTICOMP[na+ϵ, nϵ].

(iii) prBPP ⊆ P.

For a class A of algorithms, ATICOMP[t(n), s(n)] denotes the
class of computational processes obtained by first running a prob-
abilistic algorithm Acomp and then an algorithm Adec ∈ A on the
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output of Acomp such that both Acomp and Adec run in time t(n) and
Acomp outputs a string of length at most s(n). Assuming s(n) < n,
one can view Acomp as producing a compressed representation of
the input, from which Adec computes the output. We refer to such
pairs of algorithms as bottleneck algorithms. A refuter for a func-
tion f against a class A′ is a meta algorithm that, given as input
the description of an algorithm A′ ∈ A′ and a length n, finds an
input z of length at least n on which A′ fails to compute f . A
list-refuter similarly outputs a list z1, . . . , zτ of inputs of length at
least n that contains at least one zi on which A′ fails to compute
f .

Note that the existence of the refuter in Theorem 1.4 only
guarantees that, for any fixed A′ = (Acomp, Adec) in the class
prBPTICOMP[t(n)1+ϵ, nϵ], there exist infinitely many inputs on
which A′ fails to compute f . This stands in contrast with Theo-
rem 1.3, where the algorithm is required to fail on almost-all inputs.
However, in the refutation setting the counterexamples need to be
found efficiently. In the case of hardness on almost-all inputs, there
are trivial refuters, e.g., output 0n for length n.

The equivalence of (i) and (iii) in Theorem 1.4 scales smoothly
across the derandomization spectrum. The implication from (ii)
to (iii) is not known to scale well towards the low end due to the
one- vs. two-sided error issue discussed after Theorem 1.3.

1.2. AM setting. An equivalence corresponding to the first line
of Table 1.1 is known throughout the entire spectrum (Klivans &
van Melkebeek 2002; Miltersen & Vinodchandran 2005; Shaltiel &
Umans 2005). The role of EXP is now taken over by NEXP ∩
coNEXP, and the circuits are nondeterministic (or single-valued
nondeterministic, or deterministic with oracle access to an NP-
complete problem like SAT). The simulations use hitting-set gener-
ators for AM that are efficiently computable nondeterministically.
Hitting-set generators are the natural constructs in the setting of
AM because every Arthur-Merlin protocol can be efficiently trans-
formed into an equivalent one with perfect completeness. As in
the BPP setting, the lower bound equivalences for blackbox deran-
domization of prAM scale smoothly and are robust with respect to
input lengths.
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Regarding derandomizations that work on all but a negligible
fraction of the inputs of a given length (the second line in Ta-
ble 1.1), no hardness vs. randomness tradeoffs for AM were known
prior to our work. What was known, are high-end results on de-
randomizations where no efficient nondeterministic algorithm can
locate inputs on which the simulation is guaranteed to be incorrect
(Gutfreund et al. 2003; Shaltiel & Umans 2009).

Indeed, Gutfreund et al. (2003) explicitly mention the average-
case setting and why their approach fails to yield average-case sim-
ulations that are correct on a large fraction of the inputs. The set-
ting corresponding to the third line in Table 1.1 was not studied
before.

Main results: Hardness vs. derandomization. As our main
results, we obtain near-equivalences in this third setting, i.e., be-
tween whitebox derandomizations of Arthur-Merlin protocols that
work on almost-all inputs, on the one hand, and hardness on
almost-all inputs against Arthur-Merlin protocols, on the other
hand.

We start from a similar observation in the derandomization
to hardness direction as the one Chen and Tell made for BPP at
the high end of the spectrum. We refer to Section 5.1 for the
quantification of “a few”.

Proposition 1.5 (Derandomization to hardness). If prAM ⊆
NP, then for every constant c there exists a length-preserving func-
tion f that is computable in nondeterministic polynomial time with
“a few” bits of advice, and is hard on almost-all inputs against
AMTIME[nc].

Importantly, we are able to establish an almost-converse of
Proposition 1.5. Under a slightly stronger hardness assumption,
we construct a targeted hitting-set generator for prAM that is com-
putable in nondeterministic polynomial time, yielding the following
derandomization result.

Theorem 1.6 (Hardness to derandomization). Let f be a length-
preserving function computable in nondeterministic time na for
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some constant a. If f is hard on almost-all inputs against the class
prAMTIME[nc] for c = O((log a)2), where O(·) hides some univer-
sal constant, then there exists a targeted hitting-set generator that
achieves the derandomization prAM ⊆ NP.

In contrast to Theorem 1.3 in the BPP setting, Theorem 1.6 in the
AM setting has no uniform-circuit depth restriction on the func-
tion f . Together with Proposition 1.5, Theorem 1.6 represents a
near-equivalence between prAM ⊆ NP and hardness on almost-all
inputs of length-preserving functions against Arthur-Merlin proto-
cols. Whereas in the BPP setting, the remaining gap relates to
uniform-circuit depth, in the AM setting the remaining gap relates
to the advice and the technical distinction between AM and prAM
protocols. Note that the focus on length-preserving functions f in
Proposition 1.5 and Theorem 1.6 is for concreteness. For Propo-
sition 1.5 to hold, the number of output bits needs to grow with
n in an efficiently computable fashion. For Theorem 1.6 any num-
ber of output bits suffices as long as there are not so many that
the function f becomes trivially hard for Arthur-Merlin protocols
running in time nc.

In contrast to the variant of Theorem 1.3 for prBPP, Theo-
rem 1.6 scales quite smoothly across the derandomization spec-
trum. The generalization of Theorem 1.6 has the following form:
Let f be a length-preserving function computable in nondeter-
ministic time T (n). If f is hard on almost-all inputs against
prAMTIME[t(n)], then prAM ⊆ NTIME[poly(T (n))]. Intuitively,
we may think of t(n) as only slightly smaller than T (n) for high-
end results and much smaller for low-end results. Pushing our
techniques as far as possible toward the low end, we obtain the
following.

Theorem 1.7 (Variant of Theorem 1.6). Let f be a length-
preserving function computable in nondeterministic exponential
time. If f is hard on almost-all inputs against prAMTIME[nb(logn)2 ]
for all constants b, then for some constant c there exists a targeted
hitting-set generator that achieves the derandomization

prAM ⊆ NTIME[2n
c

].(1.8)



10 van Melkebeek and Mocelin Sdroievski

As prAM ⊆ NEXP trivially holds, the conclusion (1.8) of The-
orem 1.7 represents the very low end of the derandomization spec-
trum. Note that a perfectly smooth scaling of Theorem 1.6 would
only need a polynomial lower bound to arrive at the conclusion of
Theorem 1.7, but the hypothesis of Theorem 1.7 requires a lower
bound of nω((logn)2). We remark that the same discrepancy shows
up in the current best-scaling uniform hardness vs. randomness
tradeoffs for AM (Shaltiel & Umans 2009). We refer to Theo-
rem 4.8 in Section 4 for the full scaling and to Table 4.1 in the
same section for other interesting instantiations.

Main results: Refutation vs. derandomization. We also
develop a full equivalence in the refutation setting, where the re-
futer is supposed to produce counterexamples for Arthur-Merlin
protocols that go through a compression phase, i.e., bottleneck
protocols. Let (Acomp, Pdec) be a bottleneck protocol in the class
prAMTICOMP[t(n), s(n)]. Note that Acomp is still a probabilistic
algorithm, while Pdec is a promise Arthur-Merlin protocol. We say
that (Acomp, Pdec) is sound for a function f if for all inputs z, with
high probability, Pdec(Acomp(z)) either correctly computes f(z) or
else indicates failure.

We show that targeted hitting-set generators that suffice to de-
randomize prAM are equivalent to nondeterministic refuters for
identity against bottleneck Arthur-Merlin protocols that are guar-
anteed to be sound for identity, and that identity can be replaced
by an existentially quantified function f computable in nondeter-
ministic polynomial time.

Theorem 1.9 (Refutation vs. targeted hitting set generator).
The following are equivalent:

(i) For some constant ϵ ∈ (0, 1), there exists a nondeterministic
polynomial-time list-refuter for the identity function against
prAMTICOMP[n1+ϵ, nϵ] protocols with promised soundness
for identity.

(ii) For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a
function f computable in nondeterministic time na that ad-
mits a nondeterministic polynomial-time list-refuter against



Instance-wise derandomization for AM 11

prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness
for f .

(iii) There exists a targeted hitting-set generator that achieves
the derandomization prAM ⊆ NP.

Consider the first statement in Theorem 1.9. Because of the
bottleneck, any fixed protocol (Acomp, Pdec) of the stated type fails
to compute identity on a random input of sufficiently large length.
Thus, the identity function admits a trivial refuter meeting the
requirements of the theorem except that the refuter is probabilistic
instead of deterministic. From this perspective, Theorem 1.9 shows
that for derandomizing prAM, it suffices to derandomize trivial
refuters for the identity function.

In contrast to Theorem 1.4, Theorem 1.9 scales smoothly in
terms of the running time for the refuter. A refuter for the func-
tion f that runs in time T results in a targeted hitting-set gen-
erator that runs in time poly(T (poly(n))). Similarly, a targeted
hitting-set generator that runs in time T , and thus achieves the
derandomization prAM ⊆ NTIME[T (poly(n))], results in a refuter
for identity that runs in time T (poly(n)). When the running time
of the refuter ranges from polynomial to subexponential, so does
the time needed for the nondeterministic simulations, covering the
entire derandomization spectrum.

Byproducts. Using our targeted hitting-set generators we are
able to make progress on a number of related topics. We mention
three representative ones here; more are described in the body of
the paper.

First, there is the relationship between whitebox derandomiza-
tion of prAM and the existence of targeted hitting-set generators
for prAM. When Goldreich (2011) introduced targeted pseudo-
random generators for prBPP and showed that their existence is
equivalent to whitebox derandomization of prBPP, he asked about
analogous results for prAM. To the best of our knowledge, there
have been no prior results along those lines. We take a first step
toward an equivalence in this setting.
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Theorem 1.10. Assume that prAMTIME[2polylog(n)] ⊆ io-NEXP,
then there exists a targeted hitting-set generator that yields the
simulation prAM ⊆ io-NTIME[2n

c
]/nϵ for some constant c and all

ϵ > 0.

Second, we establish the first hardness vs. randomness tradeoffs
for Arthur-Merlin protocols in the average-case setting. Informally,
under a high-end worst-case hardness assumption, we obtain non-
deterministic polynomial-time simulations of prAM that are cor-
rect on all but a negligible fraction of the inputs.

Theorem 1.11. If NTIME[2an]∩ coNTIME[2an] is not contained
in BPTIME[2(log(a+1))2n]SAT|| for some constant a > 0, then for every
problem in prAM and all e > 0 there exists a simulation of the
problem in NP that is correct on all but a fraction 1/ne of the
inputs of length n for infinitely many lengths n.

The class BPTIME[t(n)]SAT|| denotes probabilistic algorithms

with bounded error that run in time t(n) and can make parallel
(i.e., non-adaptive) queries to an oracle for SAT. Theorem 1.11
answers a question of Gutfreund et al. (2003), who present results
in the different but related “pseudo” setting, where the simulation
may err on many inputs of any given length, but no polynomial-
time nondeterministic algorithm can pinpoint an error at that
length. We remark that our technique also leads to identical re-
sults in the “pseudo” setting by replacing the hardness assumption
with hardness against AMTIME[t(n)].

The model prBPPSAT
|| was used as a proxy for prAM in the ini-

tial derandomization results for Arthur-Merlin protocols (Klivans
& van Melkebeek 2002) and is seemingly more powerful. However,
derandomization results for prAM typically translate into similar
derandomization results for prBPPSAT

|| . In particular, the conclu-

sion prAM ⊆ NP of Theorem 1.6 implies that prBPPSAT
|| ⊆ PSAT

|| ,

and the conclusion prAM ⊆ NTIME[2n
c
] for some constant c in

Theorem 1.7 implies that prBPPSAT
|| ⊆ DTIME[2n

c
]SAT|| for some

constant c. In the case of Theorem 1.11, we argue that the hard-
ness assumption implies simulations of prBPPSAT

|| in PSAT
|| of the

same strength as the simulations of prAM in NP. This way, we
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obtain a hardness vs. randomness tradeoff in which the hardness
model and the model to-be-derandomized match, namely proba-
bilistic algorithms with bounded error and non-adaptive access to
an oracle for SAT.

As our third byproduct, we present an unconditional mild de-
randomization result for AM in the average-case setting. By a
mild derandomization of AM we mean a nontrivial simulation on
Σ2-machines. Recall that AM ⊆ Π2P, and proving that AM ⊆ Σ2P
is a required step if we hope to show that AM ⊆ NP. It is known
that AM can be simulated (at infinitely many input lengths n)
on Σ2-machines that run in subexponential time and take nc bits
of advice for some constant c (Williams 2016). It remains open
whether AM can be simulated on Σ2-machines in subexponential
time with subpolynomial advice. Indeed, such a simulation for
prAM would imply lower bounds against nondeterministic circuits
that are still open (Aydınlıoğlu & van Melkebeek 2017). We show
an unconditional subexponential-time and subpolynomial-advice
Σ2-simulation for prAM in the average-case setting.

Theorem 1.12. For every problem in prAM and every constant
ϵ > 0 there exists a simulation of the problem in Σ2TIME[2n

ϵ
]/nϵ

that is correct on all but a fraction 1/ne of the inputs of length n,
for all constants e and infinitely many lengths n.

In fact, we can extend Theorem 1.12 to prBPPSAT
|| in lieu of

prAM.

1.3. Techniques. For our main results, we develop an instance-
wise transformation of hardness into targeted hitting sets tailored
for AM. In the setting of BPP, Chen and Tell combine the pseudo-
random generator NW of Nisan & Wigderson (1994) with the
doubly-efficient proof systems of Goldwasser et al. (2015) (as sim-
plified in Goldreich 2018). The latter allows them to capture the
computation of a uniform circuit of size T and depth d for f on a
given input x by a downward self-reducible sequence of polynomi-
als, which they use to instantiate the NW generator. In case the
derandomization of a one-sided error algorithm on a given input
x fails, a bootstrapping strategy à la Impagliazzo & Wigderson
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(2001), based on a learning property of the NW generator, allows
them to retrieve the value of f(x) in time O(d ·polylog(T )). Thus,
provided the depth d is small compared to the size T , either the
derandomization on input x works or else the computation of f(x)
can be sped up. In the refutation setting, the refuter provides
an input z. The bootstrapping strategy produces a small circuit
that computes the mapping i 7→ f(z)i; the compression algorithm
Acomp outputs this circuit; the algorithm Adec takes the circuit and
evaluates it on all i to determine and output f(z).

A similar approach based on Goldwasser et al. (2015) applies to
the AM setting by replacing the NW construction with a hitting-set
generator construction for AM that also has the learning property.
Like in the BPP setting, the construction is of more interest when
the circuits for f have relatively small depth. Moreover, the con-
struction can only handle a limited amount of nondeterminism in
the computation for f , whereas the direction from derandomization
to hardness seems to require more.

In order to remedy both of the shortcomings, we develop a new
method to extract hardness from a nondeterministic computation
on a given input z, based on probabilistically checkable proofs of
proximity (PCPPs) rather than Goldwasser et al. (2015). The
soundness of our method presupposes some type of resilience of the
underlying regular pseudo-random generator. The required prop-
erty was first identified and used by Gutfreund et al. (2003) for the
MV generator of Miltersen & Vinodchandran (2005). It was later
used by Shaltiel & Umans (2009) for their recursive variant of the
MV generator, RMV. We combine RMV with the probabilistically
checkable proofs of proximity of Ben-Sasson et al. (2005) to trans-
form hardness into pseudo-randomness for AM in an instance-wise
fashion, without any uniform-circuit depth restriction or limitation
on the amount of nondeterminism.

We highlight one strong feature of all instance-wise approaches.
If the hardness condition holds on almost-all inputs, then the de-
randomization works on almost-all inputs. This is the setting in
which we stated the results of Chen and Tell and our main re-
sults. Similarly, if the hardness condition holds on all inputs of
a given length, then the derandomization works on all inputs of
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that length. This is the robustness property that we alluded to
earlier. However, an instance-wise approach yields much more,
including average-case derandomization results: To obtain a non-
deterministic simulation for some prAM problem that works with
high probability over any given distribution, it suffices to assume
that every prAM protocol can only compute the hard function f
with low probability over that same distribution. In the refutation
setting, we have the refuter provide the input z, and we show that
our reconstructor is actually a bottleneck Arthur-Merlin protocol.

Our derandomization-to-hardness result follows by diagonal-
ization, as does the one by Chen and Tell. The result that tar-
geted generators sufficient for derandomizing prAM imply refu-
tation works by employing such generators to derandomize the
process of obtaining a counterexample at random. The resilience
property of our generator that follows from our use of PCPPs and
the resilience property of the RMV reconstructor play a critical
role here.

To obtain our byproducts, we combine our targeted hitting-set
generator with several other ingredients, including diagonalization,
the “easy-witness” method and traditional hardness vs. random-
ness tradeoffs. Our average-case derandomization results require
a modification of our targeted HSG so that it respects a stronger
resilience property. Along the way to our unconditional mild de-
randomization result, we establish an “easy witness lemma” for Σ2

computations, which may be of independent interest.

1.4. Organization. In Section 2, we develop the ideas behind
our results and relate them to existing techniques. We start the
formal treatment in Section 3 with definitions, notation, and other
preliminaries. In Section 4, we construct our targeted HSG and es-
tablish our hardness-to-derandomization results that make use of it
(Theorem 1.6, Theorem 1.7 and the refutation-to-derandomization
direction of Theorem 1.9). Section 5 presents the derandomization-
to-hardness side of our near-equivalence, the targeted-generators-
to-refutation side of Theorem 1.9, and a proof of our byprod-
uct on derandomization to targeted hitting-set generators (Theo-
rem 1.10). In Section 6, we derive our derandomization byproducts
under uniform worst-case hardness (the average-case simulation of
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Theorem 1.11 as well as a simulation that works on all inputs of
infinitely many lengths). Section 7 contains our unconditional mild
derandomization result for AM (Theorem 1.12).

2. Technical overview

In this section, we start with an overview of techniques used in
prior hardness vs. randomness tradeoffs for BPP and AM in a way
that facilitates a high-level exposition of our main hardness-to-
derandomization result for AM. We also provide the intuition for
our derandomization-to-hardness result and for our byproducts.

2.1. Main results. We start with an overview of the techniques
used for hardness-to-derandomization results in the traditional set-
ting for BPP (lines 1 and 2 in Table 1.1), followed by those in the
new setting (line 3 in Table 1.1). We then transition to AM, discuss
the additional challenges, the known techniques in the traditional
setting and, finally, our results in the new setting.

Traditional setting for BPP. The key ingredient in all known
hardness vs. randomness tradeoffs is a pseudo-random generator
construction G that takes a function h as an oracle and produces a
pseudo-random distribution Gh with the following property: Any
statistical test D that distinguishes Gh from uniform suffices as
an oracle to efficiently learn h approximately from a small number
of queries. Thus, if Gh does not “look random” to an efficient
randomized process A on an input x, an approximation to h can
be reconstructed efficiently when provided with x and the values
of h on a small number of points, as well as oracle access to the
distinguisher D(r) = A(x, r), where A(x, r) denotes the output of
A on input x and random-bit string r. If the function h can be self-
corrected (e.g., by being random self-reducible or by its truth table
being a codeword in a locally-correctable error-correcting code),
then the exact function h can be reconstructed efficiently.

In order to obtain hardness vs. randomness tradeoffs from pseu-
do-random generator constructions with the learning property, two
questions need to be addressed:



Instance-wise derandomization for AM 17

1. How to obtain the distinguishers D?

2. How to obtain the answers to the learning queries?

The first question asks how to find inputs x on which the process
A is not fooled by Gh. In the non-uniform setting such an input
can be included in the advice. In the uniform setting for BPP,
such inputs can be found by sampling x at random and testing for
a difference in behavior of D

.
= A(x, ·) between the uniform and

the pseudo-random distributions, which can be done in prBPP.

Regarding the second question, in the non-uniform setting, the
answers to the learning queries can also be provided as advice.
In the uniform setting, Impagliazzo & Wigderson (2001) employ a
function h that is not only random self-reducible but also downward
self-reducible, and use the downward self-reduction to answer the
learning queries for length n by evaluating the circuit that resulted
from the reconstruction for length n−1. This bootstrapping strat-
egy presupposes that the reconstruction works at almost-all input
lengths. This is why we only know how to obtain simulations that
are correct at infinitely many input lengths in the uniform setting
for BPP.

New setting for BPP. In the setting of line 3 in Table 1.1, the
role of pseudo-random generators is taken over by targeted pseudo-
random generators. Whereas PRGs are oblivious to x (beyond its
length), targeted PRGs take x as an input and are only supposed
to fool the randomized process on that particular x. This approach
obviates the problem of obtaining the distinguisher D (question 1
above) as we can use D = A(x, ·) for the given x. Indeed, an
equivalent formulation of targeted generators considers D itself as
the input, and the targeted generator only needs to “fool” that
particular D (Goldreich 2020). Targeted PRGs can be constructed
from a PRG G by instantiating G with an oracle h = hx that
depends on x. This raises a third question in the application of a
PRG for hardness vs. randomness tradeoffs:

3. How to obtain the function hx from x?
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Chen & Tell (2021) use the doubly-efficient proof systems of
Goldwasser et al. (2015) (as simplified by Goldreich 2018) to ob-
tain hx from x and combine it with the Nisan-Wigderson pseudo-
random generator construction (Nisan & Wigderson 1994). The
GKR proof system takes a logspace-uniform family of circuits of
size T (n) and depth d(n) computing a (multi-bit) Boolean function
f , and transforms the circuit for f on a given input x into a down-
ward self-reducible sequence of multi-variate low-degree polynomi-
als ĝx,0 . . . , ĝx,d′(n) where d′(n) = O(d(n) log (T (n))). The polyno-
mial ĝx,0 is efficiently computable at any point given input x, and
the value of f(x) can be extracted efficiently from ĝx,d′(n). We refer
to the sequence of polynomials as a layered arithmetization of the
circuit for f on input x.

Chen & Tell (2021) instantiate the NW generator with the
Hadamard encoding of each of the polynomials ĝx,i as the func-
tion h = hx,i, and follow a bootstrapping strategy similar to that
of Impagliazzo & Wigderson (2001) to construct ĝx,d′(n) from ĝx,0.
For the strategy to work, the NW reconstructor needs to succeed
at every level. This is the reason why Chen and Tell only end
up with a (targeted) hitting-set generator rather than a pseudo-
random generator. The time required by the bootstrapping pro-
cess is proportional to the number of layers and thus to the depth
d(n) of the circuit computing f . By setting the parameters of the
arithmetization appropriately, the dependency on the size T (n) is
only polylogarithmic. This is what enables the reconstruction to
compute f(x) very quickly as long as the depth d(n) is not too
large.

The above approach hinges on the speed of the reconstruction
process. Subsequent works hinge on the compressed representa-
tion that the reconstruction process implicitly builds, which can be
viewed as a bottleneck that the computation goes through. Such
approaches typically allow for a matching implication from deran-
domization to hardness because a random function cannot be com-
pressed and derandomization lets us find such an incompressible
function deterministically.

Like Chen and Tell, Liu and Pass also apply the NW generator
but obtain hx differently. In (Liu & Pass 2022), they use hx that
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are the encodings of the outputs π(x) of all small efficient programs
π (so the resulting string has small Kolmogorov-Levin complexity
Kt). The answers to the learning queries are hard-wired into the
program that reconstructs hx. The direction from derandomization
to hardness follows from the fact that an efficient algorithm that
separates low from high Kolmogorov-Levin complexity acts as a
distinguisher. In (Liu & Pass 2023), hx encodes the value of f(x)
itself, where f is an almost-all inputs leakage-resilient hard function
(a function that remains hard even if some efficiently-computable
information about f(x) is leaked to an attacker). The approach
leads to a (targeted) pseudo-random generator as it only involves
a single hx. The answers to the learning queries are provided as
part of the information about f(x) that is leaked, and the direction
from derandomization to hardness follows the typical pattern.

Recall that the reconstructor only needs access to D and the
answers to the learning queries to hx; let Arec(hx, D) denote the
result. Each of the above approaches can be viewed as an explicit
construction of one or more hx from x such that

(2.1) Arec(hx, D) ̸= hx

for at least one hx. This suffices because (2.1) means that the
reconstruction fails for hx, and whenever that happens the tar-
geted pseudo-random generator based on hx has to fool D. Prior
approaches all guarantee (2.1) indirectly by constructing the func-
tions hx out of a function f with a particular hardness property,
and showing that if all hx satisfy Arec(hx, D) = hx, then the hard-
ness property for f on input x fails. Prior approaches are also
oblivious to D

.
= A(x, ·) but that feature is nothing special as one

can always incorporate a description of A as part of the input x.
Recent approaches take a broader perspective and try to di-

rectly construct hx with the sole requirement that (2.1) holds.
Thanks to the bottleneck that the reconstruction process goes
through, we know that a random choice of hx satisfies the require-
ment. Under the derandomization hypothesis prBPP ⊆ P, we can
efficiently find such an hx deterministically. Conversely, if we can
efficiently find such an hx deterministically, we obtain an efficient
targeted pseudo-random generator in the BPP setting.
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Korten (2022) follows this outline, where the circuit Ccomp com-
putes the compressed representation of a candidate value z for hx

based on D, from which the circuit Cdec attempts to retrieve hx.
Korten does not use the full NW construction but only Yao’s pre-
dictor, thereby only achieving a modest compression. Chen et al.
(2023) achieve better compression using the full NW construction.
They also cast the construction of hx as a refuter for the identity
function f(z) = z against the reconstructor algorithm Arec(z,D),
and show how the identity function can be replaced by any effi-
ciently computable length-preserving function f . The extension
sets hx = f(z) and involves an application of the Chen-Tell boot-
strapping approach (based on the standard circuit simulation of
the uniform computation of f) in order to obtain the answers to
the learning queries. As a consequence, the targeted generator is
only hitting. In the special case of identity, the learning queries are
simply bits of z, which obviates the need for Chen-Tell and results
in a targeted generator that is pseudo-random.

Transition to AM. A number of changes are in order in terms
of the requirements for similar results for AM. First, we need
to handle co-nondeterministic distinguisher circuits D instead of
deterministic ones. Co-nondeterministic circuits suffice because
Arthur-Merlin protocols can be assumed to have perfect complete-
ness. The only requirement for a correct derandomization is in the
case of negative instances, in which case we want to hit the set
of Arthur’s random-bit strings for which Merlin cannot produce a
witness. By the soundness property of the Arthur-Merlin protocol,
the set contains at least half of the random-bit strings.

Second, we need to accommodate nondeterministic algorithms
computing the function f . This is because the direction from
derandomization to hardness seems to need them (see Proposi-
tion 1.5). On each input z, such an algorithm needs to have at least
one successful computation path, and on every successful compu-
tation path, the output should equal f(z). Similarly, we allow for
nondeterministic refuters, which need to output counterexamples
on every accepting computation path.

Third, the algorithm for the targeted hitting-set generator can
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also be nondeterministic, which is natural when the algorithm or
refuter for f is nondeterministic. In the case of a generator, the
nondeterministic algorithm should still have at least one successful
computation path on every input, but it is fine to produce different
outputs on different successful computation paths. For any given
D, on every successful computation path, the output should be a
hitting set for D. This allows us to nondeterministically simulate
a promise Arthur-Merlin protocol P on input x as follows: First,
construct the circuit D based on P and x and guess a computation
path of the targeted HSG on input D; if it succeeds, say with
output S, guess a computation path for P on input x using each
of the elements in S as the random-bit string, and accept if all of
them accept; otherwise, reject.

Finally, we need to be able to run the reconstruction procedure
as a (promise) Arthur-Merlin protocol. This is because we want the
model in which we can compute f(z) in case of a failed derandom-
ization, to match the class we are trying to derandomize. There
are two requirements for the protocol to compute f(z) on input z:

◦ Completeness demands that there exists a strategy for Mer-
lin that leads Arthur to succeed with output f(z) with high
probability.

◦ Soundness requires that, no matter what strategy Merlin
uses, the probability for Arthur to succeed with an output
other than f(z) is small.

The reconstructor naturally needs the power of nondeterminism in
order to simulate the distinguisher D. Making sure the reconstruc-
tor is sound and needs no more power than prAM is the challenge.

Traditional setting for AM. In reference to the first two ques-
tions above, the answer to the one about obtaining a distinguisher
D is similar as for BPP, except that in the uniform setting we
do not know how to check in prAM for a difference in behavior
of D

.
= P (x, ·) between the uniform and the pseudo-random dis-

tributions. This is why average-case results remain open for AM.
Instead, one assumes that some nondeterministic algorithm pro-
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duces, on every successful computation path on input 1n, an input
x of length n on which the difference in behavior is guaranteed.

As for obtaining answers to the learning queries in the uniform
setting for AM, we can make use of the nondeterminism allowed
during the reconstruction and ask Merlin to provide the answers to
the learning queries. However, we need to guard against a cheating
Merlin. A strategy proposed by Gutfreund et al. (2003) consists
of employing a function h that has a length-preserving instance
checker. After Merlin has provided the supposed answers to the
learning queries, to compute h(z) for a given input z, we run the
instance checker on input z and answer the queries y of the instance
checker by running the evaluator part of the reconstruction process
on input y. All the runs of the evaluator can be executed in parallel,
ensuring a bounded number of rounds overall, which can be reduced
to two in the standard way at the cost of a polynomial blowup in
the running time (Babai & Moran 1988).

To guarantee soundness, the reconstruction process needs to
have an additional resilience property, namely that it remains par-
tial single-valued even when the learning queries are answered in-
correctly. Two hitting-set generators tailored for AM are known
to have the property: the Miltersen-Vinodchandran generator MV
(Miltersen & Vinodchandran 2005), which is geared toward the
high end, and a recursive version, RMV, developed by Shaltiel &
Umans (2009) to cover a broader range. MV is used for the high
end in (Gutfreund et al. 2003), and RMV for the rest of the spec-
trum in (Shaltiel & Umans 2009).

New setting for AM. A first approach to port the Chen-Tell
result to the AM setting is to replace NW with a generator for
AM that has the learning property and a reconstructor running in
prAM. The nondeterminism allows one to run the bootstrapping
process in parallel, so the number of rounds of Arthur and Merlin
remains bounded, but the overall running time remains propor-
tional to the depth of the circuits for f . This means that, like
in the setting of BPP, this first approach only yields meaningful
results when the depth is small compared to the size. Nondeter-
ministic circuits for f can be accommodated in this approach by
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treating them as deterministic circuits with nondeterministic guess
bits as additional inputs. However, this limits the amount of non-
determinism that can be handled. To address these issues, we
develop a refined approach based on PCPs.

We build a targeted hitting-set generator for AM based on the
RMV hitting-set generator. To obtain hx from x in the setting of
hardness on almost-all inputs, we make use of Probabilistically
Checkable Proofs (PCPs) for the nondeterministic computation
of the string f(x) from x. Let V denote the verifier for such a
PCP system that uses O(log(T (n)) random bits and polylog(T (n))
queries for nondeterministic computations that run in time T (n).
On input x, our targeted HSG guesses the value of f(x) and a can-
didate PCP witness yi for the i-th bit of f(x) for each i, and runs
all the checks of the verifier V on yi (by cycling through all random-
bit strings for V ). If all checks pass, our targeted HSG instantiates
RMV with yi for each i as (the truth table of) the oracle hx, and
outputs the union of all the instantiations as the hitting set, pro-
vided those nondeterministic computations all accept; otherwise,
the targeted HSG fails.

For the reconstruction of the i-th bit of f(x), Arthur generates
the learning queries of the RMV reconstructor for the oracle yi,
and Merlin provides the purported answers as well as the value of
the i-th bit of f(x). Arthur then runs some random checks of the
verifier V on input x, answering the verifier queries by executing
the evaluator of the RMV reconstructor. All the executions of the
evaluator can be performed in parallel, ensuring a bounded number
of rounds overall. The resilient partial single-valuedness property
of the RMV reconstructor guarantees that the verifier queries are
all consistent with some candidate proof ỹi. The completeness and
soundness of the PCP then imply the completeness and soundness
of the reconstruction process for our targeted HSG. As V makes
few queries and is very efficient, the running time of the process is
dominated by the running time of the RMV reconstructor.

Abstracting out the details of our construction and how the dis-
tinguisher D is obtained, the result can be captured in two proce-
dures: a nondeterministic one, H, which has at least one successful
computation path for every input and plays the role of a targeted
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hitting-set generator, and a promise Arthur-Merlin protocol, Prec,
which plays the role of a reconstructor for the targeted hitting-set
generator.

Property 2.2. For every z ∈ {0, 1}∗ and for every co-nondeter-
ministic circuit D that accepts at least half of its inputs, at least
one of the following holds:

(i) H(z,D) outputs a hitting set for D on every successful com-
putation path.

(ii) Prec(z,D) computes f(z) in a complete and sound fashion.

Note that in Property 2.2 both H and Prec are given access to
the input z as well as the co-nondeterministic circuit D. In fact,
the dependency of H on D is only through the number of input
bits of D. For Prec, blackbox access to D suffices (in addition to
the input z). However, we may as well give both H and Prec full
access to the input z and the circuit D. In the setting of hardness
on almost-all inputs, the co-nondeterministic circuit D is obtained
by hardwiring the input z into the Arthur-Merlin protocol being
derandomized, but this is not essential for the construction.

Theorem 1.6 follows by considering nondeterministic running
time T (n) = na and co-nondeterministic circuits D of size nc for
some c > 1. In this regime, H runs in time nO(a+c) and Prec in
time nO(c(log a)2). Under the hypothesis of Theorem 1.6, the sec-
ond item in Property 2.2 cannot happen except for finitely many
z, so the first item needs to hold. For any constant c′ < c,
this yields a polynomial-time targeted hitting-set generator for
prAMTIME[nc′ ], which can be used for all of prAM by padding.
Theorem 1.7 follows along the same lines; the running time is dic-
tated by the RMV reconstructor.

In the refutation setting we no longer need hardness to hold
on almost-all inputs but instead need a meta-algorithm that finds
inputs where a given bottleneck protocol fails. We again make
use of Property 2.2 but now connect derandomization to refuters
for the function f against bottleneck protocols. In the direction
from refutation to derandomization, we use the refuter to find an
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input z for which the reconstructor fails (i.e., the second item in
Property 2.2 does not hold). In that case, H(z,D) must output
a hitting set for D (the first item in Property 2.2 holds). A key
property to ensure that the reconstructor behaves like a bottleneck
protocol is that the RMV reconstructor yields a compressed repre-
sentation of any hx that fails as a basis for obtaining a hitting set.
In our PCP-based construction, we used this property to compress
PCPs for each bit of f(z) to ultimately speed up the computa-
tion of f(z). One complication in the refutation setting is that
verifying PCPs requires full access to the input z, which seems to
ruin the potential for compression. We resolve the complication
by modifying the generator and additionally run RMV on z itself.
This way, the reconstructor goes through a compressed represen-
tation of z from which it can efficiently recover z. We take the
compressor Acomp to be the algorithm that, on input z, generates
and answers the learning queries for z, producing the compressed
representation of z. We then feed the compressed representation
of z into Prec, which uses the RMV evaluator to access z whenever
that is necessary. With this approach, and starting from a func-
tion f computable in nondeterministic time na for some constant
a, we can construct targeted HSGs that achieve the derandomiza-
tion prAM ⊆ NP from the existence of a refuter against bottle-
neck protocols with subpolynomial compression that run in time
na+ϵ · poly(n) for some ϵ > 0, where the poly(n) term comes from
the use of PCPs.

We can do better, and get rid of the multiplicative poly(n) term,
by further refining the approach and employing probabilistically
checkable proofs of proximity rather than PCPs. Given random
access to the input z of length n and to a proof, a PCPP verifier
runs in time polylog(n) instead of poly(n). PCPPs, however, are
only sound when the input is far in relative distance from a true
instance of the underlying decision problem, which makes them
more suitable to inputs that are in error-correctable form. For this
reason, we have the compressor Acomp first encode the input z with
an error-correctable code that is computable in time n ·polylog(n),
and have Prec employ the PCPP verifier with the encoded version.
The RMV evaluator allows us to recover individual bits of z very
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efficiently, in particular in time that is sublinear in n, which can
be absorbed in the na+ϵ term together with the running time for
the PCPP verifier. This is how we obtain Theorem 1.9. Because
of similar gains, we employ PCPPs in lieu of PCPs throughout the
paper.

Derandomization to hardness. Proposition 1.5 is established
by diagonalization. Under the prAM ⊆ NP assumption, every
fixed-polynomial time AM protocol computing a length-preserving
function can be simulated in nondeterministic fixed-polynomial
time. We would like to diagonalize against these simulating non-
deterministic machines to construct our hard function. Due to
the lack of an almost-everywhere hierarchy result for NTIME, we
do not know how to do this efficiently for generic nondeterministic
machines. This is where the advice comes to rescue: We use advice
to indicate which nondeterministic machines are single-valued at
a particular input length. We only need to consider single-valued
machines, and diagonalizing against them is easy for a nondeter-
ministic machine with a little more running time, but figuring out
which nondeterministic machines are single-valued at a given input
length is hard.

For the direction from derandomization to refutation in Theo-
rem 1.9, assuming the existence of a targeted HSG sufficient for de-
randomizing prAM, the objective is to obtain a refuter for identity
against polynomial-time bottleneck Arthur-Merlin protocols with
subpolynomial compression bottlenecks. For any fixed such bottle-
neck protocol Prec, a probabilistic argument guarantees that Prec

fails to compute identity for most strings z of length n. Moreover,
our use of PCPPs together with the resilience property of the RMV
reconstructor ensures that the reconstruction protocol Prec always
meets the soundness requirement. This means that a successful
refuter provides an input z on which the completeness requirement
fails. The latter property can be verified co-nondeterministically,
which allows us to generate such a z using the presumed targeted
HSG and thus obtain a refuter computable in nondeterministic
polynomial time.
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2.2. Byproducts. In this section, we develop the intuition for
our byproducts.

Targeted HSG from derandomization (Theorem 1.10). To
obtain a targeted HSG from derandomization of prAM, we em-
ploy our targeted hitting-set generator in a win-win argument. Ei-
ther a complexity class separation holds, in which case a result
of Impagliazzo et al. (2002) guarantees the existence of a regular
(oblivious) hitting-set generator that yields the derandomization
result, or we get a strong complexity class collapse. The collapse
allows us to bypass some of the difficulties in diagonalizing against
prAM protocols on almost-all inputs (one of the reasons we require
advice in the derandomization-to-hardness direction of our near-
equivalence), thus allowing us to do so efficiently and uniformly,
and then instantiate our targeted hitting-set generator construc-
tion.

Average-case derandomization (Theorem 1.11). Our av-
erage-case derandomization results under worst-case hardness as-
sumptions also make use of our targeted hitting-set generator con-
struction, but in a different way. They do not exploit the potential
of the hitting sets to depend on the input x. In fact, they set f(x)
to the truth table of the worst-case hard language L from the hy-
pothesis at an input length determined by |x|. Instead, they hinge
on the strong resilient soundness properties of the reconstructor.

As we are considering the average-case derandomization set-
ting, the problem of obtaining the distinguisher D for the recon-
struction resurfaces. Our approach is similar to the one for the
traditional average-case derandomization setting for BPP. If the
simulation fails for protocol P with noticeable probability over a
random input, then we can sample multiple inputs x1, x2, . . . and
construct a list of “candidate distinguishers” Dx1

.
= P (x1, ·), Dx2

.
=

P (x2, ·), . . . such that the list contains, with high probability, at
least one “true” distinguisher. Whereas in the BPP setting one
can test each candidate and discard, with high probability, the
ones that are not distinguishers, we do not know how to do that
in the AM setting. Instead, we employ a different approach: We
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run the reconstructor with each distinguisher with the hope that
every execution either fails or outputs the correct value.

This approach necessitates a stronger form of resilience than
the one provided by the RMV generator: That its reconstruction
is sound when given as input any co-nondeterministic circuit D,
not just those that accept at least half of their inputs (as in Prop-
erty 2.2). We don’t know how to guarantee this with our prAM
reconstruction, but we are able to do so in prBPPSAT

|| by approx-
imating the fraction of inputs that D accepts and outright failing
if the fraction is too low.

We point out that earlier works (Gutfreund et al. 2003; Shaltiel
& Umans 2009) also manage to guarantee soundness of the recon-
structor for co-nondeterministic circuits D that accept at least half
of their inputs, based on the resilient partial single-valuedness of
the reconstructor for MV or RMV. They do so by running an in-
stance checker, which limits the hard function f to classes for which
instance checkers are known to exist, such as complete problems
for E and EXP. Instead, we achieve soundness of the reconstructor
based on the soundness of a PCPP. As PCPPs exist for all nonde-
terministic computations, this makes our approach more suitable
in this setting. In particular, we do not know how to obtain Theo-
rem 1.11 along the lines of Gutfreund et al. (2003) and Shaltiel &
Umans (2009).

Unconditional mild derandomization (Theorem 1.12).
Our unconditional mild derandomization result relies on a similar
win-win argument as in the proof of Theorem 1.10: Either some
hardness assumption/class separation holds, in which case we get
derandomization right away, or we get a complexity collapse that
we use to construct, by diagonalization, a hard function f that has
the efficiency requirements we need to obtain the derandomization
result using our targeted hitting-set generator.

Since our result is unconditional, we cannot use derandomiza-
tion assumptions to make diagonalizing against prAM protocols
easier. Instead, we rely on the inclusion prAM ⊆ Π2P, which
allows for diagonalizing against such protocols in Σ2TIME[nω(1)].
Our generator, however, requires the hard function to be com-
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putable by efficient nondeterministic algorithms. To help bridge
the gap, we prove an “easy witness lemma” for Σ2 computations
that guarantees a strong collapse in case the aforementioned hard-
ness assumption does not hold. The collapse then allows us to in-
stantiate our targeted hitting-set generator construction with the
diagonalizing function.

3. Preliminaries

We assume familiarity with standard complexity classes such as
NP, AM, and prAM. We often consider inputs and outputs from
non-Boolean domains, such as Fr for a field F and r ∈ N. In
such cases, we implicitly assume an efficient binary encoding for
the elements of these domains. Finally, as is customary, all time
bounds t are implicitly assumed to be time-constructible and sat-
isfy t(n) ≥ n.

3.1. Nondeterministic, co-nondeterministic and single-val-
ued computation. We make use of nondeterministic, co-nonde-
terministic, and single-valued circuits in our results. A nondeter-
ministic circuit is a Boolean circuit C with two sets of inputs, x
and y. We say that C accepts x if there exists some y such that
C(x, y) = 1, and that C rejects x otherwise. A co-nondeterministic
circuit has a symmetric acceptance criterion: It accepts x if for all
y it holds that C(x, y) = 1, and rejects x otherwise. A partial
single-valued circuit also has two inputs, x and y; on input (x, y)
it either fails (which we represent by C(x, y) = ⊥) or succeeds and
outputs a bit b = C(x, y). Moreover, we require that for all y, y′

such that both C(x, y) and C(x, y′) succeed, C(x, y) = C(x, y′),
i.e., the circuit computes a partial function on its first input. If,
furthermore, for all x there exists a y such that C(x, y) succeeds,
we call the circuit total single-valued or just single-valued.

We are also interested in nondeterministic algorithms that com-
pute total relations R ⊆ {0, 1}∗ → {0, 1}∗. Let T be a time bound.
We say that a nondeterministic algorithm N computes R if for
all x ∈ {0, 1}∗, there exists at least one computation path on
which N(x) succeeds, and N(x) outputs some y ∈ R(x) on all suc-
cessful computation paths. Note, in particular, that if a function
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f : {0, 1}∗ → {0, 1}∗ is computable in nondeterministic time T (n),
then the language Lf = {(x, i, b) | f(x)i = b} is in NTIME[T (n)].

3.2. Arthur-Merlin protocols. A promise Arthur-Merlin pro-
tocol P is a computational process in which Arthur and Merlin re-
ceive a common input x and operate as follows in alternate rounds
for a bounded number of rounds. Arthur selects a random string
and sends it to Merlin. Merlin sends a string that depends on the
input x and all prior communication from Arthur; the underly-
ing function is referred to as Merlin’s strategy, which is computa-
tionally unrestricted. At the end of the process, a deterministic
computation on the input x and all communication determines ac-
ceptance. The running time of the process is the running time of
the final deterministic computation.

Any promise Arthur-Merlin protocol can be transformed into
an equivalent one with just two rounds and Arthur going first,
at the cost of a polynomial blow-up in running time, where the
degree of the polynomial depends on the number of rounds (Babai
& Moran 1988). As such, we often use the notation prAM to refer
to promise Arthur-Merlin protocols with any bounded number of
rounds, even though, strictly speaking, the notation refers to a
two-round protocol with Arthur going first.

Promise Arthur-Merlin protocols can be simulated by proba-
bilistic algorithms with oracle access to SAT: Instead of interacting
with Merlin, Arthur asks the SAT oracle whether there exists a re-
sponse of Merlin that would lead to acceptance. Similarly, PprAM

||
can be simulated in BPPSAT

|| , the class of problems decidable by
probabilistic polynomial-time algorithms with bounded error and
non-adaptive oracle access to SAT. In fact, a converse also holds
and helps to extend some of our results for prAM to the class
prBPPSAT

|| .

Lemma 3.1 (Chakaravarthy & Roy 2011). prBPPSAT
|| ⊆ PprAM

|| .

In Lemma 3.1, the deterministic machines with oracle access
to prAM on the right-hand side are guaranteed to work correctly
irrespective of how the queries outside of the promise are answered,
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even if those queries are answered inconsistently, i.e., different an-
swers may be given when the same query is made multiple times.

Arthur-Merlin protocols that output values. A promise
Arthur-Merlin protocol P may also output a value. In this case,
at the end of the interaction, the deterministic computation deter-
mines success/failure and, in case of success, an output value. We
denote this value by P (x,M), which is a random variable defined
relative to a strategy M for Merlin. Similar to the setting of cir-
cuits, we indicate failure by setting P (x,M) = ⊥, a symbol disjoint
from the set of intended output values. Our choice of using success
and failure for protocols that output values is to avoid confusion
with the decisional notions of acceptance and rejection.

Definition 3.2 (Arthur-Merlin protocol with output). Let P be
a promise Arthur-Merlin protocol. We say that on a given input
x ∈ {0, 1}∗:

◦ P outputs v with completeness c if there exists a Merlin strat-
egy such that the probability that P succeeds and outputs v
is at least c. In symbols:

(∃M) Pr[P (x,M) = v] ≥ c.

◦ P outputs v with soundness s if, no matter what strategy
Merlin uses, the probability that P succeeds and outputs a
value other than v is at most s. In symbols:

(∀M) Pr[P (x,M) ̸∈ {v,⊥}] ≤ s.

◦ P has partial single-valuedness s if there exists a value v such
that P outputs v with soundness s. In symbols:

(∃v)(∀M) Pr[P (x,M) ̸∈ {v,⊥}] ≤ s.

Note that if P on input x outputs v with completeness c and has
partial single-valuedness s, then it outputs v with soundness s,
provided s > 1− c. If we omit c and s, then they take their default
values of c = 1 (perfect completeness) and s = 1/3.
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For a given function f : X → {0, 1}∗ where X ⊆ {0, 1}∗,
we say that P computes f with completeness c(n) and soundness
s(n) if on every input x ∈ X, P outputs f(x) with completeness
c(|x|) and soundness s(|x|). Note that P may behave arbitrarily on
inputs that are not in X. In contrast, an AM protocol (as opposed
to a prAM protocol) computing f still computes some value in a
complete and sound fashion on inputs x /∈ X.

3.3. Learn-and-evaluate and commit-and-evaluate proto-
cols. The reconstruction processes for hardness-based hitting-set
generators for prAM are typically special types of promise Arthur-
Merlin protocols. We distinguish between two types.

A learn-and-evaluate protocol is composed of two phases: A
learning phase followed by an evaluation phase. In the learning
phase, a probabilistic algorithm makes queries to a function f and
produces an output (which we call a sketch). The evaluation phase
then consists of a promise Arthur-Merlin protocol that computes
f(x) correctly on every input x when given the sketch as additional
input.

Definition 3.3 (Learn-and-evaluate protocol). A learn-and-eval-
uate protocol consists of a probabilistic oracle algorithm Alearn and
a promise Arthur-Merlin protocol Peval. Let f : X → {0, 1}∗ where
X ⊆ {0, 1}∗. We say that (Alearn, Peval) computes f with error
e(n) for completeness c(n) and soundness s(n) if on every input
x ∈ X of length n the following holds: The probability over the
randomness of Alearn that Peval with input x and additional input
π = Af

learn(1
n) outputs f(x) with completeness c(n) and soundness

s(n) is at least 1− e(n).

The learning phase of a learn-and-evaluate protocol can be sim-
ulated by an Arthur-Merlin protocol with output, where Merlin
guesses the queries that Alearn makes on a given random-bit string
and answers them in parallel, and the output is a sketch of f . In
this view, a learn-and-evaluate protocol becomes a pair of promise
Arthur-Merlin protocols: one for the learning phase, and one for
the evaluation phase. Note that the quality of the evaluation phase
is only guaranteed when the learning queries are answered cor-
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rectly, i.e., when Merlin is honest in the learning phase.
A commit-and-evaluate protocol (Shaltiel & Umans 2009) has

the syntactic structure of a pair of promise Arthur-Merlin protocols
without the restriction that Merlin in the first phase only answers
queries about f . Semantically, a commit-and-evaluate protocol is
more constrained than a learn-and-evaluate protocol. The first
protocol of the pair now represents a commitment phase instead
of a learning phase. In this phase, Arthur and Merlin interact and
produce an output π, which we call a commitment. Similar to
a learn-and-evaluate protocol, the commitment is given as input
to the protocol of the evaluation phase. Whereas in a learn-and-
evaluate protocol there are no guarantees whatsoever when Merlin
is dishonest in the first phase, in a commit-and-evaluate protocol
there is a strong guarantee: With high probability over Arthur’s
randomness in the commitment phase, the evaluation protocol is
partial single-valued, meaning that Merlin cannot make Arthur
output different values for the same input x with high probability.
The guarantee is referred to as resilient partial single-valuedness.

Definition 3.4 (Commit-and-evaluate protocol). A commit-and-
evaluate protocol is a pair of promise Arthur-Merlin protocols P =
(Pcommit, Peval). P has resilience r(n) for partial single-valuedness
s(n) on domain X ⊆ {0, 1}∗ if for all n, no matter what strat-
egy Merlin uses during the commit phase, the probability that in
the commitment phase, on input 1n, Pcommit succeeds and outputs
a commitment π that fails to have the following property (3.5)
is at most r(n), where the abbreviation “psv” stands for “partial
single-valuedness”:

For every x of length n in X, Peval(x, π) has psv s(n).(3.5)

In symbols:

Pr[(∀x ∈ X ∩ {0, 1}n)Peval(x, π) has psv s(n)] ≥ 1− r(n),

where π = Pcommit(1
n,Mcommit).

A commit-and-evaluate protocol naturally induces a promise
Arthur-Merlin protocol: On input x, run Pcommit on input 1|x|. If
this process succeeds, let π denote its output and run Peval on input
(x, π).
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3.4. Bottleneck algorithms. The reconstructor algorithms un-
derlying (targeted) generators typically have the property that they
go through a compression phase but eventually produce a poten-
tially long output. We refer to such algorithms as ”bottleneck al-
gorithms.” We define them generically relative to any base class A
and formalize them as two-phase algorithms: a compression phase
Acomp that is probabilistic, and a decompression phase Adec that is
of type A.

Definition 3.6. Let A be a class of promise algorithms, t a time
bound and s : N → N. We let ATICOMP[t(n), s(n)] be the class
of computational problems with the following properties for some
probabilistic algorithm Acomp and some Adec ∈ A: For any input
x ∈ {0, 1}∗:

◦ The process first runs Acomp on input x, yielding a string
Acomp(x), and then runs Adec on input Acomp(x).

◦ Each of the two phases run in time t(|x|).

◦ The length of Acomp(x) never exceeds s(|x|).

Note that we impose the resource bounds strictly (not up to a con-
stant factor) and on all inputs (not just on all but finitely many).
The differences do not matter much for the resource of time. This
is because of constant-factor speedup results and because asymp-
totic time bounds can be turned into absolute ones by hard-wiring
the behavior on the finitely many inputs on which the time bound
is violated. These transformations do not affect the input-output
behavior of the algorithm, though the second one comes at the
cost of a potentially significant increase in the description length
of the algorithm. For the compression bound s(n) the differences
do matter. Constant-factor compression is not possible in general,
and hard-wiring is not an option as it requires access to the full
input.

Definition 3.6 applies to promise Arthur-Merlin protocols that
output values, yielding the bottleneck protocol classes denoted
prAMTICOMP[t(n), s(n)]. In the completeness and soundness no-
tions of Definition 3.2, for bottleneck protocols, we consider the
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probabilities over both the internal randomness of the algorithm
Acomp and Arthur’s randomness in the prAM protocol Pdec.

We similarly extend the notion of a bottleneck protocol com-
puting a given function f with certain completeness (default 1)
and soundness (default 1/3). We say that a pair (Acomp, Pdec) is
sound for a function f if (Acomp, Pdec) computes f on every input
with soundness 1/3 (without any completeness guarantee).

3.5. Refuters. Refuters and list-refuters can be defined gener-
ically for a total function f against a resource-bounded semantic
class A of algorithms. Such A is defined by an underlying syntactic
class of machines, resource bounds that always hold (for all possi-
ble executions on all inputs), and promises about the behavior of
the machine for it to compute a value on a given input.

Definition 3.7. Let f : {0, 1}∗ → {0, 1}∗ be a total function,
and A a resource-bounded semantic class of algorithms. A list-
refuter R for f against A is an algorithm that on input 1n and
an algorithm A of the syntactic type underlying A, outputs a list
of strings (x1, . . . , xτ ), each of length at least n. If A satisfies the
resource bounds of A for all inputs of length at least n, then there
exists i ∈ [τ ] for which A fails to compute f(xi). A refuter is a
list-refuter that outputs singleton sets.

Failure for A(x) to compute f(x) means that either A does not
satisfy the promise on input x or else it does but computes a value
other than f(x).

Other variants on the formal requirements for a refuter exist
in the literature; some comments on the choices we made are in
order. The lower bound n on the length of the counterexample
allows us to avoid irrelevant or useless counterexamples. Such a
lower bound could alternately be enforced by modifying A and
hard-wiring the correct output values for f on inputs of length less
than n. However, this comes at an exponential cost in n for the
description length of the algorithm, which is problematic for the
efficiency of meta algorithms like refuters. The hard-wiring fix may
also not be possible, e.g., in the case of bottleneck algorithms.

Imposing a lower bound rather than an exact value on the
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length of the counterexamples facilitates handling settings where
there are only counterexamples of infinitely many lengths but not
all lengths. Note that the length of the counterexamples is bounded
by the running time of the refuter, which we typically express as a
function of both n and the description length of the algorithm.

In Definition 3.7 the behavior of a refuter R is well-defined even
for algorithms A that do not satisfy the resource constraints on all
inputs of length less than n. This is consistent with the require-
ment that the counterexample be of length at least n. Alternately,
one could only specify the behavior of a refuter on algorithms A
that satisfy the resource constraints everywhere. For constructible
resource bounds, the alternate definition can be used in lieu of ours
as one can first modify A into an algorithm A′ that satisfies the
resource bounds everywhere and behaves like A on inputs where A
meets the resource bounds. The increase in description length from
A to A′ is not significant from a complexity-theoretic perspective.
Our definition obviates the need for applying the transformation
each time we want to run a refuter.

The refutation problem can have promises beyond the one that
A meets the resource bounds on all inputs of length at least n.
In such cases the refuter only needs to produce a counterexample
when A comes from some restricted subclass of A.

In this work, we mostly employ nondeterministic list-refuters
against bottleneck Arthur-Merlin protocols, i.e., against protocols
in classes prAMTICOMP[t(n), s(n)]. A nondeterministic list-re-
futer is similar to a regular list-refuter, with the difference that
it is nondeterministic, must have at least one accepting compu-
tation path on every input, and must output a list containing a
counterexample on every accepting path for every input satisfy-
ing the relevant promise. More precisely, on input 1n and a pair
(Acomp, Pdec) consisting of a probabilistic algorithm Acomp and a
prAM protocol Pdec, the refuter must have at least one accepting
computation path and exhibit the following behavior: every ac-
cepting path must output a list (x1, . . . , xτ ), each of length at least
n. If on inputs of length ℓ ≥ n both phases of (Acomp, Pdec) run in
time t(ℓ) and the output length of Acomp is bounded by s(ℓ), then
on every accepting computation path the refuter must output a
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list of strings (x1, . . . , xτ ), each of length at least n such that for at
least one i ∈ [τ ], (Acomp, Pdec) fails to compute f on input xi with
completeness 1 and soundness 1/3.

We say that R is a refuter against prAMTICOMP[t(n), s(n)]
protocols with promised soundness for f if R can refute pairs
(Acomp, Pdec) that are sound for f . R may fail to refute proto-
cols that are not sound for f , but still needs to have at least one
accepting computation path on such inputs.

3.6. Hitting-set generators and targeted hitting-set gen-
erators. In the setting of prBPP, Goldreich (2020) discusses two
equivalent definitions of targeted pseudo-random generators: one
for deterministic linear-time machines that take both the input x
and the random-bit string r as inputs, and one based on circuits
D that only take the random-bit string r as input. The circuit
D can be obtained by first constructing a circuit C that simulates
the machine on inputs of length |x|, and then hardwiring the input
x. The difference between a regular and targeted pseudo-random
generator lies in the dependency of the output on x (in the first
definition) or the circuit D (in the second definition): For a regular
PRG the output can only depend on |x| or the size of D, whereas
for a targeted PRG it can depend on x and D proper.

In the setting of prAM, without loss of generality, we can as-
sume that promise Arthur-Merlin protocols have perfect complete-
ness. Therefore, we only need to consider targeted hitting-set gen-
erators, the variant of targeted PRGs for one-sided error. Similar
to the BPP setting, there are two equivalent definitions of targeted
HSGs for prAM. We propose a third, hybrid, and also equivalent
definition, where the targeted generator is given access to both x
and the circuit C. For prAM with perfect completeness the circuit
C (as well as D) is co-nondeterministic. For regular HSGs, the
output can only depend on the size of C. Our definition highlights
that, in principle, there are two types of obliviousness that regular
PRGs/HSGs exhibit: With respect to the input (where only depen-
dencies on its size are allowed) and with respect to the algorithm
being derandomized (where only dependencies on its running time
are allowed). Since the algorithm description can be incorporated
as part of the input, the dependency on C can be avoided. This
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is essentially why all three definitions are equivalent. In our tar-
geted hitting-set generator construction the dependency will only
be through x and the size of C.

We start by defining hitting sets for co-nondeterministic cir-
cuits.

Definition 3.8 (Hitting set for co-nondeterministic circuits).
Let D be a co-nondeterministic circuit of size m. A set S of strings
of length m is a hitting set for D if there exists at least one z ∈ S
such that D(z) = 1 (where D might take a prefix of z as input if
necessary). In that case, we say that S hits D.

The notion allows us to define targeted hitting-set generators
for prAM as follows, where we assume, without loss of general-
ity, perfect completeness and soundness 1/2. Regular hitting-set
generators are viewed as a special case.

Definition 3.9 (Regular and targeted hitting-set generator for
prAM). A targeted hitting-set generator for prAM is a non-
deterministic algorithm that, on input x ∈ {0, 1}∗ and a co-non-
deterministic circuit C, has at least one successful computation
path, and if Prr[C(x, r) = 1] ≥ 1/2, outputs a hitting set for
D(r)

.
= C(x, r) on every successful computation path. A regular

hitting-set generator for prAM is a targeted hitting-set generator
where the output only depends on the size of C.

Wemeasure the running time of a targeted hitting-set generator
in terms of both the length n of the string x and the sizem of the co-
nondeterministic circuit C. In some cases, it is more convenient to
work with generators that only take a co-nondeterministic circuit
D as input. By the above discussion, such generators suffice for
derandomizing prAM.

For completeness, we state the standard way of obtaining the
co-nondeterministic circuits C and D capturing promise Arthur-
Merlin protocols.

Proposition 3.10. There exists an algorithm that, on input 1n

and the description of a two-round protocol P with Boolean out-
put for a problem in prAMTIME[t(n)], runs in time O(t(n)2) and
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outputs the following: A co-nondeterministic circuit C of size m =
O(t(n)2) that simulates and negates the computation of P for in-
put length n, i.e., the input of C is comprised of x ∈ {0, 1}n and
Arthur’s random-bit string r, and C co-nondeterministically veri-
fies that there is no Merlin message that would lead to acceptance.
In particular:

◦ If P with input x accepts all random inputs, then Dx(r)
.
=

C(x, r) rejects every input.

◦ If P with input x rejects at least a fraction 1/2 of its random-
bit strings, then Dx(r)

.
= C(x, r) accepts at least a fraction

1/2 of its inputs.

3.7. PCPs of proximity, error-correcting codes and low-
degree extensions. PCPs of proximity apply to pair languages,
i.e., languages of pairs of strings. Intuitively, we view one part of
the input as explicit, to which the PCPP verifier has full access,
and another part of the input as implicit, to which the PCPP
verifier has oracle access. Each query a PCPP verifier makes to
the implicit input counts towards its query complexity.

Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. We denote
by Lx the set {z | (x, z) ∈ L}. The soundness condition for
PCPPs requires that z is sufficiently far from strings in Lx in
relative Hamming distance. Let z, z′ ∈ {0, 1}n and d(z, z′) =
|{i | zi ̸= z′i}|/n. For z ∈ {0, 1}n and S ⊆ {0, 1}n, we define
d(z, S) = minz′∈S(d(z, z

′)). The string z is said to be δ-far from S
if d(z, S) ≥ δ.

Definition 3.11 (PCP of Proximity). Let r, q, t : N × N → N
and s, δ : N × N → [0, 1]. Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair
language. We say that L ∈ PCPPs,δ[r, q, t] if there exists a proba-
bilistic algorithm V (the verifier) that, given a string x ∈ {0, 1}m
and an integer n as regular input, and oracle access to an implicit
input z ∈ {0, 1}n and to a proof oracle y ∈ {0, 1}∗, tosses r(m,n)
coins, queries the oracles z and y for a total of q(m,n) bits, runs
in time t(m,n), and either accepts or rejects. Moreover, V has the
following properties:
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◦ Completeness: If (x, z) ∈ L then there exists a y such that
Pr[V z,y(x, n) = 1] = 1.

◦ Soundness: If (x, z) is such that z is δ(m,n)-far from Lx ∩
{0, 1}n, then for every y′ it holds that Pr[V z,y′(x, n) = 1] ≤
s(m,n).

We use the following PCPP construction due to Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan.

Lemma 3.12 (Ben-Sasson et al. 2005). Let T be a time bound
and L be a pair language in NTIME[T (m,n)], where m denotes
the length for the first (explicit) input and n the length for the
second (implicit) input. Then, for every constant s, we have L ∈
PCPPs,δ[r, q, t], for

◦ Proximity parameter δ(m,n) = 1/polylog(m,n),

◦ Randomness complexity r(m,n) = log (1/s) · log T (m,n) +
O(log log T (m,n)),

◦ Query complexity q(m,n) = polylog(T (m,n)),

◦ Proof length ℓ(m,n) = T (m,n) · polylog(T (m,n)),

◦ Verification time t(m,n) = poly(m, log n, log T (m,n)).

In our applications of the above PCPP the implicit input will be
in an error-correcting format. An error-correcting code (ECC) with
distance parameter δ is an algorithm Enc such that for every n and
z, z′ ∈ {0, 1}n for which z ̸= z′, it holds that d(Enc(z),Enc(z′)) ≥
δ. For our purposes, it suffices that for any constant δ ∈ (0, 1]
there exists an ECC with distance parameter δ that is computable
in time n ·polylog(n) (e.g., see Justesen 1976 and the discussion in
Spielman 1996).

A particular type of ECCs are low-degree extensions. Let x ∈
{0, 1}n, F = Fp be the field with p elements (for prime p) and h and
r integers such that hr ≥ n. The low-degree extension of x with
respect to p, h, r is the unique r-variate polynomial x̂ : Fr → F with
degree h − 1 in each variable, for which x̂(v⃗) = xi for all v⃗ ∈ [h]r
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representing a i ∈ [n] and x̂(v⃗) = 0 for the v⃗ ∈ [h]r that do not
represent an index i ∈ [n]. The total degree of x̂ is ∆ = hr and x̂
is computable in time n · poly(h, log p, r) given oracle access to x.

3.8. Average-case simulation. Due to the instance-wise na-
ture of our technique, we are able to conclude derandomization on
average with respect to arbitrary distributions by assuming hard-
ness with respect to that same distribution. The notion of average-
case simulation that we use is the one where the simulation works
correctly with high probability over inputs drawn from the distri-
bution. We typically want good simulations to exist with respect
to every efficiently sampleable distribution (where the simulation
may depend on the distribution). This is usually referred to as the
“heuristic” setting.

Definition 3.13 (Heuristic). Let Π be a promise-problem, µ :
N → [0, 1), C a complexity class and x = {xn}n∈N an ensemble of
distributions where xn is supported on {0, 1}n and such that for
all n, every x in the support of xn satisfies the promise of Π. We
write

Π ∈ Heurx,µC

if there exists a language L ∈ C such that for all sufficiently large
n, Prx∈xn [L(x) ̸= Π(x)] ≤ µ(n). We write

Π ∈ HeurµC

if the above property holds for every polynomial-time sampleable
ensemble of distributions with the above support restriction.

The notions of average-case simulation extend to the infinitely-
often setting in the natural way.

4. Targeted hitting-set generator construction

In this section, we develop our targeted HSG construction, which
leads to our instance-wise hardness vs. randomness tradeoffs for
Arthur-Merlin protocols.
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Our construction builds on the RMV generator due to Shaltiel
& Umans (2009), which is a recursive variant of the MV generator
that shares the desired resilience property with MV. We start with
the definition of the RMV generator in Section 4.1 and state its
reconstruction properties in terms of a commit-and-evaluate pro-
tocol. We present our construction and analysis in Section 4.2 and
the derandomization consequences in Section 4.3.

4.1. Recursive Miltersen-Vinodchandran generator. We
need a couple of ingredients to describe how the RMV genera-
tor works. The first one is a local extractor for the Reed-Müller
code. A local extractor is a randomness extractor that only needs
to know a few bits of the sample. In the following definition the
sample is provided as an oracle, and the structured domain from
which the sample is drawn is given as an additional parameter.

Definition 4.1 (Local extractor). Let S be a set. A (k, ϵ) local
S-extractor is an oracle function E : {0, 1}s → {0, 1}t that is
computable in time poly(s, t) and has the following property: For
every random variable X distributed on S with min-entropy at
least k, EX(Us) is ϵ-close to uniform.

We make use of the following local extractor for Reed-Müller
codes.

Lemma 4.2 (Implicit in Shaltiel & Umans 2005). Fix parameters
r < ∆, and let S be the set of polynomials ĝ : Fr → F having total
degree at most ∆, where F = Fp denotes the field with p elements.
There is a (k, 1/k) local S-extractor for k = ∆5 with seed length
s = O(r log p) and output length t = ∆.

Note that for every subcube with sides of size ∆/r and choice
of values at its points, there exists an interpolating polynomial ĝ
with the parameters of Lemma 4.2. It takes (∆/r)r log p bits to
describe these polynomials, but the local extractor only accesses
poly(∆, r, log p) bits.

When instantiated with a polynomial ĝ : Fr → F, the RMV
generator groups variables and operates over axis-parallel (combi-
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natorial) lines over the grouped variables.1 Shaltiel and Umans
call these MV lines, which we define next.

Definition 4.3 (MV line). Let F = Fp for a prime p. Given a
function ĝ : Fr → F where r is an even integer, we define B = Fr/2

and identify ĝ with a function from B2 to F. Given a point a⃗ =
(⃗a1, a⃗2) ∈ B2 and i ∈ {1, 2}, we define the line passing through a⃗ in
direction i to be the function L : B → B2 given by L(z⃗) = (z⃗, a⃗2)
if i = 1 and L(z⃗) = (⃗a1, z⃗) if i = 2. This is an axis-parallel,
combinatorial line, and we call it an MV line. Given a function
ĝ : Fr → F and an MV line L we define the function ĝL : B → F
by ĝL(z) = ĝ(L(z)).

The input for the RMV construction is a multivariate polyno-
mial ĝ : Fr → F of total degree at most ∆, and the output is a set
of m-bit strings for m ≤ ∆1/100. The construction is recursive and
requires that r is a power of 2 and that p is a prime larger than
∆100 (say, between ∆100 and 2∆100). Let E be the (k, 1/k)-local
extractor from Lemma 4.2 for polynomials of degree ∆ in (r/2)
variables over F. Remember that k = ∆5 and that the extractor
uses seed length O(r log p) and output length t = ∆ ≥ m. By
using only a prefix of the output, we have it output exactly m bits.

The operation of the RMV generator on input ĝ is as follows:
Set B = Fr/2. For every a⃗ ∈ B2 and i ∈ {1, 2}, let L : B → B2

be the MV line passing through a⃗ in direction i. Compute E ĝL(y)
for all seeds y. For r = 2, output the set of all strings of length
m obtained over all a⃗ ∈ B2, MV lines L through a⃗, and seeds y.
For r > 2, output the union of this set and the sets output by the
recursive calls RMV(ĝL) for each of the aforementioned MV lines
L.

The construction runs in time pO(r) and therefore outputs at
most that many strings. If the set output by the procedure fails
as a hitting set for a co-nondeterministic circuit D of size m, then
there exists an efficient commit-and-evaluate protocol for ĝ with
additional input D. This is the main technical result of Shaltiel

1In the original construction (Shaltiel & Umans 2009), the RMV generator
is defined with the number d of groups of variables as an additional parameter.
Eventually, d is set to 2, which is the value we use for our results as well.
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& Umans (2009), which we present in a format that is suitable for
obtaining our results. Shaltiel and Umans present the evaluation
protocol as a multi-round protocol (with log r rounds). We col-
lapse it into a two-round protocol by standard amplification, which
also amplifies the crucial resilience property (Babai & Moran 1988;
Shaltiel & Umans 2009).

Lemma 4.4 (Shaltiel & Umans 2009). Let ∆,m, r, p be such that
m ≤ ∆1/100, r is a power of 2 and p is a prime between ∆100 and
2∆100. Let also F = Fp and s ∈ (0, 1]. There exists a commit-and-
evaluate protocol (Pcommit, Peval) with additional inputs p and D,
where D is a co-nondeterministic circuit of size m, such that the
following holds for any polynomial ĝ : Fr → F of total degree at
most ∆.

◦ Completeness: If D rejects every element output by RMV(ĝ)
then there exists a strategy Mcommit for Merlin in the commit
phase such that Peval on input (z⃗, D, π) outputs ĝ(z⃗) with
completeness 1 for every z⃗ ∈ Fr, where π is the output of
Pcommit(1

n,Mcommit).

◦ Resilience: If D accepts at least a fraction 1/2 of its in-
puts then (Pcommit, Peval) has resilience s for partial single-
valuedness s on domain Fr.

◦ Efficiency: Both Pcommit and Peval have two rounds. Pcommit

runs in time log (1/s) · poly(∆, r) and Peval runs in time
(log (1/s))2 ·∆O((log r)2).

Moreover, the (honest) commitment protocol works as follows:
Arthur randomly selects a set S ⊆ Fr/2 of size log (1/s) ·poly(∆, r)
and the honest Merlin replies with evaluations of ĝ on each of the
points in S2 ⊆ Fr. The honest commitment π consists of the set S
and the evaluations of ĝ on S2. Finally, the only way Peval requires
access to D is via blackbox access to the deterministic predicate
that underlies D.

4.2. Targeted generator and reconstruction. In this sec-
tion, we present our targeted HSG construction, which works as
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follows: On input z and a co-nondeterministic circuit D of size m,
it guesses a PCPP (as in Lemma 3.12) for each bit of f(z) and
verifies each PCPP deterministically by enumerating the PCPP
verifier’s randomness. The generator encodes the input z with a
suitable error-correcting code, obtaining Enc(z), and instantiates
the RMV generator with Enc(z) and the PCPPs, outputting the
union of the outputs for each instantiation. If the generator fails,
the reconstruction property for the RMV generator allows for com-
pressing the input z, which is critical for obtaining a bottleneck
reconstructor, and the PCPPs, which leads to a more efficient re-
constructor. The compressor Acomp computes Enc(z) and the hon-
est commitment πz for Enc(z), which is given as input to a prAM
protocol Pdec, in which Merlin, for any given bit position i, sends a
bit b and commits to the low-degree extension of a proof that the
i-th bit of f(z) equals b. Arthur then runs the PCPP verifier using
the evaluation protocol to answer input and proof queries. The
protocol succeeds and outputs b if and only if the PCPP verifier
accepts. This approach yields the following statement:

Theorem 4.5. Let T be a time bound and f a function com-
putable in nondeterministic time T (n). There exists a nondeter-
ministic algorithm H (the generator) that always has at least one
successful computation path per input, and a pair Prec (the re-
constructor) consisting of a probabilistic algorithm Acomp and a
promise Arthur-Merlin protocol Pdec such that for every z ∈ {0, 1}∗
and every co-nondeterministic circuit D that accepts at least half
of its inputs, at least one of the following holds.

(i) H(z,D) outputs a hitting set for D on every successful com-
putation path.

(ii) Pdec(Acomp(z, 1
m), D) computes f(z) with completeness 1 and

soundness 1/3.

The construction also has the following properties:

◦ Compression: On input z of length n and 1m, Acomp outputs
a string of length poly(m, log T (n)).
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◦ Resilient soundness: In both cases (i) and (ii) above, the
probability that Pdec(D,Acomp(1

m, z)) outputs a value other
than f(z) is at most 1/3.

◦ Efficiency: On input z of length n and 1m, Acomp runs in
time n · poly(m, log T (n)). On inputs z of length n and D
of size m, H runs in time poly(T (n),m) and Pdec, given the
output of Acomp(z, 1

m) and an additional index i, computes
the i-th bit of f(z) in time (m · log T (n))O((log r)2) for r =
O(log (T (n))/ logm). In particular, Pdec computes f(z) in
time |f(z)| · (m · log T (n))O((log r)2).

Moreover, H(z,D) only depends on z and the size of D, and the
only way Pdec requires access to D is via blackbox access to the
deterministic predicate that underlies D.

Proof. Fix an input z ∈ {0, 1}n. For f computable in nondeter-
ministic time T (n), we define a language Lf that captures the com-
putation of f on inputs encoded with an error-correcting code. Let
Enc be an ECC with distance parameter 0.1 computable in time
n · polylog(n) as in Section 3.7. Lf consists of strings (z̃, n, i, b),
where n and i are integers given in binary and b ∈ {0, 1}, and
z̃ = Enc(z) for z ∈ {0, 1}n such that f(z)i = b. In particular, Lf is
decidable in nondeterministic time n · polylog(n) + T (n) by guess-
ing z ∈ {0, 1}n, computing Enc(z), checking that Enc(z) = z̃ and
computing f(z)i. Let V be the PCPP verifier given by Lemma 3.12
where we consider z̃ as an implicit input and the remaining part
of the input as explicit, with soundness parameter 0.01. The proof
length of V is at most poly(T (n), n) = poly(T (n)) since T (n) ≥ n.
In the following discussion, we let yi denote any PCPP witnessing
(z̃, n, i, b) ∈ Lf .

We now set parameters for the low-degree extensions that we
need. Recall that we wish to instantiate the RMV generator with
the low-degree extensions of the PCPPs yi as well as the encoded
input z̃. Given our choice of Lf , the proof length of V is poly(T (n)).
To encode the PCPPs, let h = h(m) = m100, r = r(m,n) be the
smallest power of two such that hr is greater than or equal to to the
proof length of V , and p = p(m,n) the smallest prime in the inter-
val [∆100, 2∆100] for ∆ = h ·r, found by exhaustive search. Note, in
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particular, that hr = poly(T (n),m) and r = O(log (T (n))/ logm).
Throughout the rest of the proof, we denote by ŷi the low-degree
extension of each yi with parameters p, h and r.

To obtain the low-degree extension of z̃, we use slightly different
settings. We set h and p as before, but define r′ = r′(m,n) to the
smallest power of two such that hr′ ≥ n. We denote by ẑ the
low-degree extension of z̃ with parameters p, h and r′.

Generator. The generator H, on input z and a co-nondeterministic
circuit D of size m, computes z̃ = Enc(z) and the low-degree ex-
tension ẑ of z̃ with the parameters above, and guesses the value
of v = f(z) and a PCPP yi witnessing (z̃, n, i, vi) ∈ Lf for each
index i of v. Then H verifies that Pr[V z̃,yi(n, i, vi) = 1] = 1 for
every i ∈ [|v|] by deterministically enumerating the poly(T (n),m)
random-bit strings for V . If any of the verifications fail, H fails.
Otherwise, H computes the low-degree extension ŷi of yi. Finally,
H outputs the union of RMV(ẑ) and ∪i∈[|v|]RMV(ŷi), where each
invocation of the RMV generator is instantiated with the same
output length m. Note that the choice of parameters for encoding
ẑ and each ŷi respects the preconditions of Lemma 4.4.

Computing z̃, together with the initial verification step, takes
time poly(T (n),m). Computing the low-degree extensions for the
PCPPs also takes time poly(T (n),m), and each execution of the
RMV generator, including the one for the encoded input ẑ, takes
time pO(r) = poly(T (n),m) and outputs strings of length m. This
culminates in a running time of poly(T (n),m). Finally, since for
the correct output v = f(z) there always exist PCPPs y1, . . . , y|v|
that are accepted with probability 1 by V , there always exists a
nondeterministic guess that leads H to succeed.

Reconstructor. We describe and analyze the pair (Acomp, Pdec). We
use the commit-and-evaluate protocol (Pcommit, Peval) of Lemma 4.4
with fixed input p and resilience parameter s = s(m,n) = (100q)−1,
where q = q(m,n) = polylog(T (n),m) denotes the query complex-
ity of the PCPP verifier V for Lf on implicit input z̃ and explicit
inputs (n, i, b).

On input z and 1m, Acomp first computes z̃ = Enc(z). Then,
Acomp tosses the coins required for Pcommit for the low-degree exten-
sion ẑ of z̃ and outputs a commitment πz for ẑ, which it computes
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by using the random bits to determine the set S and evaluating ẑ on
every point of S2 as in the moreover part of Lemma 4.4. As for pro-
tocol Pdec, on input the commitment πz and an index i, Arthur first
tosses the coins required for executing Pcommit for ŷi. Merlin then
replies with a message for Pcommit, which produces a commitment
πyi , and with a bit b. The honest Merlin should send b = f(z)i and
commit to the low-degree extension of a PCPP yi that witnesses
f(z)i = b, but a dishonest Merlin may send b ̸= f(z)i and/or com-
mit to a different function. Let ỹi denote the function that Merlin
commits to in the first step, which may be accessed with high prob-
ability by executing the evaluation protocol Peval with input πyi .
The restriction of ỹi to [h]r defines a candidate PCPP y′i. Arthur
then runs the PCPP verifier V z̃,y′i(n, i, b), employing Merlin’s help
to evaluate ẑ and ỹi using Peval and the respective commitment
whenever V makes a query to z̃ or y′i. If V

z̃,y′i(n, i, vi) accepts, then
the protocol Pdec succeeds and outputs b, otherwise it fails.

Compression. The output of Acomp consists of a number of points
in Fr′ together with evaluations of ẑ on each point, each of which
can be described with log p = polylog(m, log T (n)) bits. As there
are |S2| = log (1/s) · poly(∆, r) = poly(m, log T (n)) points, the
total output length is poly(m, log T (n)).

Completeness. If D is not hit by H(z,D), then RMV(ẑ) fails to hit
D and for all indices i there exists at least one proof yi that wit-
nesses (z̃, n, i, f(z)i) ∈ Lf and such that RMV(ŷi) fails to hit D. In
that case, an honest Merlin can commit to any such ŷi with proba-
bility 1 by the completeness property of Lemma 4.4. The property
also allows the algorithm Acomp to compute a correct commitment
πz for z̃ with probability 1. Finally, perfect completeness of V and
Peval guarantees that on input πz and an index i, and when consid-
ering an honest Merlin strategy, Pdec succeeds and outputs f(z)i
with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs,
then the resilience property of the commit-and-evaluate protocol
of Lemma 4.4 guarantees that with probability at least 1− s, the
commitment for ỹi is successful, meaning that each execution of the
evaluation protocol with input πyi has partial single-valuedness s.
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For ẑ and the commitment πz, this implies that with probability
at least 1 − s, the evaluation protocol with commitment πz has
soundness s for ẑ, as Acomp always computes the honest commit-
ment. By a union bound, with probability at least 1 − 2s ≥ 0.99,
for sufficiently large m,n, the commit phase is successful for ẑ and
ỹi. Let the first “bad” event be the event that at least one of the
commitments is unsuccessful. If the first “bad” event does not hap-
pen, then by a union bound over the at most q queries made by V
to one of ẑ or ỹi, with probability at least 0.99, every execution of
the evaluation protocol results in the evaluation of the respective
fixed function. Call the complement of this event the second “bad”
event.

Now, the only way Merlin could try to have Arthur output a
wrong value, assuming the first two “bad” events do not happen, is
if he sends some b ̸= f(z)i in the first round. If this happens, then
(z̃, n, i, b) /∈ Lf , and moreover any w̃ such that (w̃, n, i, b) ∈ Lf is at
relative distance at least 0.1 from z̃. Thus the soundness property
of V in Lemma 3.12 guarantees that Pdec fails with probability at
least 0.99. Let the third “bad” event be the event that V outputs
an incorrect value when the first two “bad” events do not occur.
By a union bound over the three “bad” events, all of which have
probability at most 0.99, Pdec(D, (Acomp(1

m, z))) either fails or out-
puts a bit of f(z) with probability at least 2/3. In particular, if
completeness also holds then Pdec(D, (Acomp(1

m, z))) computes in-
dividual bits of f(z) with completeness 1 and soundness 1/3.

Reconstructor efficiency. The running time for Acomp is the time
required to compute z̃ = Enc(z) plus the time required to compute
at most log (1/s) · poly(∆, r) = poly(m, log T (n)) evaluations of ẑ.
Computing z̃ takes time n·polylog(n) = n·polylog(T (n)), and each
evaluation time n · poly(h, log p, r, log n) = n · poly(m, log T (n)).
This results in a total running time of n · poly(m, log T (n)).

As for Pdec, the commit phase takes time log (1/s)·poly(∆, r) =
poly(m, log T (n)) and two rounds of communication. Afterwards,
evaluating each query made by V with Peval takes time (log (1/s))2 ·
∆O((log r)2) = (m · polylog(T (n)))O((log r)2). The verification step
for V takes time poly(m, log T (n)), and it makes at most q =
polylog(m,T (n)) queries, resulting in a total running time of (m ·
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log T (n))O((log r)2). Moreover, because V ’s queries are fully deter-
mined by its input and random bits, each execution of the eval-
uation protocol can be carried out in parallel, and thus the total
number of rounds is four. Collapsing this protocol into a two-round
one using standard techniques (Babai & Moran 1988) leads to a
prAM protocol with running time (m · log T (n))O((log r)2) with the
same completeness and soundness parameters. To compute the en-
tirety of f(z) all at once, we amplify soundness for Pdec by parallel
repetition (Babai & Moran 1988) so that we still get soundness
1/3 for computing every bit of f(z) in parallel. This introduces a
multiplicative overhead of polylog(T (n)) for each execution of Pdec,
resulting in a total running time of |f(z)| · (m · log T (n))O((log r)2).

Input access. We observe that the only information about D re-
quired for computing RMV(ẑ) and RMV(ŷi) is its size m, and
thus the generator H also only requires knowledge of the size of D.
Similarly, the commit-and-evaluate protocol in Lemma 4.4 only re-
quires blackbox access to the deterministic predicate that underlies
the circuit D instead of to the description of D, and thus so does
Pdec since it just passes D as input to the commit-and-evaluate
protocol. □

We make some remarks about Theorem 4.5. First, we could
assume that the honest Merlin strategy in protocol Pdec knows the
value of z. Indeed, if the first “bad” event in the resilient soundness
part of the proof of Theorem 4.5 does not happen, then Merlin is
able to reconstruct ẑ and thus z from πz since ẑ is the only possible
output from running the RMV evaluator with πz as input. Second,
we can amplify the resilient soundness property for the reconstruc-
tor via parallel repetition so that the probability that it outputs
a value outside of {f(z)i,⊥} is at most 2−k; this incurs a multi-
plicative running time and compression length overhead of Θ(k).
Finally, we may view the reconstructor as a regular Arthur-Merlin
protocol by feeding Pdec the input z directly instead of the com-
pressed version πz. Whenever the PCPP verifier queries ẑ, Arthur
can compute the value by himself in time poly(m,n), resulting in a
final running time of poly(n) · (m · log T (n))O((log r)2) for computing
a bit of f(z) or |f(z)| ·poly(n) ·(m · log T (n))O((log r)2) for computing
the entirety of f(z).
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Stronger resilient soundness. We now present a version of
Theorem 4.5 with a stronger resilient soundness property at the
expense of increasing the complexity of the reconstructor from a
bottleneck Arthur-Merlin protocol to a probabilistic algorithm with
parallel access to SAT. While it is possible to obtain a bottleneck
version for this result, it is not necessary since we employ it to ob-
tain our byproducts in the average-case setting, and in this setting
having a bottleneck reconstructor does not lead to any stronger
results.

Corollary 4.6. Let T be a time bound and f a function com-
putable in nondeterministic time T (n). There exists a nondeter-
ministic algorithm H (the generator) that always has at least one
successful computation path per input, and a probabilistic algo-
rithm Arec (the reconstructor) with parallel access to SAT such
that for every z ∈ {0, 1}∗ and every co-nondeterministic circuit D,
at least one of the following holds.

(i) H(z,D) outputs a hitting set for D on every successful com-
putation path.

(ii) Arec(z,D) computes f(z) with probability at least 2/3.

The construction also has the following properties:

◦ Strong resilient soundness: In both cases (i) and (ii) above,
the probability that Arec(z,D) outputs a value other than
f(z) is at most 1/3.

◦ Efficiency: On inputs z of length n and D of size m, H
runs in time poly(T (n),m), and Arec computes any single
bit of f(z) in time poly(n) · (m · log T (n))O((log r)2), where
r = O(log (T (n))/ logm). In particular, Arec computes the
entirety of f(z) in time |f(z)| ·poly(n) ·(m · log T (n))O((log r)2).

Moreover, H(z,D) only depends on z and the size of D, and the
only way Arec requires access to D is via blackbox access to the
deterministic predicate that underlies D.
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The idea behind Corollary 4.6 is for the reconstructor to first
check whether the co-nondeterministic circuit D accepts at least
somewhat less than half of its inputs. This is where the parallel
access to an oracle for SAT comes in; it allows us to distinguish with
high probability between the cases where the fraction of accepted
inputs is, say, at most 1/3 and at least 1/3+ ϵ for some small ϵ. In
the former case, the new reconstructor indicates failure with high
probability. Otherwise, we boost the fraction of accepted inputs
to at least 1/2 by trying D on two independent inputs, and then
run the prAM version of the reconstructor of Theorem 4.5 on the
corresponding co-nondeterministic circuit D′.

Proof (Corollary 4.6). Let H ′ be the generator and P ′
rec the reg-

ular promise Arthur-Merlin protocol version of the reconstructor of
Theorem 4.5 as discussed in the paragraph after its proof, instan-
tiated with function f and amplified to have (resilient) soundness
1/6.

Generator. The generator H, on input z and D of size m, first
constructs the circuit D′ of size 2m as D′(r1r2) = D(r1) ∨ D(r2),
where r1, r2 ∈ {0, 1}m. We then defineH(z,D) as Left(H ′(z,D′))∪
Right(H ′(z,D′)), where Left(S) and Right(S) output the set of the
left and right halves of every string in S, respectively.

Reconstructor. On input (z,D) and an index i, the reconstructor
Arec estimates up to error 1/12 and with probability of failure 1/6
the fraction of inputs accepted by D by evaluating circuit D on
O(1) random inputs of length m. This can be done in probabilis-
tic time poly(m) with O(1) parallel queries to a SAT oracle. If
the estimated fraction is less than 5/12 (the midpoint between 1/3
and 1/2), then Arec declares failure. In parallel, Arec builds the
circuit D′ in the same way as H, selects Arthur’s randomness for
protocol P ′

rec with inputs (z,D′) and i, and makes three queries
to the SAT oracle to obtain the protocol’s output: Whether there
is a Merlin response that leads to success and whether there are
Merlin responses that lead to outputting 0 and 1. If the first query
is answered negatively, or the last two queries give inconsistent an-
swers, then Arec declares failure. Otherwise, Arec outputs whatever
P ′
rec does.
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Strong resilient soundness. Consider two cases in relation to circuit
D: Either D accepts fewer than 1/3 of its inputs, or it accepts at
least 1/3 of its inputs. In the first case, the initial verification fails
with probability at least 5/6. In the second case, D′ accepts at
least 1− (2/3)2 = 5/9 > 1/2 of its inputs. The resilient soundness
property of protocol P ′

rec guarantees that with probability at least
5/6, Arec either fails or outputs f(z) correctly. In either case, it fol-
lows that Arec outputs an incorrect value for f(z) with probability
at most 1/6 < 1/3.

Correctness. If a co-nondeterministic circuitD accepts at least half
of its inputs, so does the circuitD′. Moreover, ifH(z,D) fails to hit
D, then H ′(z,D′) fails to hit D′. The correctness of protocol P ′

rec

then guarantees that there exists a strategy for Merlin that makes
P ′
rec output f(z) with probability 1, and no strategy can make P ′

rec

output an incorrect value for f(z) with probability at least 1/6. In
this case, assuming that the fraction of inputs accepted by D was
estimated correctly initially, It follows that Arec yields f(z) with
probability at least 5/6. Accounting for the probability of failure
of 1/6 for the estimation, we conclude that Arec outputs f(z) with
probability at least 2/3.

Efficiency. The running time of H is asymptotically identical to
that of H ′, and the running time of Arec is polynomial in the run-
ning time of P ′

rec.

Input access. This part follows right away from the corresponding
part of Theorem 4.5. □

Similar to the case of Theorem 4.5, we can amplify the strong
resilient soundness property for the reconstructor of Corollary 4.6
so that the probability that it outputs a value outside of {f(z)i,⊥}
is at most 2−k by running it Θ(k) times in parallel and outputting
the majority answer.

4.3. Derandomization consequences. First, we present a de-
randomization result for prAM that works under hardness against
arbitrary distributions.

Theorem 4.7. There exists a constant c such that the following
holds. Let t, T be time bounds, Π ∈ prAMTIME[t(n)] and {xn}n∈N
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be an ensemble of distributions such that xn is supported over
{0, 1}n and such that for all n, every x in the support of xn satisfies
the promise of Π. Assume that for µ : N → [0, 1) there exists a
length-preserving function f computable in nondeterministic time
T (n) such that for every prAMTIME[t(n)O((log r)2)] protocol P for
r = O(log (T (n))/ log (t(n))), it holds that the probability over
x ∼ xn that P (x) computes f(x) is at most µ(n) for all but finitely
many n. Then, it holds that

Π ∈ Heurx,µNTIME[T (n)c].

Proof. First, notice that if t(n) ≤ log T (n), then the conclu-
sion is trivial and if t(n) ≥ T (n) then the premise is impossible,
so we focus on the case that log T (n) ≤ t(n) ≤ T (n). Let Π ∈
prAMTIME[t(n)] and let PΠ be a two-round protocol for Π run-
ning in time O(t(n)) on inputs of length n. On input x ∈ {0, 1}n,
compute the circuit Dx of Proposition 3.10 with protocol PΠ, and
note that Dx has size O(t(n)2). Then, instantiate the generator H
of Theorem 4.5 with f . Feed H inputs x and Dx and run the usual
derandomization procedure for protocol PΠ with the set output
by H(x,Dx): For each string ρ ∈ H(x,Dx), nondeterministically
guess Merlin’s message yρ and compute the output of PΠ with ran-
domness ρ and message yρ, accepting if and only if PΠ accepts for
every ρ ∈ H(x,Dx). The entire procedure runs in nondetermin-
istic time poly(T (n), t(n)) = O(T (n)c) for some constant c, since
T (n) ≥ t(n).

Assume, with the intent of deriving a contradiction, that with
probability at least µ(n) over x ∼ xn, this derandomization fails
for input x. First, notice that by the perfect completeness of PΠ

it must be the case that such an x lies in ΠN and that PΠ with
input x accepts every string in H(x,Dx). Therefore, Dx acts as
a distinguisher for H(x,Dx), i.e., it rejects every string output by
Dx while accepting at least half of its inputs. By computing Dx

and feeding it to the regular prAM protocol version Prec of the
reconstructor of Theorem 4.5, we obtain a prAM protocol that
computes individual bits of f(x) correctly for every x for which
the derandomization fails, i.e., with probability at least µ(n) over
x ∼ xn. By running this protocol n times in parallel to compute
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every bit of f(x), we obtain a prAM protocol that runs in time

poly(n) · (t(n) · log T (n))O((log r)2) = t(n)O((log r)2)

since t(n) ≥ log T (n) and t(n) ≥ n. This is a contradiction to the
hardness of f so we are done. □

We remark that we require hardness not just against AM pro-
tocols but against prAM protocols, which may not respect the
completeness and/or soundness conditions on some inputs. How-
ever, an input of length n only contributes to the success fraction
µ(n) provided the completeness and soundness conditions are met
on that input.

As a consequence of Theorem 4.7, if the hardness assumption
holds for almost-all inputs, then we obtain full derandomization of
prAM.

Theorem 4.8. There exists a constant c such that the following
holds. Let t, T be time bounds. If there is a length-preserving
function f computable in nondeterministic time T (n) that is hard
on almost-all inputs against prAMTIME[t(n)O((log r)2)], where r =
O(log (T (n))/ log (t(n))), then there exists a targeted hitting-set
generator that achieves the derandomization

prAMTIME[t(n)] ⊆ NTIME[T (n)c].

Proof. The statement follows from Theorem 4.7 by noting that
the assumption that f is hard on almost-all inputs implies that,
for sufficiently large n, f is hard for all possible distributions xn

with success probability µ(n) = 0. In particular, the following
nondeterministic algorithm is a hitting-set generator for prAM:
On input x ∈ {0, 1}n and a co-nondeterministic circuit C of size
m, output H(x,D) where H is the generator of Theorem 4.5 and
D

.
= C(x, ·). This algorithm has a successful computation path

for any input and, on every successful computation path on inputs
where D accepts at least half of its inputs, it outputs a set that
hits D. The running time of the generator is poly(T (n),m), which
results in the derandomization result in the theorem statement
when T (n) ≥ m. □
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T (n) Hard for Derandomization

(1) na nO((log a)2) prAM ⊆ NP

(2) 2polylog(n) nO((log logn)2) prAM ⊆ NTIME[2polylog(n)]

(3) 2n
o(1)

no((logn)2) prAM ⊆ NTIME[2n
o(1)

]

(4) 2poly(n) nb(logn)2 ∀b ∃c prAM ⊆ NTIME[2n
c
]

Table 4.1: Instantiations of Theorem 4.8 at the (1) high end, (2)
middle-of-the-road, (3) low end, and (4) very low end.

By setting parameters in Theorem 4.8, we obtain the deran-
domization results listed on Table 4.1. In particular, the first line
of Table 4.1 establishes Theorem 1.6 and the last line establishes
Theorem 1.7. We now provide more details on how to obtain each
line of Table 4.1:

◦ For the high end, set t(n) = n, in which case r = O(a).
Then, prAMTIME[n] ⊆ NP follows as long as f is hard on
almost-all inputs against prAMTIME[nO((log a)2)]. The result
for prAM follows by padding.

◦ For the middle-of-the-road result, set t(n) = n, in which case
r = polylog(n). Then, prAMTIME[n] ⊆ NTIME[2polylog(n)]
follows as long as f is hard on almost-all inputs against
prAMTIME[nO((log logn)2)]. The result for prAM follows by
padding.

◦ For the low end, let ν = ν(n) = o(1) be such that T (n) = 2n
ν

and set t(n) = n. In this case, r ≤ nν . The containment
prAMTIME[n] ⊆ NTIME[poly(n, 2n

ν
)] follows as long as f

is hard on almost-all inputs against prAMTIME[nO((ν logn)2)].

Since poly(n, 2n
ν
) = 2n

o(1)
and nO((ν logn)2) = no((logn)2), the

result for prAM follows by padding.

◦ For the very low end, set t(n) = nb for a constant b, in which
case r = poly(n). Then, prAMTIME[nb] ⊆ NTIME[2n

c
] for

some constant c follows as long as f is hard on almost-all
inputs against prAMTIME[nO(b(logn)2)]. To get the result for
prAM, it suffices for hardness to hold for all constants b.
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4.4. From refutation to derandomization. In this section,
we show that the second item in Theorem 1.9 implies the third
one.

Here is the outline for the construction of the targeted hitting-
set generator for prAM, assuming a refuter for a function f com-
putable in nondeterministic time na. On input a co-nondetermin-
istic circuit D of size m, we first run the assumed list-refuter on
the input consisting of 1n for a sufficiently large n and the re-
constructor protocol Prec from Theorem 4.5 with D fixed. This
produces a list of strings z1, . . . , zτ , each of length at least n. We
use each of them as an input for the generator H of Theorem 4.5
and output the union of the sets obtained. Provided that n is a
sufficiently large polynomial in m, the reconstructor meets the re-
source bounds for a prAMTICOMP[na+ϵ, nϵ] protocol at length n.
The defining property of the list-refuter then guarantees that for at
least one zi, the reconstructor fails to compute f(zi) (statement (ii)
in Theorem 4.5 does not hold for z = zi). It follows that H(zi, D)
hits D (statement (i) in Theorem 4.5 holds for z = zi).

Theorem 4.9. Let T be a time bound, a a constant and f a func-
tion computable in nondeterministic time na. If for some constant
ϵ ∈ (0, 1) there is a nondeterministic list-refuter R for f against
prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness for f
such that R runs in time T , then there is a targeted hitting-set
generator for prAM that is computable in nondeterministic time
poly(T (poly(n))).

Proof. Let (Acomp, Pdec) be the reconstructor of Theorem 4.5
instantiated with f . We first describe the operation of the targeted
HSG, then we analyze its correctness and running time.

Generator. The generator, on input a co-nondeterministic circuit
D of size m, first sets n = n(m) to be determined later. Let
Acomp(·, 1m) denote algorithm Acomp with 1m fixed as its second in-
put and similarly let Pdec(·, D) be the protocol Pdec with the circuit
D fixed as its second input. The generator then feeds inputs 1n

and (Acomp(·, 1m), Pdec(·, D)) into the refuter R to obtain a list of
inputs (z1, . . . , zτ ). Finally, the generator outputs ∪i∈[τ ]H(zi, D),



58 van Melkebeek and Mocelin Sdroievski

where H is the generator of Theorem 4.5 instantiated with f . Ob-
serve that the generator always has a successful computation path
for every input since so does the refuter R.

Correctness. Note that as long as D accepts at least half of its
inputs, the resilient soundness property in Theorem 4.5 guarantees
that (Acomp(·, 1m), Pdec(·, D)) is sound for f . To ensure correct-
ness of the generator, we set the value of n sufficiently large such
that Acomp(·, 1m) and Pdec(·, D) run in time at most na+ϵ and such
that the output length of Acomp(·, 1m) is at most nϵ. In this case,
the refuter must output, on every accepting computation path, a
list of strings (z1, . . . , zτ ) that contains at least one zi such that
(Acomp(·, 1m), Pdec(·, D)) fails to compute f(zi) with completeness
1 and soundness 1/3. This means that the second item in The-
orem 4.5 fails for z = zi, and therefore the first item must hold,
which implies that our targeted generator hits D.

We now set the value of n. We set n = mk for a constant k
that respects the lower bounds we set in the following discussion.
Recall that, on input z ∈ {0, 1}n, Acomp(·, 1m) outputs a string
of length poly(m, a log n) ≤ (m · log n)k1 for a fixed constant k1.
Moreover, the running time for Acomp(·, 1m) is n·poly(m, a log n) =
n · poly(m, log n) ≤ n · (m · log n)k2 for some constant k2, and
the running time for Pdec(·, D) is na · (m · a log n)O((log r)2) for r =
O(a log n/ logm), and thus there is a constant k3 such that the
running time is at most na · (m · log n)k3·(log (a logn/ logm))2 .

By setting k ≥ 2k1/ϵ, it holds for sufficiently large m and any
input of length ℓ ≥ n = mk that the string output by Acomp(·, 1m)
has length at most ℓϵ. Similarly, setting k ≥ 2k2/ϵ, it holds for for
sufficiently large m and any input of length ℓ ≥ n = mk that the
running time of Acomp(·, 1m) is at most ℓ1+ϵ ≤ ℓa+ϵ. Finally, setting
k ≥ 2k3 ·(log (ak))2/ϵ, which holds for sufficiently large constant k,
guarantees that Pdec(·, D) runs in time at most ℓa+ϵ for ℓ ≥ n = mk

and sufficiently large m.

Running time. Let the constant c denote the description length of
(Acomp, Pdec), it follows that (Acomp(·, 1m), Pdec(·, D)) has descrip-
tion length at most m′ = c + Θ(m logm) = Θ(m logm). Com-
puting the list of inputs (z1, . . . , zτ ) using the refuter R takes time
T (n+m′) = T (poly(m)), which also serves as an upper bound for
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the length of each zi. Finally, computing H(zi, D) for all zi takes
time poly(T (poly(m))), which dominates the running time for the
generator. □

Theorem 4.9 scales very smoothly with respect to the time T for
computing the refuter. In particular, it allows us to obtain equiva-
lences at the low end of the derandomization spectrum. Apart from
the time T for computing the refuter, one can also vary the time for
computing f as well as the compression length for the bottleneck
protocols. Increasing the time required for computing f leads to a
similar increase in the time bound for the class against which we
require refuters. Decreasing the compression length requires the
targeted HSG to run the refuter with a larger input length n. Due
to the sub-optimal scaling of the RMV reconstructor, our approach
does not work for equivalences at the low end in either direction.
It does work for intermediate ranges, e.g., for running time bounds
of the form 2polylog(n) and compression lengths of the form 2(logn)

ϵ

for ϵ ∈ (0, 1).

Theorem 4.10. Let a be a constant and f a function computable
in nondeterministic time 2(logn)

a
. If for some constant ϵ ∈ (0, 1)

there is a nondeterministic list-refuter R for f against protocols
in prAMTICOMP[2(logn)

a+ϵ
, 2(logn)

ϵ
] with promised soundness for f

such that R runs in time 2polylog(n), then there is a targeted hitting-
set generator for prAM that is computable in nondeterministic time
2polylog(n).

5. Consequences of derandomization

In this section, we prove the directions of derandomization to hard-
ness and derandomization to targeted HSGs of our near-equiva-
lences, as well as the direction of targeted HSGs to refutation of
our equivalence.

5.1. Hardness on almost-all inputs. We start with the impli-
cation of derandomization to hardness: If prAM ⊆ NP then for all
constants c there is a length-preserving function f computable in
nondeterministic polynomial time (with a few bits of advice) that is
hard on almost-all inputs against AMTIME[nc]. The basic idea is
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that, under the derandomization hypothesis, every (single-bit) AM
protocol that runs in time nc can be simulated by a single-valued
nondeterministic machine without too much time overhead. If we
have as advice whether a particular nondeterministic machine is
single-valued or not at input length n, we can negate its input
efficiently, obtaining a function f computable in nondeterministic
time poly(n) that is almost-all inputs hard against AM protocols
that run in time nc. We now state Proposition 1.5 formally.

Proposition 5.1 (Formal version of Proposition 1.5). Assum-
ing prAM ⊆ NP, for every constant c and increasing function
α : N → N there exists a length-preserving function f computable
in nondeterministic polynomial time with α(n) bits of advice that
is hard on almost-all inputs against AMTIME[nc].

Proof. Assume that prAM ⊆ NP and let c′ be a constant to be
defined later (which depends on c). The basic idea for the function
f is as follows: On an input z of length n, we set its i-th output bit
(for 1 ≤ i ≤ min(n, α(n))) to the opposite of the i-th bit output
by the i-th nondeterministic Turing machine Ni on input z (if Ni

is single-valued and halts in at most nc′+2 steps at input length n),
and otherwise we set it to 0. Formally, on input z of length n and
for 1 ≤ i ≤ n

f(z)i =


1−Ni(z)i if i ≤ α(n), Ni is single-valued, and

Ni halts in at most nc′+2 steps,

0 otherwise.

Note that f is computable by a single-valued nondeterministic
machine running in time O(nc′+3) with α(n) bits of advice (in-
dicating whether Ni is single-valued and halts in at most nc′+2

steps at input length n for 1 ≤ i ≤ α(n)). The nondeterminis-
tic machine computing f is only guaranteed to be single-valued
when given the correct advice string. This holds because, when
Ni is single-valued, computing 1 − Ni(z)i can be done by guess-
ing a path on which Ni succeeds, which must result in the unique
value Ni(z), and then outputting the opposite of the i-th bit of
that. Assume, with the intent of deriving a contradiction, that
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there exists an AM protocol P that runs in time O(nc) and com-
putes f on an infinite set of inputs Z ⊆ {0, 1}∗. Consider the
protocol P ′ that takes as regular input a triple (z, i, b) and accepts
iff the i-th bit of the output of protocol P with input z equals b
(if i > |z| then P ′ rejects). Note that P ′ induces a language L in
AMTIME[nc]. Since prAM ⊆ NP and prAMTIME[nc] has a com-
plete problem under linear-time reductions, it follows that there
exists a constant c′ such that AMTIME[nc] ⊆ NTIME[nc′ ]. While
our argument only requires that there exists a constant c′ such that
AMTIME[nc] ⊆ NTIME[nc′ ], we use the assumption prAM ⊆ NP
instead of AM ⊆ NP since it is unknown whether AMTIME[nc]
contains a complete problem under linear-time reductions.

Let N be a nondeterministic machine that runs in time nc′

and computes L. Note that for every z ∈ {0, 1}∗ and 1 ≤ i ≤
|z|, N(z, i, b) = 1 for exactly one b ∈ {0, 1}, and when z ∈ Z,
N(z, i, b) = 1 if and only if f(z)i = b. Now consider the following
procedure N ′: On input z ∈ {0, 1}n, guess a value bi and a witness
yi for each 1 ≤ i ≤ n and run N(z, i, bi; yi). If for all i, N(z, i, bi; yi)
accepts, N ′ succeeds and prints the concatenation of the guessed
bi’s, otherwise N

′ fails. Note that N ′ is a nondeterministic machine
that runs in time O(nc′+1). Moreover, by our assumption that P
is an AM protocol and that prAM ⊆ NP, N ′ is single-valued on
every input. By construction, the single value equals f(z) for all
z ∈ Z.

Let i be the index of N ′ in our enumeration, i.e., Ni = N ′.
By definition of f , for every input z ∈ {0, 1}∗ of sufficiently large
length n ≥ α−1(i) (so that it has a chance to negate the output of
Ni), and in particular for all sufficiently large z ∈ Z, we have that
f(z)i = 1−N ′(z)i = 1− f(z)i, a contradiction. □

This result extends to other parameter settings. As an example,
we state a version of Proposition 5.1 at the very low end.

Proposition 5.2. Assuming AM ⊆ NTIME[2n
c
] for some con-

stant c, then for every increasing function α : N → N there exists a
function f computable in nondeterministic exponential time with
α(n) bits of advice that is hard on almost-all inputs against AM
protocols running in polynomial time.
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Proof Sketch. The proof is essentially identical to that of
Proposition 5.1, but with a different time bound. Since AM ⊆
NTIME[2n

c
], the diagonalizing machine N needs to diagonalize

against single-valued nondeterministic algorithms running in time

2n
c′
for some fixed constant c′ > c, and thus we get a nondetermin-

istic algorithm that runs in time O(2n
k
) for any constant k > c′.□

We conclude this section by pointing out the remaining gaps be-
tween the direction from hardness to derandomization and the re-
verse direction in the setting of hardness on almost-all inputs. The
first gap lies in the fact that in the derandomization-to-hardness di-
rection, the function f requires a few bits of advice that we don’t
know how to handle in the other direction. A subtler gap re-
lates to the difference between AM and prAM. In the hardness-
to-derandomization direction, we require hardness against prAM
protocols, which may not obey the AM promise on all inputs. In
the derandomization-to-hardness direction, we can only guarantee
hardness against AM protocols, which necessarily obey the AM
promise on all inputs. We remark that a similar problem shows
up in other hardness vs. randomness tradeoffs for AM (Gutfre-
und et al. 2003; Shaltiel & Umans 2009). For example, to con-
clude almost-everywhere derandomization of AM, Gutfreund et al.
(2003) require hardness of EXP against AM protocols for which
completeness only holds infinitely-often. Finally, we also note
that, while Chen & Tell (2021) only state their derandomization-
to-hardness result for BPP, in that setting one can actually achieve
hardness against prBPP (where the probabilistic algorithm might
not have a high-probability output for every input).

5.2. Targeted hitting-set generator. In this section, we prove
Theorem 1.10 along the lines of the intuition provided in Sec-
tion 2.2. We make use of a win-win argument: Either the EXP ̸=
NEXP hardness assumption holds, in which case there is a regular
(oblivious) HSG that guarantees the derandomization result (Im-
pagliazzo et al. 2002). Or else we may assume that EXP = NEXP,
which allows us to construct a function f that is hard against prAM
protocols by diagonalization, with which we then instantiate The-
orem 4.5 to obtain the targeted HSG.
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We need the following result, which follows from the “easy-
witness” method.

Lemma 5.3 (Impagliazzo et al. 2002). If NEXP ̸= EXP then
prAM ⊆ io-NTIME[2n

ϵ
]/nϵ for every ϵ > 0. Moreover, there exists

a (regular) HSG that achieves this derandomization.

We now prove Theorem 1.10, which we restate here for conve-
nience.

Theorem 1.10 (Restated). Assume prAMTIME[2polylog(n)] ⊆
io-NEXP, then there exists a targeted hitting-set generator that
yields the simulation prAM ⊆ io-NTIME[2n

c
]/nϵ for some constant

c and all ϵ > 0.

Proof. If EXP ̸= NEXP, we are done by Lemma 5.3. Other-
wise, it holds that NEXP = EXP. We use this collapse to construct
a length-preserving multi-bit function f computable in exponential
time that is hard against prAMTIME[n(logn)3 ]. We then instantiate
Theorem 4.7 with f to obtain the targeted HSG. Hardness against
protocols running in this time bound suffices along the lines of
Theorem 1.7.

Before constructing f , we make an observation: Due to the
instance-wise nature of our construction, to obtain an infinitely-
often derandomization result using Theorem 4.7 it suffices to have
an infinitely-often all-inputs hardness assumption. More precisely,
we require the following: For every prAMTIME[n(logn)3 ] protocol
P , there exist infinitely many input lengths n such that P fails to
compute f for every z of length n. Thus, we construct a function
f with this requirement in mind.

Under the hypothesized derandomization assumption and be-
cause prAMTIME[n(logn)3 ] has a complete problem under linear-
time reductions, it follows that there exists a constant k such that
prAMTIME[n(logn)3 ] ⊆ io-NTIME[2n

k
]. Since NTIME[2n

k
] also

has a complete problem under linear-time reductions, under the
assumption EXP = NEXP, there exists a constant k′ such that

prAMTIME[n(logn)3 ] ⊆ io-DTIME[2n
k′
]. In that case, it suffices to

diagonalize against fixed-exponential time machines to construct
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f . Similar to Proposition 5.1, we define the i-th bit of f(z) to
be the opposite of the i-th bit output by Mi(z) when it runs for

at most 2|z|
k′+1

steps, where Mi is the i-th deterministic Turing
machine. Formally, on input z of length n and for 1 ≤ i ≤ n,

f(z)i =

{
1−Mi(z) if Mi(z) halts in at most 2n

k′+1
steps,

0 otherwise.

Note that f is computable by a deterministic machine running

in time O(n · 2nk′+1
).

Assume, with the intent of deriving a contradiction, that there
exists a prAMTIME[n(logn)3 ] protocol P such that for almost-all
input lengths n, P computes f on at least one input z ∈ {0, 1}n,
and call the set of inputs where P computes f correctly Z. Again,
similar to the proof of Proposition 5.1, P induces a problem Π in
prAMTIME[n(logn)3 ], and by our assumptions, there is a language

L ∈ DTIME[2n
k′
] such that L and Π agree on infinitely many input

lengths. Let M be a deterministic Turing machine running in time

O(2n
k′
) that decides L. Recall that yes-instances of Π are triples

(z, i, b) such that z ∈ Z and f(z)i = b while no-instances have
z ∈ Z and f(z)i ̸= b. Let M ′ be the deterministic Turing machine
that, on input z of length n, outputs M ′(z) of length n such that
M ′(z)i = 1 if and only if M accepts (z, i, 1) for 1 ≤ i ≤ n. Note

that M ′ runs in time 2n
k′+1

. By construction and our assumption
on P , for infinitely many input lengths n there exists at least one
z ∈ Z ∩ {0, 1}n such that M ′(z) = f(z). Let i be the index of M ′

in our enumeration. By definition of f , for every input z ∈ {0, 1}∗
of sufficiently large length n ≥ i (so that it has a chance to negate
the output of M ′), and in particular for all sufficiently large inputs
z ∈ Z, we have that f(z)i = 1 −M ′(z)i = 1 − f(z)i, which gives
us the sought contradiction.

Under the hypotheses of the theorem, we have constructed a
length-preserving function f that is computable in exponential
time T with the property that for every prAMTIME[n(logn)3 ] pro-
tocol P there are infinitely many lengths n such that on every
input z ∈ {0, 1}n, P fails to compute f . We instantiate Theo-
rem 4.7 with f to obtain a targeted HSG for prAM that, on input
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z ∈ {0, 1}n and a co-nondeterministic circuit D of size m, runs in
time poly(T (n),m) and works for all inputs z of infinitely-many
input lengths n, resulting in a fixed-exponential time nondeter-
ministic simulation for prAM that works for infinitely many input
lengths. □

5.3. Refuters from targeted hitting-set generators. In this
section, we prove that the third item in Theorem 1.9 implies the
first one. In fact, we establish something stronger: Assuming the
existence of a targeted hitting-set generator as in the third item, ev-
ery function f that is computable in nondeterministic polynomial-
time and has a probabilistic polynomial-time refuter against bottle-
neck protocols with imperfect completeness and promised sound-
ness for f , also has a nondeterministic polynomial-time list-refuter
against the same class but with the standard perfect completeness
level (Theorem 5.4). The first item then follows as the identity
function has such a probabilistic refuter (Proposition 5.5).

A probabilistic refuter is a refuter that produces a counterex-
ample with constant probability over its internal randomness. In
the case of the class prAMTICOMP[t(n), s(n)] with imperfect com-
pleteness level c = 2/3 (and default soundness level s = 1/3), this
means the following: On input 1n and a pair (Acomp, Pdec) con-
sisting of a probabilistic algorithm Acomp and a prAM protocol
Pdec, a probabilistic refuter for a function f outputs a string z of
length at least n such that the following holds with probability
Ω(1). If on inputs of length ℓ ≥ n both phases of (Acomp, Pdec) run
in time t(ℓ) and the output length of Acomp is bounded by s(ℓ),
then (Acomp, Pdec) fails to compute f on input z with completeness
2/3 and soundness 1/3. Note that if (Acomp, Pdec) is promised to be
sound for f and to obey the time and compression requirements,
then it must be the case that (Acomp, Pdec) fails to compute f(z)
with completeness 2/3.

Here is the intuition for the stronger statement (Theorem 5.4).
To derandomize the given probabilistic refuter, we set up a co-
nondeterministic circuit D that verifies that a random bit-string
leads to a counterexample for a given bottleneck Arthur-Merlin
protocol (Acomp, Pdec) with promised soundness for f . On input a
string (r1, r2, r3) where r1 represents the randomness for the prob-
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abilistic refuter Rpr, r2 the randomness for Acomp and r3 the ran-
domness for Pdec, D first computes the candidate counterexample z
by running Rpr and uses co-nondeterminism to determine f(z). D
then co-nondeterministically verifies that all possible replies from
Merlin would lead Pdec with input Acomp(z, r2) and randomness
r3 to fail or output something other than f(z). If (Acomp, Pdec)
is sound for f and obeys the time and compression requirements,
the only way the refuter can succeed is when (Acomp, Pdec) fails the
completeness requirement on z. Since the refuter succeeds with
probability Ω(1) and the completeness level is bounded below 1,
this means that the circuit D accepts a Ω(1) fraction of its inputs.
Thus, when we apply the assumed targeted hitting-set generator
to D, it has to output at least one (r1, r2, r3) on which D succeeds.
For such a (r1, r2, r3), (Acomp, Pdec) does not have perfect complete-
ness on the input z that Rpr produces with random-bit string r1
because (Acomp, Pdec) does not output f(z) on random bit-string
(r2, r3). Thus, outputting the strings z over all (r1, r2, r3) that
the targeted HSG produces, yields the desired nondeterministic
polynomial-time list-refuter.

Note the increase in the completeness level from c = 2/3 for a
probabilistic refuter to c = 1 in the corresponding item for a non-
deterministic refuter as in Section 3.5. On the one hand, the gap
in completeness for the counterexample output by a probabilistic
refuter allows the co-nondeterministic circuit D to accept a con-
stant fraction of its inputs, which is needed to guarantee success for
the derandomization. On the other hand, the nondeterministic re-
futer we obtain from the probabilistic refuter only guarantees that
the completeness on the counterexample is not perfect. The latter
guarantee suffices for the direction from refutation to derandom-
ization because the reconstructor in Theorem 4.5 has perfect com-
pleteness. The resilient soundness property of the reconstructor in
Theorem 4.5 ensures that we only need to worry about refuting
pairs (Acomp, Pdec) that are sound for f .

Theorem 5.4. Assume that there exists a targeted hitting-set
generator for prAM computable in nondeterministic time T . Let
f be a function computable in nondeterministic polynomial time
that has a probabilistic polynomial-time refuter against the class of
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prAMTICOMP[t(n), s(n)] protocols with promised soundness for
f . Then there exists a nondeterministic list-refuter R for f against
prAMTICOMP[t(n), s(n)] protocols with promised soundness for
f . The running time for R is T (poly(m, t(poly(n)))), where m de-
notes the description length of the protocol to be refuted, and n
denotes the lower bound for the length of the counterexamples.

We observe that in case the function f in Theorem 5.4 is com-
putable in polynomial time, as is the case with identity, the list-
refuter R runs in polynomial time in its input length, i.e., in time
poly(m,n).

Proof (Theorem 5.4). Let H be the hypothesized targeted
HSG. H always has an accepting computation path for any in-
put, and on input a co-nondeterministic circuit D of size m′ that
accepts at least 1/2 of its inputs, it runs in time T (m′) and out-
puts, on every accepting computation path, a set S that hits D.
Let Rpr be the hypothesized probabilistic refuter for f against
prAMTICOMP[t(n), s(n)] protocols with promised soundness for
f , and assume w.l.o.g. that Rpr only outputs strings of length at
least n and succeeds in outputting a counterexample with constant
probability δ > 0.

We now describe the nondeterministic list-refuter R. The in-
put is 1n and a pair (Acomp, Pdec) consisting of a probabilistic
algorithm Acomp and a prAM protocol Pdec. R constructs a co-
nondeterministic circuit D as follows: On input a random string
(r1, r2, r3), which is interpreted as randomness for Rpr, random-
ness for Acomp and randomness for Pdec, respectively, D first runs
Rpr(1

n, (Acomp, Pdec); r1) to obtain an input z of length ℓ with n ≤
ℓ = O(poly(n)). Then, using the fact that f is computable in
polynomial time on a nondeterministic machine, D computes f(z)
using co-nondeterminism. Let A′

comp and P ′
dec denote the versions

of Acomp and Pdec, respectively, clocked to run in time t. Finally,
the circuit D computes A′

comp(z, r2), co-nondeterministically veri-
fies that there is no Merlin message that would lead P ′

dec with input
A′

comp(z, r2) and randomness r3 to output f(z), and accepts if and
only if the verification succeeds.

Before moving further, we observe that, if the pair (Acomp, Pdec)
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is sound for f and obeys the running time and compression bounds,
then D accepts at least a constant fraction of its inputs. This
holds because for such n, Rpr(1

n, (Acomp, Pdec); r1) outputs, with
probability at least a constant δ > 0 over a random choice of r1,
an input z of length ℓ ≥ n such that (Acomp, Pdec) fails to compute
f(z) with completeness 2/3. For those z, it holds for a fraction of
at least 1/3 of strings (r2, r3) that there is no Merlin message that
leads Pdec(Acomp(z, r2); r3) to output f(z). Thus, with probability
at least δ′ = δ/3, D accepts a triple (r1, r2, r3).

After constructing D, R constructs a new co-nondeterministic
circuit D′ that is composed of k independent copies of D and that
accepts if and only if at least one of the copies accepts, where k
is a constant to be set. R then computes H(D′), obtaining a set
S of strings of the form ρ = (ρ1, ρ2, . . . , ρk), where each ρi is of
the form (r1, r2, r3). Finally, R outputs, for all r1 that appear in
S, Rpr(1

n, Acomp, Pdec; r1). R always has an accepting computation
path for every input since so does the generator H. Recall that if
(Acomp, Pdec) is sound for f , then the acceptance probability of D
is at least δ′. This means that the acceptance probability of D′ is
at least 1− (1− δ′)k ≥ 1− exp(−δ′k), which can be made at least
1/2 by setting k = Θ(1/δ). In this case, H(D′) outputs a hitting-
set for D′ on every accepting computation path. Let ρ be a string
that hits D′. In that case, there must be some ρi = (r1, r2, r3) that
hits D, which means that Pdec fails to compute f(z) with perfect
completeness on input z = Rpr(1

n, Acomp, Pdec; r1). As such a z is
on the list output by R on every accepting computation path, R
is a list-refuter for f against prAMTICOMP[t(n), s(n)] protocols
with promised soundness for f .

Let m denote the description length of (Acomp, Pdec). The co-
nondeterministic circuit D′ constructed by R on inputs 1n and
(Acomp, Pdec) has size poly(m,n, t(poly(n))) = poly(m, t(poly(n)))
since t(n) ≥ n. Thus, computing H on input D′ takes time
T (poly(m, t(poly(n)))). Finally, R needs to compute the output of
Rpr(1

n, Acomp, Pdec; r1) for at most T (poly(m, t(poly(n)))) strings
r1, and each such execution takes time poly(m,n). The final run-
ning time is therefore T (poly(m, t(poly(n)))) + poly(m,n), which
is T (poly(m, t(poly(n)))) since T (n) ≥ n. □
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We now exhibit a probabilistic polynomial-time refuter for the
identity function against bottleneck protocols with imperfect com-
pleteness. The intuition is that strings z for which a bottleneck
protocol computes identity correctly with completeness 2/3 and
soundness 1/3 can be described succinctly via the output of the
compression phase. Thus, the protocol must fail to compute iden-
tity for most z, as most z do not admit a succinct representation.

Proposition 5.5. For all constants ϵ ∈ (0, 1), there exists a prob-
abilistic polynomial-time refuter for the identity function against
prAMTICOMP[∞, nϵ] with completeness 2/3 and soundness 1/3.

Proof. Fix ϵ ∈ (0, 1). The probabilistic polynomial-time re-
futer Rpr, on input 1n and a pair (Acomp, Pdec) of description length
m just outputs a random string z of length ℓ = Θ(n) to be defined
precisely in the next paragraph.

Assume that (Acomp, Pdec) computes the identity function with
completeness 2/3 and soundness 1/3 on an input z of length ℓ,
and that |Acomp(z)| ≤ ℓϵ. By an averaging argument, there exists
a random sequence r1 for Acomp such that the following property
holds with probability at least 1/3 over a random sequence r2 for
Pdec: Any reply from Merlin for the protocol Pdec(Acomp(z; r1); r2)
leads to either acceptance or the correct output z, and there exists
a Merlin reply that leads to the correct output z. If we let πz =
Acomp(z; r1) and fix (Acomp, Pdec), we can describe z as one of the
only three possible outputs of Pdec(πz) for which the property above
holds. This description for z has length at most ℓϵ + c for some
constant c, and thus at most 2ℓ

ϵ+c+1 out of the 2ℓ strings of length
ℓ can have such a short description. We then set ℓ = max(n, n0) =
Θ(n), where n0 is the smallest integer such that 2n

ϵ
0+c+1/2n0 ≤

1/3. With ℓ as the output length, the probability that the refuter
succeeds is at least 2/3. □

For completeness, as we now have all the steps involved in The-
orem 1.9, we tie them together in a formal proof.

Proof (Theorem 1.9). The implication 1 =⇒ 2 holds triv-
ially by taking the identity for f . The implication 2 =⇒ 3 is
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Theorem 4.9. The implication 3 =⇒ 1 follows by combining The-
orem 5.4 and Proposition 5.5 with polynomial time bounds. □

A similar proof with bounds as in Theorem 4.10 establishes the
following middle-of-the-road equivalence.

Theorem 5.6. The following are equivalent:

(i) For some constant ϵ ∈ (0, 1), there exists a nondeterministic
2polylog(n)-time list-refuter for the identity function against
prAMTICOMP[n · 2(logn)ϵ , 2(logn)ϵ ] protocols with promised
soundness for identity.

(ii) For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a func-
tion f computable in nondeterministic time 2(logn)

a
that ad-

mits a nondeterministic polynomial-time list-refuter against
the class of prAMTICOMP[2(logn)

a+ϵ
, 2(logn)

ϵ
] protocols with

promised soundness for f .

(iii) There exists a targeted hitting-set generator that achieves
the derandomization prAM ⊆ NTIME[2polylog(n)].

6. Derandomization under uniform worst-case
hardness

Our technique also leads to new results in the traditional uniform
worst-case setting. Under worst-case hardness against probabilis-
tic algorithms with non-adaptive oracle access to SAT, we obtain
average-case derandomization results for prAM. Moreover, by fur-
ther strengthening the hardness assumption, we may also conclude
full (infinitely-often) derandomization of prAM. As previously
mentioned, these results extend to average-case derandomization
of prBPPSAT

|| .

6.1. Average-case simulation. In this section, we develop our
average-case derandomization results for prAM under worst-case
uniform hardness assumptions (where hardness is against the class
BPTIMESAT

|| ). Our results work as follows: Assume there exists
a hard language L ∈ NTIME[T (n)] ∩ coNTIME[T (n)]. To deran-
domize some prAM protocol P on input length n, we first consider
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the hard language L at some suitable input length ℓ, which de-
pends on the hardness of L (for Theorem 1.11, for example, we
take ℓ = Θ(log n)). Then we let f be the function that maps any
input x ∈ {0, 1}n to the truth table of L at input length ℓ. It
follows from the complexity of L that f is computable in nonde-
terministic time 2ℓ ·T (ℓ). Finally, we instantiate our targeted HSG
construction H with f and use it to derandomize P .

For the reconstruction, we make use of the strong resilient
soundness property of Corollary 4.6. If the average-case deran-
domization fails, to decide whether z of length ℓ is in L, we first
sample multiple candidate “good” strings x that hopefully lead to
a distinguisher Dx for the generator (enough so that we expect at
least one “good” x with high probability). Then, we run the re-
construction for all of them, accepting if and only if at least one
of those outputs 1. By the strong resilient soundness property and
amplification, with high probability every execution either fails or
outputs f(x)z = L(z), and in the high probability case that we
sample at least one “good” x, some execution outputs L(z), mean-
ing we can compute L efficiently on input length ℓ.

First, we present such a result at the high end of the deran-
domization spectrum.

Theorem 6.1 (Strengthening of Theorem 1.11). If NTIME[2an]
∩ coNTIME[2an] is not included in BPTIME[2(log(a+1))2n]SAT|| for
some constant a > 0, then for all e > 0 it holds that

prAM ⊆ io-Heur1/neNP

prBPPSAT
|| ⊆ io-Heur1/nePSAT

|| .

Proof. We first argue the result for prAM. Consider deran-
domizing a prAM protocol PΠ for a problem Π running in time
O(nk) for some constant k. Let S be an O(ns)-time sampler for a
distribution in {0, 1}n and e be a constant such that we want to
“fool” S with probability at least 1 − 1/ne. Let f be a function
mapping every z ∈ {0, 1}n to the truth table of the hard language
L ∈ NTIME[2an] ∩ coNTIME[2an] at input length ℓ = ℓ(n) =
Θ(log n) to be set precisely later. Note that f is computable in
nondeterministic time T (n) = 2(a+1)ℓ. Instantiate the generator H
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of Corollary 4.6 with f , run H on input z = 0n (recall f maps every
string in {0, 1}n to the same truth table) and co-nondeterministic
circuit size m = O(n2k), and use it to attempt to derandomize PΠ

in nondeterministic time poly(T (n), n2k) = poly(n).

If the derandomization fails for almost-all input lengths, even
heuristically, then for almost-all input lengths n, S(1n) outputs
with probability at least 1/ne a string x ∈ {0, 1}n such that the
simulation errs on x, i.e., the circuit Dx obtained from x and PΠ

using Proposition 3.10 is a distinguisher for H(0n, Dx). To com-
pute L at input length ℓ, it then suffices to do the following: On
input w ∈ {0, 1}ℓ, first use S to sample t = Θ(ne) inputs x1, . . . , xt

and use these to construct a list Dx1 , . . . , Dxt of candidate distin-
guishers for H(0n, Dx). With high probability, this list contains an
actual distinguisher for the generator. Let Arec be the algorithm
of Corollary 4.6, amplified by parallel repetition to have negligible
soundness 2−n, i.e., with probability at least 1− 2n, the algorithm
outputs either ⊥ or a correct evaluation of f . Finally, run Arec

with inputs 0n, index w (recall f(0n) equals the truth table of L
at input length ℓ) and Dxi

for every sampled input xi, and ac-
cept if and only if some execution outputs 1. To see that this is
correct, note that by a union bound, with high probability every
execution of Arec is successful in the sense that it either outputs
f(0n)w = L(w) or ⊥. Conditioned on there being a distinguisher
in the list, we are guaranteed to output the correct value of L(w)
with high probability.

The running time for the reconstruction is O(ne+s) for gen-
erating the t = Θ(ne) samples, and O(n2k)O((log r)2) per sample
for running Arec, where r = O(((a + 1)ℓ)/(k log n)), for a total
of O(ne(ns + nO(k(log r)2))). By setting ℓ = dk log n, we have that
r = O(d(a + 1)) and we can upper bound the total running time
by nO(e+s+k(log(d(a+1)))2). In terms of the input length ℓ, this is
2(log(a+1))2ℓ when d is a sufficiently large constant depending on
a, e, s. This concludes the argument for prAM.

Now, we argue the result for prBPPSAT
|| . To do so, we use the

containment prBPPSAT
|| ⊆ PprAM

|| (Chakaravarthy & Roy 2011).
It suffices to show that every deterministic polynomial-time al-
gorithm with non-adaptive oracle access to a paddable prAM-
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complete problem Γ ∈ prAMTIME[n] can be simulated by deter-
ministic polynomial-time algorithms with non-adaptive oracle ac-
cess to SAT. LetM be a deterministic algorithm with non-adaptive
oracle access to Γ running in time O(nb) and S be an O(ns)-time
sampler that we want to “fool” with probability at least 1− 1/ne.
Since Γ is paddable, we may assume that every query made by M
on inputs of length n is of length O(nb) (at the expense of increas-
ing its running time to O(n2b)). To simulate M on an input x of
length n, let f be a function mapping every z ∈ {0, 1}n to the
truth table of L at input length ℓ = ℓ(n) = Θ(log n). As before,
f is computable in nondeterministic time 2(a+1)ℓ. Instantiate the
generator H of Corollary 4.6 with f and input z = 0n and use
it to derandomize Γ at input length O(nb) in order to obtain a
PSAT
|| simulation for M . Whenever M with input x queries Γ, we

instead query the SAT oracle whether the nondeterministic simu-
lation of Γ using H with input 0n and co-nondeterministic circuit
size m = O(n2b) accepts. This simulation runs in PSAT

|| since M is
non-adaptive.

If this derandomization fails on almost-all input lengths n, then
as before we can use S to sample t = Θ(ne) inputs x1, . . . , xt such
that with high probability the simulation fails on some xi. Let
Q(M,x) be the set of queries to Γ made by M on input x. If the
simulation fails on xi, it must be the case that some query q in
Q(M,xi) (and also in the promise of Γ) was answered incorrectly.
Since the protocol for Γ has perfect completeness, it must be the
case that q ∈ ΠN and that Dq is a distinguisher for H(0n, Dq).
The reconstruction is as before though we use the sets Q(M,xi)
for i ∈ [t] to obtain the list of candidate generators, and correctness
follows by the same argument as in the prAM case. The running
time analysis is similar to the one for the case of prAM. □

At the low end, we are able to obtain a slightly stronger average-
case derandomization result. Instead of having a different simula-
tion for each sampler, we obtain a single simulation (depending on
the problem in prAM/prBPPSAT

|| and the constant ϵ) that “fools”
every polynomial-time sampler.

Theorem 6.2. If NEXP∩ coNEXP ̸⊆ BPTIME[nb((logn)2)]SAT|| for



74 van Melkebeek and Mocelin Sdroievski

all b > 0, then for every ϵ > 0 and all e > 0

prAM ⊆ io-Heur1/neNTIME[2n
ϵ

]

prBPPSAT
|| ⊆ io-Heur1/neDTIME[2n

ϵ

]SAT|| .

Moreover, for any Π in prAM or prBPPSAT
|| and ϵ > 0, there is a

single simulation that works for all e > 0.

Proof. We begin with the argument for prAM. Let L be a
hard language in NTIME[2n

a
] ∩ coNTIME[2n

a
] for some constant

a ≥ 1. Consider derandomizing a protocol PΠ for a problem Π ∈
prAMTIME[nk] for constant k. Let ϵ > 0 and f be the function
mapping every z ∈ {0, 1}n to the truth table of L at input length
ℓ = nϵ. Note that f is computable in nondeterministic time T (n) =
2n

aϵ
. Instantiate the generator H of Corollary 4.6 with f , run H on

input z = 0n and co-nondeterministic circuit size m = O(n2k), and
use it to derandomize PΠ. The simulation runs in nondeterministic

time poly(T (n), n2k), which is at most 2n
ϵ′
for any ϵ′ > 0 by taking

a sufficiently small ϵ > 0.

The reconstruction is identical to that of Theorem 6.1 but
with ℓ = nϵ. The running time is O(ne+s) to generate the sam-
ples and (n2k)O((log r)2) per sample for running Arec, where r =
O(log (T (n))/ log n), for a total of O(ne(ns + nO((log r)2))). Given
our parameter choices, r = O(naϵ), and the expression is upper
bounded by O(ne(ns+nO((aϵ logn)2))). As the input length is ℓ = nϵ

for constant ϵ, there exists a constant b (depending on a, e, s, ϵ)
such that the running time is upper bounded by ℓb(logn)

2
. If hard-

ness holds for all b > 0, then the same simulation works for any
constant value of s and e, i.e., for any polynomial-time sampler
and any inverse-polynomial error probability.

The proof for prBPPSAT
|| is also almost identical to that of The-

orem 6.1, where we derandomize the “oracle” Γ using the generator
H from Corollary 4.6 instantiated with the function f that maps
every z ∈ {0, 1}n to the truth table of L at input length ℓ = nϵ

and use a set of queries instead of a set of inputs to obtain the list
of candidate distinguishers for the reconstruction. This approach

naturally leads to a simulation in P
NTIME[2n

ϵ
]

|| , and we obtain the
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DTIME[2n
ϵ
]SAT|| simulation by replacing the original queries with

padded SAT queries. □

6.2. Infinitely-often all-input simulation. Introducing non-
determinism in the algorithms we require hardness for, we are able
to extend Theorem 1.11 to conclude full (infinitely-often) deran-
domization of prAM. We have shown that, if the HSG construc-
tion of Theorem 1.11 fails to obtain average-case derandomization
of prAM, then we are able to efficiently sample candidate distin-
guishers with the hope that at least one is “good”. However, if the
HSG fails in the worst case, it is harder to pinpoint exactly where
it does so as to obtain a distinguisher. To solve this, we have Mer-
lin send a “good” input x. This necessitates a lower bound against
MATIMESAT

|| , but allows for concluding full (infinitely-often) de-

randomization of prAM and prBPPSAT
|| .

Theorem 6.3. If NTIME[2an] ∩ coNTIME[2an] is not contained
in MATIME[2(log (a+1))2n)]SAT|| for some constant a > 0, then

prAM ⊆ io-NP

prBPPSAT
|| ⊆ io-PSAT

|| .

Proof. We argue the result for prAM first. Let Π be in the
class prAMTIME[nk] for some constant k and let L be a hard
language in NTIME[2an] ∩ coNTIME[2an]. Let f be a function
mapping every input z ∈ {0, 1}n to the truth table of L at in-
put length ℓ = Θ(log n) to be set precisely later. Note that f is
computable in nondeterministic time T (n) = 2(a+1)ℓ. Instantiate
the generator H of Corollary 4.6 with f , run H on input z = 0n

and co-nondeterministic circuit size m = O(n2k), and use it to
derandomize Π in time poly(T (n), n) = poly(n).

If the simulation fails for some input of almost-all input lengths,
then for almost-all input lengths n there exists an x ∈ ΠN of
length n such that the simulation errs on x, i.e., the circuit Dx

of Proposition 3.10 instantiated with the protocol for Π and x is a
distinguisher for H(0n, Dx). Let Arec be the reconstructor of Corol-
lary 4.6 and consider the following Merlin-Arthur protocol for L,
where the protocol has parallel oracle access to SAT: On input
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w ∈ {0, 1}ℓ, Merlin sends x, and Arthur runs Arec(0
n, Dx) to com-

pute the w-th bit of f(0n) = L(w). If Arec outputs ⊥, then the
protocol rejects, otherwise, it accepts if and only if Arec outputs
1. Because Arec is a probabilistic algorithm with parallel access to
an oracle for SAT, Arthur can select the randomness required for
it and then run the underlying deterministic parallel-SAT-oracle
computation, meaning this is indeed a MASAT

|| protocol. Com-
pleteness follows since Merlin can send a correct value of x, and
soundness follows from the strong resilience property of Arec: Even
if Merlin sends a “bad” x′, Arec is still guaranteed to either fail or
output L(w) with high probability.

To finish the argument for prAM, note that the running time
of the protocol is just the running time of Arec, which is poly(n) ·
(m · log T (n))O((log r)2) for r = O(log (T (n))/ logm). Since m =
O(n2k) and setting ℓ = dk log n, we have r = O(d(a + 1)) and the
running time for the protocol is upper bounded by nO(k(log (d(a+1)))2).
In terms of the input length ℓ, this is 2(log (a+1))2ℓ) when d is a
sufficiently large constant depending on a.

The simulation for prBPPSAT
|| is similar to before and the recon-

struction is identical to the prAM case: If the simulation fails, then
there is a query q of length O(nk) (which results in a distinguisher
of size O(n2k)) that Merlin can send Arthur to make Arthur output
L(w) with high probability. Soundness also follows exactly as in
the prAM case and the running time is again 2(log (a+1))2ℓ). □

We only state the previous result for the high-end parameter
setting because stronger results are already known for the low end.
For example, to conclude a subexponential derandomization of
prAM, it suffices for there to exist a language in NEXP∩ coNEXP
that is hard for a subclass of MASAT

|| (Aydınlıoğlu & van Melke-
beek 2017). In comparison with ours, other results that conclude
the same derandomization either require hardness of nondetermin-
istic algorithms against much larger deterministic time bounds,

e.g., NE∩ coNE ̸⊆ DTIME[22
nϵ

] for some ϵ > 0 (Impagliazzo et al.
2002) or hardness of deterministic algorithms against slightly less
space, e.g., E ̸⊆ SPACE[2ϵn] for some ϵ > 0 (Lu 2001).
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7. Unconditional mild derandomization

In this section, we establish our unconditional mild derandom-
ization result for prAM and extend it to prBPPSAT

|| . We em-
ploy a similar win-win argument to that of the proof of Theo-
rem 1.10: Either some hardness assumption/class separation holds
(here, Σ2EXP ̸⊆ NP/poly), in which case we get derandomization
right away. Or else we get a complexity collapse which we can
use to construct a hard function f that has the efficiency require-
ments we need to apply one of our targeted hitting-set construc-
tions (in this case Theorem 6.2, which requires hardness against
BPTIME[2polylog(n)]SAT|| ).

As a first step toward the win-win argument, we prove an “easy-
witness lemma” for Σ2EXP, which allows for the collapse PΣ2EXP ⊆
EXP from the assumption that Σ2EXP ⊆ NP/poly. Then we
consider two cases:

◦ Σ2EXP ̸⊆ NP/poly. In this case, the derandomization result
follows from standard hardness vs. randomness tradeoffs.

◦ Σ2EXP ⊆ NP/poly. In this case, we diagonalize against
BPTIME[2polylog(n)]SAT|| in PΣ2EXP = EXP, and then instanti-
ate Theorem 6.2 to conclude the proof.

To diagonalize against BPTIME[2polylog(n)]SAT|| , we use the in-

clusion prBPPSAT
|| ⊆ PprAM

|| and diagonalize against deterministic
algorithms with non-adaptive oracle access to prAM instead.

7.1. Nondeterministic easy witnesses. In this section, we
prove our “easy witness lemma” for Σ2EXP. One way of think-
ing of Σ2 computations is as follows: On input x, guess a string y
and then run a co-nondeterministic verifier on input (x, y). This
view allows us to abstract the co-nondeterministic verification and
think of y as a witness for x. In this section, we show that if
Σ2EXP ⊆ NP/poly, then every language in Σ2EXP has witnesses
that are the truth tables of functions computed by polynomial-
size single-valued circuits. To do so, we use the following result to
convert hardness against single-valued circuits into hitting sets for
co-nondeterministic circuits.
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Lemma 7.1 (Umans 2003). There exists a universal constant
b and a deterministic polynomial-time algorithm that, on input
1m and a truth table y of a function with single-valued circuit
complexity at least mb, outputs a set S of size O(|y|b) that hits
co-nondeterministic circuits of size m that accept at least half of
their inputs.

We also need the following equivalence from Aydınlıoğlu & van
Melkebeek (2017).

Lemma 7.2 (Aydınlıoğlu & van Melkebeek 2017). Σ2EXP ̸⊆
NP/poly if and only if prAM ⊆ io-Σ2TIME[2n

ϵ
]/nϵ for all ϵ > 0.

We are now ready to prove our easy witness result for Σ2EXP.

Theorem 7.3. Assume Σ2EXP ⊆ NP/poly. Then Σ2EXP has
single-valued witnesses of polynomial size, i.e., for every language
L ∈ Σ2EXP and linear-time (in its input length) co-nondetermin-
istic verifier H for L, the following holds: For every x ∈ L, there
exists a single-valued circuit Cx of size poly(|x|) such that H(x, ·)
accepts the exponential-length truth table of Cx.

Proof. We show that Σ2E has single-valued witness circuits of
size nc for some constant c. The result for Σ2EXP then follows by
padding.

Assume that Σ2E does not have single-valued witness circuits of
size nc for any constant c. This implies that for all c ≥ 1, there is a
co-nondeterministic verifier Hc that takes as input a string x and a
string y of length 2O(|x|), runs in time 2O(|x|), and has the following
property: For infinitely many n, there is a input x′ of length n such
thatHc(x

′, y′) accepts for some y′, but every y accepted byHc(x
′, ·)

has single-valued circuit complexity at least nc. Thus, there are
infinitely many n such that, if we give x′ as n bits of advice, guess
a string y of length 2O(n), and verify that Hc(x

′, y) accepts (using
co-nondeterminism), we are guaranteed that y encodes the truth
table of a function with single-valued circuit complexity at least
nc. This gives us a Σ2-procedure for obtaining hard functions,
which we use to derandomize prAM and obtain a contradiction to
Lemma 7.2.
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Let Π ∈ prAM and let PΠ be a protocol for Π that runs in time
O(ℓa) on input length ℓ. By Proposition 3.10, to derandomize PΠ

it suffices to have a set S that hits any co-nondeterministic circuit
of size O(ℓ2a) that accepts at least half of its inputs. To obtain
such a set using Lemma 7.1, we need to first obtain a truth table
of single-valued circuit complexity at least Ω(ℓ2ab), where b is the
constant from the lemma. Recall that our objective is to obtain a
subexponential (time 2n

ϵ
for all ϵ > 0) simulation. To this end, let

ϵ > 0 be sufficiently small and consider the verifier Hc for c = 3ab/ϵ
on inputs of length n = ℓϵ. If n is one of the infinitely many input
lengths for which there exists x′ such that every string accepted
by Hc(x

′, ·) has single-valued circuit complexity at least nc = ℓ3ab,
then we can obtain such a hard string by having x′ as advice,

guessing y ∈ {0, 1}2O(ℓϵ)
and verifying that Hc(x

′, y) accepts.
In parallel, apply Lemma 7.1 to y to obtain a set S of size

2O(ℓϵ), and use S to derandomize the prAM computation (guessing
a Merlin response for each string in S). Finally, accept if and only
if both Hc(x

′, y) and the prAM simulation accept. All of this can
be carried out in Σ2TIME[2O(ℓϵ)]/ℓϵ. Since ϵ is an arbitrarily small
constant and the simulation works for infinitely many input lengths
ℓ, we obtain a contradiction to Lemma 7.2. □

Theorem 7.3 allows us to establish the following complexity
class collapse in case Σ2EXP ⊆ NP/poly. The corollary represents
the role our easy witness result plays in the proof of Theorem 1.12.

Corollary 7.4. If Σ2EXP ⊆ NP/poly, then PΣ2EXP = EXP.

Proof. Under the hypothesis from the statement, we show that
Σ2EXP = coNEXP, which suffices by combining Lemma 7.2 and
Lemma 5.3. The hypothesis and Lemma 7.2 guarantee the negation
of prAM ⊆ io-Σ2TIME[2n

ϵ
]/nϵ for all ϵ, which in turn implies

the negation of prAM ⊆ io-NTIME[2n
ϵ
]/nϵ for all ϵ, and thus the

contrapositive of Lemma 5.3 implies EXP = NEXP and therefore
Σ2EXP = coNEXP = EXP. Finally, we have PΣ2EXP = PEXP =
EXP.

To show that Σ2EXP = coNEXP it suffices by padding to show
that every L ∈ Σ2E is in coNEXP. Fix L ∈ Σ2E. By Theo-
rem 7.3, L has single-valued witnesses of size nc for some constant
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c. On input x ∈ {0, 1}n, we cycle through all nondeterministic
circuits C of size nc and compute their truth tables in time O(2n

c
).

For each truth table T , we then run V (x, T ) (where V is a co-
nondeterministic verifier for L), accepting if and only if some veri-
fication accepts. All of this runs in exponential co-nondeterministic
time, so we are done. □

7.2. Simulation. We now execute our win-win strategy and es-
tablish Theorem 1.12 and its strengthening for prBPPSAT

|| in lieu
of prAM. We first consider the case where Σ2EXP ̸⊆ NP/poly. In
this case simulations of the required type that work on all inputs
of a given length are provided by Lemma 7.2 for prAM. We argue
the same simulations follow for prBPPSAT

|| .

Lemma 7.5. If Σ2EXP ̸⊆ NP/poly, then for every ϵ > 0

prBPPSAT
|| ⊆ io-Σ2TIME[2n

ϵ

]/nϵ.

Proof. We use the inclusion prBPPSAT
|| ⊆ PprAM

|| . Let k be

a constant and M be an O(nk)-time deterministic machine with
non-adaptive oracle access to a paddable prAM-complete problem
Γ ∈ prAMTIME[n]. We assume that all queries made by M on
inputs of length n are of length O(nk) at the expense of increasing
M ’s running time to O(n2k).

Our approach is to use Lemma 7.1 to derandomize the queries
made to Γ while making sure that the overall simulation of M can
be carried out in subexponential Σ2-time. To derandomize Γ at
input length O(nk) using the lemma, we need to obtain a truth
table of single-valued circuit complexity at least Ω(n2bk), where
b is the constant from the lemma. Let ϵ > 0 and L ∈ Σ2E be
a language that has nondeterministic circuit complexity at least
n3bk/ϵ for infinitely many input lengths (which is guaranteed to
exist by the hypothesis of the theorem). The simulation of M on
inputs x goes as follows: Given as advice the number of strings of
length nϵ that are in L, the Σ2 algorithm guesses the truth table
of L at input length nϵ, verifies it, and uses it as the string y in
Lemma 7.1. More precisely, after guessing the truth table, the
algorithm performs the following operations in parallel:
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◦ It uses an existential and a universal guess to verify that the
guessed truth table for L is correct. This is possible because
the algorithm has as advice the number of strings of length
nϵ that are in L, and thus it can existentially guess which
strings are in L and only verify those, with the guarantee
that the others are not in L.

◦ It guesses which of the queries to Γ that M makes on input x
are answered positively and which are answered negatively.
For each query that is guessed to be answered positively, it
uses the set S from Lemma 7.1 and the existential phase to
verify that there is a random-bit string in S for which Merlin
can provide a witness. Similarly, it uses S and the universal
phase to verify each query that is guessed to be answered
negatively.

We note that the only existential computation paths that sur-
vive the computation are the ones where the truth table of L at
input length nϵ was guessed correctly. In this case, and in the case
that nϵ is one of the infinitely many input lengths where L has
nondeterministic circuit complexity at least n3bk/ϵ, it holds that the
guessed truth table has high enough (single-valued) nondetermin-
istic circuit complexity such that S hits the co-nondeterministic
circuits given by Proposition 3.10 for negative instances of Γ at
input length O(nk). This further guarantees that the surviving
existential computation paths are those that correctly guess the
answers to all queries M makes on input x that are in the promise
of Γ. This suffices to obtain a simulation of M that is correct on
infinitely many input lengths since M is insensitive to variations
in answers to queries that are outside the promise (even when the
same query is answered differently on different occasions). Finally,
we note that the entire procedure runs in time 2O(nϵ), which can be

made smaller than 2n
ϵ′
for any ϵ′ > 0 by taking ϵ to be sufficiently

small. □

The other case of the win-win analysis is when Σ2EXP ⊆
NP/poly. In this case, we use the collapse PΣ2EXP = EXP given
by Corollary 7.4 and our targeted hitting-generator construction
to obtain the desired simulation. We conclude:
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Theorem 7.6 (Strengthening of Theorem 1.12). For every ϵ > 0
and every e > 0

prBPPSAT
|| ⊆ io-Heur1/neΣ2TIME[2n

ϵ

]/nϵ.

Proof. If Σ2EXP ̸⊆ NP/poly, then it follows that prBPPSAT
|| ⊆

Σ2TIME[2n
ϵ
]/nϵ for all ϵ > 0 by Lemma 7.5. Otherwise, by Corol-

lary 7.4, we have that PΣ2EXP = EXP. By Theorem 6.1, all we need
to show is that PΣ2EXP ̸⊆

⋃
b∈N BPTIME[nb((logn)2)]SAT|| . Given the

containment prBPPSAT
|| ⊆ PprAM

|| and a padding argument, it fol-

lows that
⋃

b∈N BPTIME[nb((logn)2)]SAT|| ⊆ DTIME[2polylog(n)]prAM
|| .

It remains to show that PΣ2EXP ̸⊆ DTIME[2polylog(n)]prAM
|| , which

we do by diagonalization.

Fix a prAM-complete problem Γ and note that if L is in the
class DTIME[2polylog(n)]prAM

|| , then there exists a Turing machine

M running in time 2polylog(n) with non-adaptive oracle access to
Γ that computes L. Thus, it suffices to diagonalize against such
machines with Γ as an oracle. Let S be the following Σ2EXP-
oracle machine: On input x ∈ {0, 1}n, interpret x as a non-adaptive
oracle Turing machine Mx with an oracle for Γ. Then, using binary
search and the Σ2EXP oracle, compute the number q of queries
that Mx on input x makes that are answered negatively, where we
let Mx run for at most 2n steps. This is possible in PΣ2EXP because
prAM ⊆ Π2P, so we can verify negative instances in Σ2EXP. Once
we know q, we can simulate Mx(x) for at most 2n steps in Σ2EXP
as follows: Guess which q queries are negative and verify them in
Σ2EXP (again using the fact that prAM ⊆ Π2P); then assume
that the other queries are answered positively and simulate Mx(x)
directly with these answers. By querying the Σ2EXP oracle, S
finally outputs the opposite of this simulation. By construction,
the language of S is in PΣ2EXP \DTIME[2polylog(n)]prAM

|| . □

This concludes our discussion of the byproducts of our main
results.



Instance-wise derandomization for AM 83

Acknowledgements

We thank Ronen Shaltiel and Chris Umans for answering questions
about their work, Oded Goldreich for helpful feedback on the write-
up, and Lijie Chen for suggesting the potential use of PCPs during
a presentation of our preliminary results.

Partial support for this research was provided by the University
of Wisconsin-Madison Office of the Vice Chancellor for Research
and Graduate Education with funding from the Wisconsin Alumni
Research Foundation, and by the National Science Foundation un-
der Grant No. 2312540.

An earlier version of part of this work appeared as (van Melke-
beek & Mocelin Sdroievski 2023).

References
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