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Abstract
We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of low-
degree univariate rational functions at abscissas associated with the variables. In spite of the
univariate nature, we establish an equivalence up to rescaling with a generator introduced by Shpilka
and Volkovich, which has a similar structure but uses multivariate polynomials in the abscissas.

We study the power of the generator by characterizing its vanishing ideal, i.e., the set of
polynomials that it fails to hit. Capitalizing on the univariate nature, we develop a small collection
of polynomials that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds
on the minimum degree, sparseness, and partition size of set-multi-linearity in the vanishing ideal.
Inspired by an alternating algebra representation, we develop a structured deterministic membership
test for the vanishing ideal. As a proof of concept we rederive known derandomization results based
on the generator by Shpilka and Volkovich, and present a new application for read-once oblivious
arithmetic branching programs that provably transcends the usual combinatorial techniques.
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1 Overview

Polynomial identity testing (PIT) is the fundamental problem of deciding whether a given
multi-variate arithmetic circuit formally computes the zero polynomial. PIT has a simple
efficient randomized algorithm that only needs black-box access to the circuit: Pick a random
point and check whether the circuit evaluates to zero on that particular point.

In spite of the fundamental nature of PIT and the simplicity of the randomized algorithm,
no efficient deterministic algorithm is known – even in the white-box setting, where the
algorithm has access to the description of the circuit. The existence of such an algorithm
would imply long-sought circuit lower bounds [17, 1, 21]. Conversely, sufficiently strong
circuit lower bounds yield blackbox derandomization for all of BPP, the class of decision
problems admitting efficient randomized algorithms with bounded error [28, 18]. Although
the known results leave gaps between the two directions, they suggest that PIT acts as a
BPP-complete problem in the context of derandomization, and that derandomization of BPP
can be achieved in a blackbox fashion if at all.
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119:2 Polynomial Identity Testing via Evaluation of Rational Functions

Blackbox derandomization of PIT for a class of polynomials C is equivalent to the efficient
construction of a family G = {Gn}n∈N of low-degree polynomial mappings where Gn maps a
small set of l fresh variables to the set of n variables {x1, . . . , xn} such that for each nonzero
polynomial p from C in the variables {x1, . . . , xn}, p ◦Gn remains nonzero [34, Lemma 4.1].
We say that the generator G hits the class C. If p and Gn have degree at most nO(1), the
resulting deterministic PIT algorithm for C makes nO(l) black-box queries.

Much progress on derandomizing PIT has been obtained by designing such polynomial
mappings and analyzing their hitting properties for interesting classes C. Shpilka and
Volkovich [33] introduced a generator, by now dubbed the Shpilka–Volkovich generator or
“SV-generator” for short, and proved that it hits sums of a bounded number of read-once
formulas for l = O(log n), later improved to l = O(1) [26]. The generator for l = O(log n)
has also been shown to hit multi-linear depth-4 circuits with bounded top fan-in [22], multi-
linear bounded-read formulas [5], commutative read-once oblivious arithmetic branching
programs [10], Σm

∧
ΣΠO(1) formulas [9], circuits with locally-low algebraic rank in the sense

of [24], and orbits of simple polynomial classes under invertible linear transformations of the
variables [25]. The generator is also an ingredient in other hitting set constructions, notably
constructions using the technique of low-support rank concentration [3, 2, 16, 15, 31, 6]. It
also forms the core of a “succinct” generator that hits a variety of classes including depth-2
circuits [12].

Vanishing ideal

In this paper we initiate a systematic study of the power of the SV-generator. For any
generator G, G hits a polynomial p if and only if the composition of polynomials p(G) is
nonzero. The power of G, therefore, is determined by the set of p such that p(G) vanishes.
This set, denoted Van[G], has the algebraic structure of an ideal, and is known as the
vanishing ideal of G. Our results can be understood as precisely characterizing the vanishing
ideal of the SV-generator for all choices of parameters.

There are two natural ways in which to apply a characterization of the vanishing ideal:
Derandomization To show that a generator G hits a class C of polynomials, it suffices (and

is necessary) to prove that the intersection of C with Van[G] consists of at most the zero
polynomial. The vanishing ideal of SV tells us what polynomials we need to focus on
when designing other generators for derandomizing PIT in combination with SV.

Lower bounds If we know that the generator G hits a class C of polynomials, any expression
for a nonzero element of Van[G] yields an explicit polynomial that falls outside C. Such
a statement is often referred to as hardness of representation, and can be viewed as a
lower bound in the model of computation underlying C (provided the polynomial can be
computed in the model at all).

We will illustrate both uses of our characterizations of the SV-generator.

Rational function evaluations

Another contribution of our paper is the development of an alternate view of the SV-generator,
namely as evaluations of univariate rational functions of low degree. We would like to promote
the perspective for its intrinsic appeal and its applicability. Among other things, it facilitates
the study of the vanishing ideal.

The transition goes as follows. The SV-generator takes as additional parameters a positive
integer l, and a choice of distinct field elements ai for each of the original variables xi, i ∈ [n].
We refer to the elements ai as abscissas, and denote the mapping for a given value of l by
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SVl (suppressing the choice of abscissas). The mapping SV1 uses two fresh variables, y and
z, and can be described succinctly in terms of the Lagrange interpolants Li for the set of
abscissas:

xi ← z · Li(y) .= z ·
∏

i′∈[n]\{i}

y − ai′

ai − ai′
. (1)

By rescaling, the denominators on the right-hand side of (1) can be cleared, resulting in the
following somewhat simpler polynomial mapping:

xi ← z ·
∏

i′∈[n]\{i}

(y − ai′). (2)

The vanishing ideals of (2) and SV1 are the same up to rescaling the variables to match the
rescaling from (1) to (2).

More importantly, we apply the change of variables z ← z′/
∏

i∈[n](y − ai), resulting in
the rational map

xi ←
z′

y − ai
. (3)

The notion of vanishing ideal naturally extends to rational maps. The change of variables
from (2) to (3) establishes that any polynomial vanishing on (2) also vanishes on (3). The
change of variables is invertible (the inverse is z′ ← z

∏
i∈[n](y − ai)), so any polynomial

vanishing on (3) also vanishes on (2). Therefore the vanishing ideal of (3) is the same as
that of SV1 up to rescaling the variables.

Note that, for fixed y and z′, (3) may be interpreted as first forming a univariate rational
function f(α) = z′

y−α (depending on y and z′, but independent of i) and then substituting
xi ← f(ai). As y and z′ vary, f ranges over all rational functions with numerator degree zero
and denominator degree one. We thus denote (3) by RFE0

1, where RFE is a short-hand for
Rational Function Evaluation, 0 bounds the numerator degree, and 1 bounds the denominator
degree.

The mapping RFE0
1 naturally generalizes to RFEk

l for arbitrary k, l ∈ N:

▶ Definition 1 (RFE Generator). Let F be a field and X
.= {xi : i ∈ [n]} a set of variables. The

Rational Function Evaluation (RFE) Generator for F[X] is parameterized by the following
data:

For each i ∈ [n], a distinct abscissa ai ∈ F.
A non-negative integer k, the numerator degree.
A non-negative integer l, the denominator degree.

The generator takes as seeds rational functions f ∈ F(α) such that f can be written g/h for
some g, h ∈ F[α] with deg(g) ≤ k, deg(h) ≤ l, and h(ai) ̸= 0 for all i ∈ [n]. From a seed f ,
it generates the substitution xi ← f(ai) for each i ∈ [n].

There are multiple ways to parameterize the seed of RFEk
l using scalars, such as by specifying

coefficients, evaluations, or roots for each of the numerator and denominator. The flexibility
to choose is a source of convenience. We refer to Appendix A for a discussion about different
parameterizations, as well as how to obtain deterministic black-box PIT algorithms from the
generator, and the required size of the underlying field F. As is customary in the context of
black-box derandomization of PIT, we will assume that F is sufficiently large, possibly by
taking a field extension.

ITCS 2022
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The connection between RFE0
1 and SV1 extends as follows. For higher values of l, SVl

is defined as the sum of l independent instantiations of SV1. The same transformations
as above relate SVl and the sum of l independent instantiations of RFE0

1. The latter in
turn is equivalent to RFEl−1

l by partial fraction decomposition. The conclusion is that SVl

is equivalent, up to variable rescaling, to RFEl−1
l . We refer to Appendix B for a formal

treatment.
For parameter values k ̸= l − 1, there is no SV-generator that corresponds to RFEk

l ,
but SVmax(k+1,l) encompasses RFEk

l (up to rescaling) and uses at most twice as long of
a seed. Thus, the RFE-generator and the SV-generator efficiently hit the same classes of
polynomials. However, RFE’s simpler univariate dependence on the abscissas – as opposed
to SV’s multi-variate dependence – enables our approach for determining the vanishing ideal.
The moral is that, even though polynomial mappings are sufficient for derandomizing PIT,
it nevertheless helps to consider rational mappings. Their use may simplify analysis, and
arguably yield more elegant constructions.

Generating set

Our first result describes a small and explicit generating set for the vanishing ideal of RFE.
It consists of instantiations of a single determinant expression.

▶ Theorem 2. Let k, l ∈ N, {xi : i ∈ [n]} be a set of variables, and ai for i ∈ [n] be distinct
field elements. The vanishing ideal of RFEk

l over the given set of variables for the given
choice of abscissas (ai)i∈[n] is generated by the following polynomials over all choices of
k + l + 2 variable indices i1, i2, . . . , ik+l+2 ∈ [n]:

EVCk
l [i1, i2, . . . , ik+l+2] .= det

[
al

ij
xij

al−1
ij

xij
. . . xij

ak
ij

ak−1
ij

. . . 1
]k+l+2

j=1
. (4)

Moreover, the polynomials EVCk
l [i1, i2, . . . , ik+l+2] form a generating set of minimum size

when {i1, i2, . . . , ik+l+2} ranges over all subsets of [n] of size k + l + 2 that contain a fixed
set C ⊆ [n] of k + 1 variable indices, and i1 < i2 < · · · < ik+l+2.

The name “EVC” is a shorthand for “Elementary Vandermonde Circulation”. Later we
discuss a representation of polynomials using alternating algebra, which connects with notions
from network flow. In this representation, polynomials in the vanishing ideal coincide with
circulations, and instantiations of EVC are the elementary circulations.

We refer to the set C in Theorem 2 as a core. The core C plays a similar role as in a
sunflower except that, unlike the petals of a sunflower, the various sets S do not need to be
disjoint outside the core.

As an example, for k = 0 and l = 1, one of the generators for RFE0
1 is given by

EVC0
1[1, 2, 3] .=

∣∣∣∣∣∣
a1x1 x1 1
a2x2 x2 1
a3x3 x3 1

∣∣∣∣∣∣ = (a1 − a2)x1x2 + (a2 − a3)x2x3 + (a3 − a1)x3x1.

For any fixed i∗ ∈ [n], the polynomials EVC0
1[i1, i2, i3] form a generating set of minimum

size when {i1, i2, i3} ranges over all subsets of [n] containing i∗, and i1 < i2 < i3. In general,
the generators EVCk

l are nonzero multi-linear homogeneous polynomials of degree l + 1
containing all multi-linear monomials of degree l + 1.

Each generating set of minimum size in Theorem 2 yields a Gröbner basis with respect to
every monomial order that prioritizes the variables outside C. A Gröbner basis is a special
basis that allows solving ideal-membership queries more efficiently as well as solving systems



D. van Melkebeek and A. Morgan 119:5

of polynomial equations [7]. Computing Gröbner bases for general ideals is exponential-space
complete. Theorem 2 represents a rare instance of a natural and interesting ideal for which
we know an explicit Gröbner basis.

To gain some intuition about dependencies between the generators EVCk
l , note that

permuting the order of the variables used in the construction of EVCk
l yields the same

polynomial or minus that polynomial, depending on the sign of the permutation. This follows
from the determinant structure of EVCk

l , and is the reason why we need to fix the order
of the variables in order to obtain a generating set of minimum size. More profoundly, the
following relationship holds for every choice of k + l + 3 indices i1, i2, . . . , ik+l+3 ∈ [n] and
every univariate polynomial w of degree at most k:

det
[
w(aij

) al
ij

xij
al−1

ij
xij

. . . xij
ak

ij
ak−1

ij
. . . 1

]k+l+3

j=1
= 0. (5)

The determinant in (5) vanishes because the first column of the matrix is a linear combination
of the last k+1. A Laplace expansion across the first column allows us to write the determinant
of the matrix as a linear combination of minors, and each minor is an instantiation of EVCk

l .
As the determinant vanishes, (5) represents a linear dependency for every nonzero polynomial
w of degree at most k. In fact, when {i1, . . . , ik+l+3} varies over subsets of [n] containing a
fixed core of size k + 1, the equations (5) generate all linear dependencies among instances of
EVCk

l .
As corollaries to Theorem 2 we obtain the following tight bounds on Van[RFEk

l ]. The
bounds hold for all choices of parameters, as long as the abscissas for different variables
remain distinct.

The minimum degree of a nonzero polynomial in Van[RFEk
l ] equals l + 1. This proves a

conjecture by Fournier and Korwar [13] (additional partial results reported in [23]) that
there exists a polynomial of degree l + 1 in n = 2l + 1 variables that SVl fails to hit. The
conjecture follows because the generators for Van[SVl] have degree l + 1 and use 2l + 1
variables.
As none of the generators contain a monomial of support l or less, the same holds for
every nonzero polynomial in Van[RFEk

l ]. This extends the well-known property that SVl

hits every polynomial that contains a monomial of support l or less.
The minimum sparseness, i.e., number of monomials, of a nonzero polynomial in
Van[RFEk

l ] equals
(

k+l+2
l+1

)
. The generators EVCk

l realize the bound as they exactly
contain all multi-linear monomials of degree l + 1 that can be formed out of their k + l + 2
variables.
The claim that no nonzero polynomial in Van[RFEk

l ] contains fewer than
(

k+l+2
l+1

)
monomi-

als requires an additional combinatorial argument. It is a (tight) quantitative strength-
ening of the well-known property that SVl hits every polynomial with fewer than 2l

monomials [16, 9, 12]. Note that for k = l−1 we have that
(

k+l+2
l+1

)
=

(2l+1
l+1

)
= Θ(22l/

√
l).

The minimum partition class size of a nonzero set-multi-linear polynomial of degree
l + 1 in Van[RFEk

l ] equals k + 2. Set-multi-linearity is a common restriction in works on
derandomizing PIT and arithmetic circuit lower bounds. A polynomial p of degree l + 1
in a set of variables {x1, . . . , xn} is said to be set-multi-linear if [n] can be partitioned as
[n] = X1 ⊔X2 ⊔ · · · ⊔Xl+1 such that every monomial in p is a product xi1 · xi2 · · · · · xil+1 ,
where ij ∈ Xj . Note that set-multi-linearity implies multi-linearity but not the other way
around.
As the generators EVCk

l are not set-multi-linear, it is not immediately clear from The-
orem 2 whether Van[RFEk

l ] contains nontrivial set-multilinear polynomials. However, a
variation on the construction of the generators EVCk

l yields explicit set-multi-linear homo-
geneous polynomials in Van[RFEk

l ] of degree l+1 where each Xj has size k+2. We denote

ITCS 2022
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them by ESMVCk
l , where ESMVC stands for “Elementary Set-Multi-linear Vandermonde

Circulation”. ESMVCk
l contains all monomials of the form xi1 ·xi2 · · · · ·xil+1 with ij ∈ Xj .

For any variable partition X1⊔X2⊔· · ·⊔Xl+1 with |X1| = · · · = |Xl+1| = k+2, ESMVCk
l

is the only set-multi-linear polynomial Van[RFEk
l ] with that variable partition, up to a

scalar multiple.

Membership test

Our second characterization of the vanishing ideal of RFE can be viewed as a structured
membership test. There is a generic way to obtain a deterministic membership test for
the vanishing ideal of any hitting set generator G = {Gn}n∈N, namely the well-known
transformation of a hitting set generator into a deterministic blackbox PIT algorithm
[29, 8, 35, 32]. A polynomial map Gn with l degrees of freedom that hits the n-variate
polynomials p in a class C, yields a deterministic black-box PIT algorithm for C that makes no
more than nO(l) queries as long as p and Gn have degree nO(1). By clearing denominators, the
same follows for rational maps like RFEk

l , which has k+l+1 degrees of freedom. The resulting
deterministic algorithm decides PIT for p ∈ C provided RFEk

l hits C. Unconditionally, the
algorithm decides membership of any p to the vanishing ideal Van[RFEk

l ].
Capitalizing on the generating set of Theorem 2, we state a more structured deterministic

membership test for Van[RFEk
l ]. In the important case of multi-linear polynomials, the test

takes the following form.

▶ Theorem 3. Let k, l ∈ N, {xi : i ∈ [n]} be a set of variables, ai for i ∈ [n] be distinct
field elements, and Z a set of at least n− k − l − 1 nonzero field elements. A multi-linear
polynomial p in those variables belongs to Van[RFEk

l ] if and only if both of the following
conditions hold:
1. p has no homogeneous components of degree l or less, nor of degree n− k or more.
2. For all disjoint subsets K, L ⊆ [n] with |K| = k and |L| = l, and every z ∈ Z,

(
∂p
∂L

)∣∣∣
K←0

evaluates to zero upon the following substitution for each i ∈ K ∪ L

xi ← z ·
∏

i′∈K(ai − ai′)∏
i′∈L(ai − ai′) . (6)

The first part of condition 1 in Theorem 3 extends the well-known property that SVl hits
every multi-linear polynomial that contains a monomial of degree l or less. Combined with
the second part of the condition, it implies that all multi-linear polynomials on n ≤ k + l + 1
variables are hit by RFEk

l .
In condition 2,

(
∂p
∂L

)∣∣∣
K←0

denotes the polynomial obtained by taking the partial derivative
of p with respect to every variable in L, and setting all the variables in K to zero. (The order
of the operations does not matter, and the resulting polynomial depends only on variables in
K ∪ L.)

Several prior papers demonstrated the utility of partial derivatives and zero substitutions
in the context of derandomizing PIT using the SV-generator, especially for syntactically
multi-linear models [33, 22, 5]. By judiciously choosing variables for those operations, these
papers managed to simplify p and reduce PIT for p to PIT for simpler instances, resulting
in an efficient recursive algorithm. In Section 3, we develop a general framework for such
algorithms, and prove correctness directly from Theorem 3. For every multi-linear polynomial
p hit by RFEk

l , the sets K and L in Theorem 3 describe how to choose k zero substitutions
and l derivatives so that a recursive approach shows that p is hit by RFEk

l . It follows that
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any argument that SV or RFE hit a class of multi-linear polynomials can, in principle, be
converted into one based on zero substitutions and partial derivatives. Thus, Theorem 3 shows
that these tools harness the complete power of SV and RFE for multi-linear polynomials.

Applications

We illustrate the utility of our characterizations of the vanishing ideal of RFE in the two
directions mentioned before.

Derandomization. For starters, we demonstrate how Theorem 3 yields an alternate proof of
the result from [26] that every nonzero read-once formula F is hit by SV1, or equivalently, by
RFE0

1. Whereas the original proof hinges on a clever ad-hoc argument, our proof (described
in Section 3) is entirely systematic and amounts to a couple straightforward observations in
order to apply Theorem 3.

As a proof of concept of the additional power of our characterization for derandomization,
we develop an improvement in the model of read-once oblivious algebraic branching programs
(ROABPs).

▶ Theorem 4. For every l ∈ N, SVl hits the class of polynomials computed by read-once
oblivious algebraic branching programs of width less than 1 + (l/3) that contain a monomial
of degree at most l + 1.

To the best of our knowledge, Theorem 4 is incomparable to the known results for ROABPs
[30, 20, 19, 11, 10, 2, 4, 16, 15, 14, 31, 6]. Without the restriction that the polynomial has a
monomial of degree at most l + 1, Theorem 4 would imply a fully blackbox polynomial-time
identity test for the class of constant-width ROABPs. No such test has been proven to
exist at this time; prior work requires either quasipolynomial time or requires opening the
blackbox, such as by knowing the order in which the variables are read.

With the restriction, the well-known property that SVl+1 hits every polynomial containing
a monomial of support l+1 or less implies that SVl+1 hits the class C in Theorem 4. Our result
can thus be viewed as an improvement from SVl+1 to SVl. Even though the improvement is
modest from this perspective, we point out that the method of proof of Theorem 4 diverges
significantly from prior uses of the SV-generator, and therefore may be of independent
interest. We elaborate on the method more when we discuss the techniques of this paper,
but for now, we point out that most prior uses of the SV-generator rely on combinatorial
arguments, i.e., arguments that depend only on which monomials are present in polynomials
of C. Theorem 4 necessarily goes beyond this, because there is a polynomial in Van[SVl]
of degree l + 1 that has the same monomials as a polynomial computed by an ROABP of
width 2. Namely, any instance of ESMVCl−1

l contains exactly all the monomials of the form
xi1 · xi2 · · · · · xil+1 with (i1, . . . , il+1) ∈ X1 × · · · ×Xl+1 for some disjoint sets Xj ; the same
goes for

∏
j

∑
ij∈Xj

xij
, which is computed by an ROABP of width 2.

Lower bounds

The argument in the previous paragraph also illustrates this direction: our derandomization
result for the class C implies that every ROABP computing EVCl−1

l , ESMVCl−1
l , or any

other polynomial of degree l + 1 in the vanishing ideal, has width at least 1 + (l/3). Other
hardness of representation results for EVCl−1

l and ESMVCl−1
l follow in a similar manner

from prior hitting properties of SV in the literature:

ITCS 2022
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Any syntactically multi-linear formula must read some variable at least Ω(log(l)/ log log(l))
times [5].
Any sum of read-once formulas must have at least Ω(l) terms [33, 26].
There exists an order of the variables such that any ROABP with that order must have
width at least 2Ω(l) [10].
Any Σm

∧
ΣΠO(1) formula must have top fan-in at least 2Ω(l) [9].

Lower bounds over characteristic zero for circuits with locally-low algebraic rank [24].

Techniques

A recurring tool is the analysis of the coefficients of the Laurent expansion of p(RFEk
l ) around

certain abscissas. We capture the technique in our Zoom Lemma (Lemma 13). We also
provide a proof from first principles that requires no knowledge of Laurent expansions. The
Zoom Lemma is used in the proofs of all of Theorems 2, 3, and 4, as well as several of the
other results. The basic logic is to zoom in on the projection of p onto certain monomials on
a subset of the variables, and show that if the projection does not vanish at a certain point,
then a particular Laurent coefficient of p(RFEk

l ) is nonzero, and therefore RFEk
l hits p.

Theorem 2 states the equality of two ideals: ⟨EVCk
l ⟩ = Van[RFEk

l ], where ⟨EVCk
l ⟩

denotes the ideal generated by all instantiations of EVCk
l , and Van[RFEk

l ] the vanishing
ideal of RFEk

l .
The inclusion ⊆ follows from linearizing the defining equations of RFEk

l . This is where
the univariate dependency on the abscissas comes into play.
To establish the inclusion ⊇ we first show that every equivalence class of polynomials
modulo ⟨EVCk

l ⟩ contains a representative p whose monomials exhibit the combinatorial
structure of a core. The structure enables the Zoom Lemma to exhibit a particular Laurent
coefficient of p(RFEk

l ) that receives a contribution from just a single monomial. As there
are no other contributions that can cancel out that one contribution, the coefficient is
nonzero, whence RFEk

l hits p.
The proof of Theorem 3 also relies on Laurent expansions through the Zoom Lemma.

Membership to the ideal is equivalent to the vanishing of all coefficients of the expansion.
The proof can be viewed as determining a small number of coefficients sufficient to guarantee
that their vanishing implies all coefficients vanish. The restriction to multi-linear polynomials
p allows us to express the projections of p as the result of applying partial derivatives and
zero-substitutions.

Theorem 4 makes use of the characterization of the minimum width of a read-once
oblivious arithmetic branching program computing a polynomial p as the maximum rank
of the monomial coefficient matrices of p for various variable partitions [27]. We reduce to
the case where p is homogeneous of degree l + 1, whence the monomial coefficient matrices
have a block-diagonal structure. An application of the Zoom Lemma in the contrapositive
yields linear equations between elements of consecutive blocks under the assumption that
SVl fails to hit p. When some block is zero, the equations yield a Cauchy system of equations
on the rows or columns of its neigboring blocks; since Cauchy systems have full rank, we
deduce severe constraints on the row-space/column-space of the neighboring blocks. A careful
analysis turns this observation into a rank lower bound of at least 1 + (l/3) for a well-chosen
partition of the variables.

We point out that in this application the Zoom Lemma is instantiated several times in
parallel to form a large system of equations on the coefficients of p, and the whole system is
needed for the analysis. This stands in contrast to most prior work using SV, which uses
knowledge of how p is computed to guide a search for a single fruitful instantiation of the
Zoom Lemma.
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Alternating algebra representation

The inspiration for several of our results stems from expressing the polynomials EVCk
l using

concepts from alternating algebra (also known as exterior algebra or Grassmann algebra). In
fact, Theorem 3 hinges on the relationship ∂2 = 0 from alternating algebra. Our original
statement and proof of the theorem made use of that framework, but we managed to eliminate
the alternating algebra afterwards. Still, as we find the perspective insightful and potentially
helpful for future developments, we describe the connection here. We explain the intuition
behind Theorem 3 for the simple case where the degree of the polynomial p equals l + 1.
In that setting, belonging to the ideal generated by the polynomials EVCk

l is equivalent to
being in their linear span.

The alternating algebra A of a vector space V over a field F consists of the closure of
V under an additional binary operation, referred to as “wedge” and denoted ∧, which is
bilinear, associative, and satisfies

v ∧ v = 0 (7)

for every v ∈ V . This determines a well-defined algebra. When the characteristic of F is not
2, this can equivalently be understood as

v1 ∧ v2 = −(v2 ∧ v1) (8)

for every v1, v2 ∈ V . In any case, for any v1, v2, . . . , vk ∈ V ,

v1 ∧ v2 ∧ · · · ∧ vk (9)

is nonzero iff the vi’s are linearly independent, and any permutation of the order of the
vectors in (9) yields the same element of A up to a sign. The sign equals the sign of the
permutation, whence the name “alternating algebra.” If V has a basis X of size n, then a
basis for A can be formed by all 2n expressions of the form (9) where the vi’s range over all
subsets of X, and are taken in some fixed order. Considering the elements of X as vertices,
the basis elements of A can be thought of as the oriented simplices of all dimensions that
can be built from X.

Anti-commutativity, the relation Equation (8), arises naturally in the context of network
flow, where X denotes the vertices of the underlying graph, and a wedge v1 ∧ v2 of level
k = 2 represents one unit of flow from v1 to v2. Equation (8) reflects the fact that one more
unit of flow from v1 to v2 is equivalent to one less unit of flow from v2 to v1. The adjacent
levels k = 1 and k = 3 also have natural interpretations in the flow setting: v1 (the element
of A of the form (9) with k = 1) represents one unit of surplus flow at v1 (the vertex of the
graph), and v1 ∧ v2 ∧ v3 abstracts an elementary circulation of one unit along the directed
cycle v1 → v2 → v3 → v1.

The different levels are related by so-called boundary maps. Boundary maps are linear
transformations that map a simplex to a linear combination of its subsimplices of one
dimension less. The maps are parameterized by a weight function w : X → F, and defined
by

∂w : v1 ∧ v2 ∧ · · · ∧ vm 7→
m∑

i=1
(−1)i+1w(vi) v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vm, (10)

an expression resembling the Laplace expansion of a determinant along a column [w(vi)]mi=1.
In the flow setting, using w ≡ 1, ∂1(v1 ∧ v2 ∧ v3) is the superposition of the three edge flows
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that make up one unit of circulation along the directed cycle v1 → v2 → v3 → v1, and
∂1(v1 ∧ v2) is the superposition of surplus at v1 and demand at v2 corresponding to one unit
of flow from v1 to v2. A linear combination p of terms (9) with k = 2 represents a valid
circulation iff it satisfies conservation of flow at every vertex, which can be expressed as
∂1(p) = 0, i.e., p is in the kernel of ∂1. An equivalent criterion is for p to be the superposition
of circulations along 3-cycles, which can be expressed as p being in the image of ∂1. The
relationship between the image and the kernel of boundary maps holds in general:

Im
(
∂wm

◦ ∂wm−1 ◦ · · · ◦ ∂w0

)
=

m⋂
i=0

ker (∂wi
) . (11)

In the context of the generators EVCk
l , the set X creates a vertex for each variable, and

simplices correspond to multilinear monomials. The anti-commutativity of ∧ coincides with
the fact that swapping two arguments means swapping two rows in (4), which changes the
sign of the determinant. Using the above boundary maps, the right-hand side of (4) can be
viewed as ∂ω(vi1∧vi2∧· · ·∧vik+l+2), where ∂ω

.= ∂wk
◦∂wk−1 ◦· · ·◦∂w0 and wd(vi)

.= (ai)d. By
(11), this means that EVCk

l is in the kernel of ∂wd
for each d ∈ {0, 1, . . . , k}, or equivalently,

in the kernel of ∂w̃ for each w̃ : X → F of the form w̃(vi) = w(ai) where w is a polynomial of
degree at most k. This is precisely the condition (5). In fact, (11) implies that the linear
span of the generators EVCk

l consists exactly of the polynomials of degree l + 1 in this kernel.
The latter condition is precisely what the criterion in Theorem 3 expresses.

Organization

We develop the generating set for the vanishing ideal (Theorem 2) in section 2, and our
ideal membership test (Theorem 3) in section 3. The proofs of our results on sparseness,
set-multi-linearity, and derandomizing PIT for ROABPs (Theorem 4) as well as a further
discussion of the alternating algebra representation are omitted due to space restrictions.
The appendix contains some technical details about RFE and a formal treatment of the
relationship between RFE and SV.

2 Generating Set

In this section we establish Theorem 2, our characterization of the vanishing ideal of RFE
in terms of an explicit generating set. For every k, l ∈ N, we develop a template, EVCk

l ,
for constructing polynomials that belong to the vanishing ideal of RFEk

l such that all
instantiations collectively generate the vanishing ideal.

We start by deriving the template. The seeds f of RFEk
l are of the form f = g/h,

where g, h ∈ F[α] with deg(g) ≤ k, deg(h) ≤ l, and h(ai) ̸= 0 for each i ∈ [n]. By definition,
RFEk

l (f) substitutes each variable xi by f(ai) = g(ai)/h(ai). In particular, the equation xi =
g(ai)/h(ai) becomes satisfied for each i ∈ [n], or, equivalently, h(ai)xi−g(ai) = 0. Organizing
the coefficients of the monomial expansions of h(α) =

∑l
d=0 hdαd and g(α) =

∑k
d=0 gdαd

into column vectors h⃗
.=

[
hl hl−1 . . . h1 h0

]⊺ and g⃗
.=

[
gk gk−1 . . . g1 g0

]⊺, we
can rewrite these equations as the following system of linear equations in the k + l + 2
coefficients of g and h combined:[

al
ixi al−1

i xi . . . xi ak
i ak−1

i . . . 1
]

i∈[n] ·

[
h⃗

−g⃗

]
= 0. (12)

Note that the system’s coefficient matrix has no dependence on the seed f . Consider any
square subsystem of Equation (12), formed by choosing k+ l+2 indices i1, i2, . . . , ik+l+2 ∈ [n]
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and looking at the corresponding rows. After substitution by RFE(f) for any fixed seed f ,
the subsystem has a nonzero solution (namely the vector in Equation (12)) and therefore the
determinant of its coefficient matrix vanishes.

Before the substitution by RFE(f), the determinant of the subsystem’s coefficient matrix
is a polynomial in xi1 , xi2 , . . . , xik+l+2 , independent of the seed f :

p = det
[
al

ij
xij

al−1
ij

xij
. . . xij

ak
ij

ak−1
ij

. . . 1
]k+l+2

j=1
.

As p vanishes after substitution of the variables by RFEk
l (f) for every seed f , by definition p

belongs to the vanishing ideal of RFEk
l . Recalling that p is identically EVCk

l [i1, i2, . . . , ik+l+2],
we have established:

▷ Claim 5. For every k, l ∈ N and i1, i2, . . . , ik+l+2 ∈ [n], EVCk
l [i1, . . . , ik+l+2] ∈ Van[RFEk

l ].

Before moving on, we point out the following properties.

▶ Proposition 6. If any of i1, . . . , ik+l+2 coincide, EVCk
l [i1, . . . , ik+l+2] is zero. Otherwise,

it is nonzero, multi-linear, and homogeneous of total degree l + 1, and every multi-linear
monomial of degree l + 1 in xi1 , . . . , xik+l+2 appears with a nonzero coefficient. EVCk

l is
skew-symmetric in that, for any permutation π of i1, . . . , ik+l+2,

EVCk
l [i1, . . . , ik+l+2] = (−1)sign(π) · EVCk

l [π(i1), . . . , π(ik+l+2)].

The coefficient of xi1 · · · · · xil+1 is the product of Vandermonde determinants∣∣∣∣∣∣∣
al

i1
· · · 1

...
. . .

...
al

il+1
· · · 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

ak
il+2

· · · 1
...

. . .
...

ak
il+k+2

· · · 1

∣∣∣∣∣∣∣ .

Proof. All the assertions to be proved follow from elementary properties of determinants,
that Vandermonde determinants are nonzero unless they have duplicate rows, and the
following computation: After plugging in 1 for xi1 , . . . , xil+1 , and 0 for xil+2 , . . . , xil+k+2 , the
determinant has the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al
i1

· · · 1 ∗ · · · ∗
...

. . .
...

...
. . .

...
al

il+1
· · · 1 ∗ · · · ∗

0 · · · 0 ak
il+2

· · · 1
...

. . .
...

...
. . .

...
0 · · · 0 ak

il+k+2
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which equals the product of Vandermonde matrices in the statement. ◀

Claim 5 shows that the polynomials EVCk
l [i1, . . . , ik+l+2] belong to the vanishing ideal

of RFEk
l . To prove that they collectively generate the vanishing ideal, we use a two-phase

approach:
1. We first show that, modulo the ideal ⟨EVCk

l ⟩ generated by the instantiations of EVCk
l ,

every polynomial equals a polynomial with a particular combinatorial structure (Lemma 8).
2. We then show that every nonzero polynomial with that structure is hit by RFEk

l

(Lemma 10).
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Together, these show that every polynomial in the vanishing ideal of RFEk
l is equal, mod-

ulo ⟨EVCk
l ⟩, to the zero polynomial. It follows that the vanishing ideal is generated by

instantiations of EVCk
l .

The combinatorial structure is that of a core, which is the set C in the following definition.

▶ Definition 7 (Cored polynomial). For c, t ∈ N, a polynomial p is said to be (c, t)-cored if
there exists a set of at most c variables such that every monomial of p depends on at most t

variables outside that set.

▶ Lemma 8. For every k, l ∈ N, and any (k + 1)-subset C ⊆ [n], every polynomial is equal
to a (k + 1, l)-cored polynomial with core {xi : i ∈ C} modulo the ideal generated by the
polynomials EVCk

l [S] where S ranges over all sets of size k + l + 2 satisfying C ⊆ S ⊆ [n].

Proof of Lemma 8. Fix k, l, and C as in the statement, and let I be the ideal in the lemma
statement. Every monomial m can be uniquely factored as m0m1, where m0 is supported on
variables indexed by C and m1 involves no variable indexed by C. Call m1 the non-core of
m. We show the following:

▷ Claim 9. Every monomial with more than l variables in its non-core is equivalent, modulo
I, to a linear combination of monomials that all have non-cores of lower degree.

This lets us prove Lemma 8 as follows. Claim 9 implies that, for any polynomial p, we
may, without changing p mod I, eliminate any monomial in p that violates the (k +1, l)-cored
condition, while possibly introducing monomials with lower non-core degree. Thus we can
systematically eliminate all monomials that violate the cored condition by eliminating them
in order of decreasing non-core degree. After that, p is (k + 1, l)-cored with core {xi : i ∈ C},
and the lemma follows.

It remains to show Claim 9. Let m be a monomial with more than l variables in its non-
core. Let L ⊆ [n] index a set of l + 1 of the variables in the non-core, let m′ be their product,
and let m′′ satisfy m = m′m′′. Combined, L and C have size exactly k + l + 2. Consider
q

.= EVCk
l [L∪C], where the variables in L∪C are ordered arbitrarily. By Proposition 6, m′

appears in q, and every other monomial in q has lower non-core degree than m′. It follows
that every monomial in m′′ · q either is m, or else has lower non-core degree than m. By
the definitions of I and q, m′′ · q is in I, so rearranging the equation m′′ · q ≡ 0 (mod I) to
isolate m gives the desired equivalence. ◀

The following lemma completes the proof of the main part of Theorem 2, that the
polynomials EVCk

l generate the vanishing ideal of RFEk
l .

▶ Lemma 10. Suppose p is nonzero and (k + 1, l)-cored. Then RFEk
l hits p.

Before proving Lemma 10, let us argue how the “moreover” part of Theorem 2 also follows. The
combination of Claim 5, Lemma 8, and Lemma 10 shows that, for every core C ⊆ {x1, . . . , xn}
of k + 1 variables, each instance p of EVCk

l that does not use all variables in C lies in the
ideal generated by those instances that do use all of C. Since all polynomials of the form
EVCk

l have the same degree, this implies that p is actually linearly dependent on the latter
instances. Meanwhile, instances of EVCk

l with distinct variable sets that use all of C are
linearly independent, because they each have a distinct monomial. This shows that the
instances in the “moreover” part of Theorem 2 form a linearly independent set that generate
all the instances of EVCk

l . This completes the proof of Theorem 2 modulo the proof of
Lemma 10.
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Our proof of Lemma 10 involves a key technical analysis that we repeatedly need
throughout the paper, and have abstracted into the Zoom Lemma below. In order to state
the lemma, we first define the following notions.

▶ Definition 11 (Projection of a polynomial). Let X ⊆ [n], let p ∈ F[x1, . . . , xn], and consider
the expansion of p as a sum of monomials in {xi : i ∈ X} with coefficients in F[xi : i ̸∈ X].
For any monomial m supported in {xi : i ∈ X}, the X-projection of p onto m, denoted
⟨m | p⟩X , is the coefficient of m in the aforementioned expansion of p.

Note that m need not use every variable indexed by X, and in any case ⟨m | p⟩X depends on
no variables indexed by X. The notation in Definition 11 is inspired by the bra-ket notation
from physics.

▶ Definition 12 (Minorization). Let K, L ⊆ [n], p ∈ F[x1, . . . , xn], and m∗ a monomial
supported in {xi : i ∈ K ∪ L}. We say that m∗ is (K, L)-unminored in p if, for every
monomial m in p, at least one of the following holds:

degxi
(m) = degxi

(m∗) for every i ∈ K ∪ L,
degxi

(m) > degxi
(m∗) for some i ∈ K, or

degxi
(m) < degxi

(m∗) for some i ∈ L.
Equivalently, m∗ is (K, L)-unminored in p if ⟨m | p⟩K∪L = 0 for every monomial m ̸= m∗

supported in {xi : i ∈ K ∪ L} with degxi
(m) ≤ degxi

(m∗) for all i ∈ K, and degxi
(m) ≥

degxi
(m∗) for all i ∈ L.

The above notation lets us state our key technical lemma succinctly. We refer to it as the
Zoom Lemma because it lets us zoom in on particular monomial parts of the polynomial p,
namely the (K ∪ L)-projection onto a (K, L)-unminored monomial m∗.

▶ Lemma 13 (Zoom Lemma). Let K, L ⊆ [n] be sets of variables. Let p ∈ F[x1, . . . , xn], and
m∗ a monomial supported in {xi : i ∈ K ∪ L} that is (K, L)-unminored in p. If ⟨m∗ | p⟩K∪L

is nonzero at the point

xi ← z ·

∏
i′∈K\L

(ai − ai′)∏
i′∈L\K

(ai − ai′) ∀i ∈ [n] \ (K ∪ L), (13)

for some z ∈ F then RFEk
l hits p with k = |K| and l = |L|.

Note that since the (K ∪ L)-projection of p depends on no variable indexed by K ∪ L, the
result of the substitution Equation (13) is simply a scalar in F.

Most of our uses of the Zoom Lemma will moreover have K and L be disjoint, but
disjointness is not necessary for the lemma to hold.

Let us first see how the Zoom Lemma allows us complete the proof of Theorem 2.

Proof of Lemma 10 from Lemma 13. Let C ⊆ [n] denote a core for p. Without loss of
generality, C is nonempty. Let M denote the set of monomials with nonzero coefficients in
p. Let m1 be a monomial supported in {xi : i ̸∈ C} that is of maximum degree subject to
dividing some monomial of p. Let L ⊆ [n] be the indexes of the variables appearing in m1;
since p is cored, L has size at most l. Fix i∗ ∈ C arbitrarily, and let K = C \ {i∗}; K has size
at most k and is disjoint from L. Finally, among the choices for a monomial m0 supported
on K such that ⟨m0m1 | p⟩K∪L ̸= 0, choose one of minimum degree.

The choice of m1 ensures that every m ∈M either has degxi
(m) < degxi

(m1) for some
i ∈ L, or else degxi

(m) = degxi
(m1) for all i ∈ L. In turn, the choice of m0 ensures that every

m in the latter case has degxi
(m) > degxi

(m0) for some i ∈ K, or else degxi
(m) = degxi

(m0)
for all i ∈ K. In the latter of those cases, m must be m0m1 · xd

i∗ for some d. In other words,
if we set m∗ = m0m1, then every m ∈M satisfies at least one of the following:
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m = m∗ · xd
i∗ for some d,

degxi
(m) > degxi

(m∗) for some i ∈ K, or
degxi

(m) < degxi
(m∗) for some i ∈ L.

In particular, m∗ is (K, L)-unminored in p, and ⟨m∗ | p⟩K∪L is a nonzero univariate polynomial
in xi∗ . It follows that for all but finitely many z ∈ F, substituting Equation (13) into
⟨m∗ | p⟩K∪L has a nonzero result. By the Zoom Lemma, RFEk

l hits p. ◀

Finally, we establish the Zoom Lemma. Below we provide a proof from first principles.
However, we take intuition from thinking in terms of Laurent expansions, which are like power
series, except that the exponents may go negative. We describe the underlying intuition for
readers familiar with the notion.

Consider RFEk
l in the roots parameterization, where the seed f = g/h is specified by

the k roots of the numerator g, the l roots of the denominator h, and an additional scaling
parameter ζ (cf. Appendix A, or Equation (14) below). We match each of the roots of g to a
unique index in K, and each of the roots of h to a unique index in L. For each i ∈ [n], f(ai)
is a rational function in the root parameters and ζ, and moreover is a product of univariate
rational functions. For each i and root parameter σ with matching index i, we can expand
the univariate rational function in σ to its Laurent series about σ = ai. Then we carry these
expansions into p(RFEk

l (f)) and expand fully, collecting terms according to the powers of the
various σ− ai. The result is a multivariate Laurent expansion of p(RFEk

l (f)) with respect to
the root parameters around their matching abscissas, with coefficients that are polynomials
in ζ. According to our matching between the root parameters and the variables in K and
L, we can index the coefficients in the Laurent expansion of p(RFEk

l ) by the monomials
supported in {xi : i ∈ K ∪ L}. The point is that, since m∗ is (K, L)-unminored in p, the
only contribution to the coefficient indexed by m∗ comes from the constant term in the
corresponding Laurent expansion of q(RFEk

l ), where q is the (K ∪L)-projection of p onto m∗.
Since q does not depend on any variable indexed by K∪L, this Laurent expansion of q(RFEk

l )
has no terms of negative exponent, so the constant term may be computed by substituting
σ ← ai into q(RFEk

l ) for each root parameter σ with matching index i. After moreover
substituting ζ ← z, this equals the substitution of (13) into q. Since the substitution of (13)
into q is nonzero, we conclude that p(RFEk

l ) is a nonzero function of the parameters, and so
RFEk

l hits p.

Proof of Lemma 13. Let ζ, σi for each i ∈ K, and τi for each i ∈ L be fresh, distinct
indeterminates. Let F̂ be the field of rational functions in those indeterminates with coefficients
in F, and let

f̂(α) .= ζ ·
∏

i∈K(α− σi)∏
i∈L(α− τi)

∈ F̂(α). (14)

Let RFEk
l (f̂) ∈ F̂n be the point (f̂(ai) : i ∈ [n]), and consider p(RFEk

l (f̂)) ∈ F̂. Any
substitution of ζ, σi, and τi by scalars in F such that each τi ̸∈ {a1, . . . , an} sends f̂ to some
f in the domain of RFEk

l , and p(RFEk
l (f̂)) to p(RFEk

l (f)). If p(RFEk
l (f̂)) is nonzero, then

a random such substitution will have nonzero outcome. So if we can show that p(RFEk
l (f̂))

is nonzero, then p is hit by RFEk
l .

Recall m∗ and z from the lemma statement, and consider the following process Φ. Given
an element of F̂, first multiply it by∏

i∈L(ai − τi)degxi
(m∗)∏

i∈K(ai − σi)degxi
(m∗) ,
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then cancel any common factors in the numerator and denominator, and then substitute

σi ← ai for i ∈ K

τi ← ai for i ∈ L

ζ ← z

.

For any monomial m such that both

degxi
(m) ≥ degxi

(m∗) for all i ∈ K, and
degxi

(m) ≤ degxi
(m∗) for all i ∈ L,

(15)

applying Φ to m(RFEk
l (f̂)) yields a defined result, which is just a scalar in F. (For other

monomials the result has a division by zero, but this will not matter.) If any of the inequalities
in Equation (15) is strict, the result is zero. Otherwise, m = m∗ ·m′ for some monomial m′

supported on {xi : i ̸∈ K ∪ L}, and the result is ∏
i∈K∪L

ζ ·

∏
i′∈K\{i}

ai − ai′∏
i′∈L\{i}

ai − ai′


degxi

(m∗)
 ·m′(xi ← f∗(ai)) (16)

where f∗(α) is f̂(α) with each occurrence of σi and τi substituted by the corresponding
ai, and ζ replaced by z. Note that m′ is supported on {xi : i ∈ [n] \ (K ∪ L)}, and f∗(ai)
is well-defined for all i ∈ [n] \ (K ∪ L). Note also that the first factor in Equation (16) is
nonzero and independent of m′.

Our hypothesis that m∗ is (K, L)-unminored in p implies that p is a linear combination
of monomials that satisfy Equation (15). Thus applying Φ to p(RFEk

l (f̂)) has a defined
output. This output is precisely the first factor in Equation (16) times the evaluation of
⟨m∗ | p⟩K∪L at (f∗(ai) : i ∈ [n]\(K∪L)). Meanwhile, (f∗(ai) : i ∈ [n]\(K∪L)) is identically
Equation (13), and we have hypothesized that ⟨m∗ | p⟩K∪L does not vanish there. It follows
that applying Φ to p(RFEk

l (f̂)) has a nonzero outcome. On the other hand, if p(RFEk
l (f̂))

were zero, applying Φ would result in zero. It follows that p(RFEk
l (f̂)) ̸= 0, proving the

lemma. ◀

3 Membership Test

In this section we develop the structured membership test for the vanishing ideal Van[RFEk
l ]

given in Theorem 3. We start by observing that it suffices to establish the following simpler
version of Theorem 3 for the case where p is homogeneous.

▶ Lemma 14. A nonzero homogeneous multi-linear polynomial p in the variables x1, . . . , xn

belongs to Van[RFEk
l ] if and only if both of the following conditions hold:

1. The degree of p satisfies l < deg(p) < n− k.
2. For all disjoint subsets K, L ⊆ [n] with |K| = k and |L| = l,

(
∂p
∂L

)∣∣∣
K←0

evaluates to zero
upon substituting for each i ∈ [n] \ (K ∪ L)

xi ←
∏

i′∈K(ai − ai′)∏
i′∈L(ai − ai′) . (17)

To see why the general case reduces to the homogeneous case, we make use of the following
property, well-known in the context of SV. We include a proof for completeness.
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▶ Proposition 15. For any polynomial p, p vanishes at RFE if and only if every homogeneous
part of p vanishes at RFE.

Proof of Proposition 15. For any seed f for RFE and ζ ∈ F, ζ ·f is another seed for RFE over
the extended field F(ζ) of rational functions in ζ. Write p =

∑
d pd as a sum of homogeneous

polynomials, where pd has degree d. Since pd is homogeneous, pd(RFE(ζ·f)) = ζd·pd(RFE(f)).
Thus for every f ,

p(RFE(ζ · f)) =
∑

d

pd(RFE(ζ · f)) =
∑

d

ζd · pd(RFE(f))

is a polynomial qf (ζ) ∈ F[ζ]. If, for all f and d, pd(RFE(f)) = 0, then qf is the zero polynomial
for all f , so p(RFE(f)) = qf (1) = 0 for all f . Conversely, if p(RFE(z · f)) = qf (z) = 0 for all
f and z ∈ F, then qf is the zero polynomial for all f , so pd(RFE(f)) = 0 for all f and d. ◀

Here is how Theorem 3 follows from Lemma 14.

Proof of Theorem 3 from Lemma 14. Write p =
∑

d pd as a sum of homogeneous parts. By
Proposition 15, p ∈ Van[RFEk

l ] if and only if every pd ∈ Van[RFEk
l ]. The degree constraints

in Lemma 14 show that condition 1 in Theorem 3 is necessary. Thus, in order to establish
Theorem 3, we only need to consider polynomials p for which pd = 0 for d ≤ l and d ≥ n− k,
and show that for any such p, all the evaluations Equation (6) of p are zero if and only if for
all d, all the evaluations Equation (17) of pd are zero.

Fix K, L, Z as in the statements of Theorem 3 and Lemma 14, and let Y = [n] \ (K ∪ L).
Let λ ∈ FY be the point Equation (17), and for z ∈ Z, let z ·λ denote the point Equation (6).
We claim

(
∂p
∂L

)∣∣∣
K←0

vanishes at zλ for all z ∈ Z if and only if
(

∂pd

∂L

)∣∣∣
K←0

vanishes at λ for
all d. Let ζ be an indeterminate. We have(

∂p

∂L

)∣∣∣∣
K←0

(ζλ) =
∑

l<d<n−k

(
∂pd

∂L

)∣∣∣∣
K←0

(ζλ) =
∑

l<d<n−k

ζd−l

(
∂pd

∂L

)∣∣∣∣
K←0

(λ).

This is a polynomial in ζ, say q(ζ). Evaluating q at ζ ← z coincides with evaluating(
∂p
∂L

)∣∣∣
K←0

at zλ, while the coefficient of ζd−l coincides with evaluating
(

∂pd

∂L

)∣∣∣
K←0

at λ. q

factors as ζ · q′ where q′ has degree at most n− k − l − 2. Therefore q vanishes on any fixed
set of at least n− k − l − 1 nonzero field elements – in particular Z – if and only if it is the
zero polynomial. Theorem 3 follows. ◀

It remains to prove Lemma 14. We once again make use of the Zoom Lemma (Lemma 13).
Note that for multi-linear polynomials and disjoint K and L,

(
∂p
∂L

)∣∣∣
K←0

coincides with the
projection ⟨m∗ | p⟩K∪L where m∗ =

∏
i∈L xi. Moreover, since p is multi-linear, the condition

that m∗ be (K, L)-unminored in p is automatically satisfied: the only multi-linear monomial
m supported in K ∪ L with degxi

(m) ≤ degxi
(m∗) for all i ∈ K and degxi

(m) ≥ degxi
(m∗)

for all i ∈ L is m = m∗. This leads to the following specialization of the Zoom Lemma for
multi-linear polynomials with disjoint K and L:

▶ Lemma 16. Let K, L ⊆ [n] be disjoint, and let p ∈ F[x1, . . . , xn] be a multi-linear
polynomial. If ⟨

∏
i∈L xi | p⟩K∪L

is nonzero at the point

xi ← z ·

∏
i′∈K

(ai − ai′)∏
i′∈L

(ai − ai′) ∀i ∈ [n] \ (K ∪ L), (18)

for some z ∈ F then RFEk
l hits p with k = |K| and l = |L|.
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In proving Lemma 14, we will apply Lemma 16 only to homogeneous polynomials, in
which case we can take z = 1 without loss of generality. With that in mind, observe that
Equation (17) in Lemma 14 coincides with the substitution Equation (18) from Lemma 16.
So Lemma 14 amounts to saying that a homogeneous multilinear polynomial p is hit by
RFEk

l if and only if its degree is too low, its degree is too high, or else there is a way to
apply Lemma 16 to prove that p is hit by RFEk

l .

Proof of Lemma 14. Suppose that deg(p) ≤ l. Set L to be the indices of the variables
appearing in some monomial with nonzero coefficient in p, and set K ← ∅. ⟨

∏
i∈L xi | p⟩K∪L

is a nonzero constant. Lemma 16 applies, concluding that RFE0
l , and hence RFEk

l , hits p.
Suppose now that deg(p) ≥ n− k. Set K to be the indices of the variables not appearing

in some monomial with nonzero coefficient in p, and set L ← ∅. ⟨1 | p⟩K∪L is a single
monomial, namely the product of the variables indexed by [n] \ (K ∪ L). Lemma 16 applies.
Since none of the substitutions in Equation (18) is zero, we conclude that RFEk

0 , and hence
RFEk

l , hits p.
Now consider the case l < deg(p) < n−k. We start by writing p as a multi-linear element

of Van[RFEk
l ] plus a structured remainder term. It can be shown similarly to Lemma 8; we

include a proof below.

▷ Claim 17. Let l < d < n− k. Every homogeneous degree-d multi-linear polynomial can
be written as p0 + r where p0 and r are degree-d homogeneous multi-linear polynomials,
p0 ∈ Van[RFEk

l ] and r is (d + k − l, l)-cored.

Let p0, r be the result of applying the claim to p. By the contrapositive of Lemma 16, it
holds that for every pair of disjoint subsets K, L ⊆ [n] of sizes k and l respectively, the
projection ⟨

∏
i∈L xi | p0⟩K∪L

evaluates to zero at Equation (17). Since ⟨
∏

i∈L xi | p⟩K∪L
=

⟨
∏

i∈L xi | p0⟩K∪L
+ ⟨

∏
i∈L xi | r⟩K∪L

, it follows that evaluating ⟨
∏

i∈L xi | p⟩K∪L
at Equa-

tion (17) has the same result as evaluating ⟨
∏

i∈L xi | r⟩K∪L
. In light of this, Lemma 14

follows from the following claim, proven below:

▷ Claim 18. Let l < d < n − k. Let r be a nonzero degree-d homogeneous multi-linear
polynomial that is (d + k − l, l)-cored. There are disjoint sets K, L ⊆ [n] with |K| = k and
|L| = l so that ⟨

∏
i∈L xi | r⟩K∪L

is a single monomial.

Substituting Equation (17) into a single monomial yields a nonzero value. ◀

We complete the argument by proving Claim 17 and Claim 18. Claim 17 is similar
to Lemma 8, and is obtained using a variant of polynomial division suited to multi-linear
polynomials:

Proof of Claim 17. Let C ⊆ [n] have size d + k − l. Every multi-linear monomial m can
be uniquely factored as m0m1, where m0 and m1 are multi-linear monomials supported
in {xi : i ∈ C} and {xi : i ̸∈ C} respectively. Call m1 the non-core of m. We show the
following:

▷ Claim 19. Every multi-linear monomial with more than l variables in its non-core is
equivalent, modulo a multi-linear element of Van[RFEk

l ], to a linear combination of multi-
linear monomials that all have non-cores of lower degree.

This lets us prove Claim 17 as follows. Claim 19 implies that, for any multi-linear
polynomial p, we may, without changing p modulo multi-linear elements of Van[RFEk

l ],
eliminate any monomial in p that violates the (d + k − l, l)-cored condition, while possibly
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introducing multi-linear monomials with lower non-core degree. Thus we can systematically
eliminate all monomials that violate the cored condition by eliminating them in order of
decreasing non-core degree. After that, p is (d + k − l, l)-cored (with core {xi : i ∈ C}), and
Claim 17 follows.

We now show Claim 19. Factor m = m0m1 as above, and suppose there are more than
l variables in m1. Let L index some l + 1 of the variables in m1, let m′ be their product,
and let m′′ satisfy m = m′m′′. There are at most d − l − 1 variables in m0; let K be any
k + 1 elements of C that index variables not in m0. Combined, L and K have size exactly
k + l + 2. Consider q = EVCk

l [L ∪K], where the variables in L ∪K are ordered arbitrarily.
By Proposition 6, m′ appears as a monomial in q; moreover, every other monomial in q

has lower non-core degree. It follows that every monomial in m′′ · q either is m, or else has
lower non-core degree. Moreover, every such monomial is multi-linear and is supported in
{xi : i ∈ K ∪L}, which is disjoint from the support of m′′. As q is in Van[RFEk

l ], rearranging
the equation m′′ · q ≡ 0 (mod Van[RFEk

l ]) to isolate m gives the desired equivalence. ◁

Claim 18 is similar to the proof of Lemma 10:

Proof of Claim 18. Let C ⊆ [n] be the indeces of variables that form a core for r. Recall that
l < d < n− k. By shrinking C if need be, we can assume there is a multi-linear monomial
m with nonzero coefficient in r that involves exactly l variables not indexed by C. Let L

be the variables appearing in m that are not indexed by C. Now extend C to have size
d + k − l while remaining disjoint from L. There are precisely k variables indexed by C that
do not appear in m; let K be this set. Since r is multi-linear, homogeneous of degree d, and
(d + k − l, l)-cored with core C, there is exactly one monomial with nonzero coefficient in r

that is divisible by
∏

i∈L xi and by no variable in K: it is precisely m. It follows that the
projection ⟨

∏
i∈L xi | r⟩K∪L

is a single monomial. ◁

We conclude this section by detailing the connection between Theorem 3 and some prior
applications of the SV-generator.

Application to read-once formulas

We start with the theorem that SV1 hits read-once formulas. The original proof in [26]
goes by induction on the depth of F , showing that F (SV1) is nonconstant whenever F is
nonconstant, or, equivalently, that SV1 hits F + c for every c ∈ F whenever F is nonconstant.
The inductive step consists of two cases, depending on whether the top gate is a multiplication
gate or an addition gate. The case of a multiplication gate follows from the general property
that the product of a nonconstant polynomial with any nonzero polynomial is nonconstant.
The case of an addition gate, say F = F1 + F2, involves a clever analysis that uses the
variable-disjointness of F1 and F2 to show that F1(SV1) and F2(SV1) cannot cancel each
other out.

The case of an addition gate F = F1 + F2 alternately follows from Theorem 3 with k = 0
and l = 1 and the following two observations, each corresponding to one of the conditions in
Theorem 3. Both observations are immediate because of the variable-disjointness of F1 and
F2:
1. If at least one of F1 of F2 has a homogeneous component of degree 1 or at least n, then

so does F .
2. If for L = {i} ⊆ [n] at least one of the derivatives ∂F1

∂xi
or ∂F2

∂xi
is nonzero at some point

(6), then the same goes for ∂F
∂xi

.
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In particular, under the hypothesis that F1 + c is hit by RFE0
1 for all c ∈ F, F1 must violate

one of the conditions of Theorem 3 besides the one that requires F1 have no constant term.
Similarly for F2. By the above observations, any such a violation is inherited by F , and the
inductive step follows.

In the overview, we mentioned that we originally proved Theorem 3 from a perspective
that carries a geometric interpretation. The case of an addition gate in the above proof takes
a particularly clean form in that perspective, which we sketch now.

Recall from the overview that we can think of the variables as vertices, and multi-linear
monomials simplices made from those vertices. A multi-linear polynomial is a weighted
collection of such simplices with weights from F. In this view, Theorem 3 translates to the
following characterization: a weighted collection of simplices corresponds to a polynomial in
the vanishing ideal of RFE0

1 if and only if there are no simplices of zero, one, or all vertices,
and the remaining weights satisfy a certain system of linear equations. Crucially, for each
equation in the system, there is a vertex such that the equation reads only weights of the
simplices that contain that vertex. Meanwhile, the sum of two variable-disjoint polynomials
corresponds to taking the vertex-disjoint union of two weighted collections of simplices. It
follows directly that if either term in the sum violates a requirement besides the “no simplex
of zero vertices” requirement, then the sum violates the same requirement.

Zero-substitutions and partial derivatives

As mentioned in the overview, several prior papers demonstrated the utility of partial
derivatives and zero substitutions in the context of derandomizing PIT using the SV-
generator, especially for syntactically multi-linear models. By judiciously choosing variables
for those operations, these papers managed to simplify p and reduce PIT for p to PIT for
simpler instances, resulting in an efficient recursive algorithm. Such recursive arguments can
be naturally reformulated to use Theorem 3, according to the following prototype.

Let C be a family of multi-linear polynomials, such as those computable with some
bounded complexity in some syntactic model. For the argument, we break up C =

⋃
k,l Ck,l

such that for every k, l and p ∈ Ck,l, at least one of the following holds:
k = l = 0 and p is either zero or hit by RFE0

0.
k > 0 and there is a zero substitution such that the result is in Ck−1,l.
l > 0 and there is a derivative such that the result is in Ck,l−1.

We also make the mild assumption that each Ck,l is closed under rescaling variables. With
these hypotheses in place, we establish the following claim through direct applications of
Theorem 3:

▷ Claim 20. Under the above hypotheses, RFEk
l hits Ck,l for every k, l.

Proof. The proof is by induction on k and l. The base case is k = l = 0, where the claim is
immediate. When k > 0 or l > 0, our hypotheses are such that p either simplifies under a zero
substitution xi∗ ← 0 or a derivative ∂

∂xi∗ . We analyze each case separately. By condition 1
of Theorem 3, we may assume that p only has homogeneous parts with degrees in the range
l + 1, . . . , n− k − 1.

If p simplifies under a zero substitution xi∗ ← 0, then let p′ ∈ Ck−1,l be the simplified
polynomial where moreover the remaining variables have been rescaled according to
xi ← xi · (ai∗ − ai). That is, write p as p = qxi∗ + r where q and r are polynomials that
do not depend on xi∗ , and set p′(. . . , xi, . . . ) .= r(. . . , xi · (ai∗ − ai), . . . ). By induction,
p′ is hit by RFEk−1

l . We apply Theorem 3 to p′ with respect to the set of variables
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{x1, . . . , xi∗−1, xi∗+1, . . . , xn} and k replaced by k − 1. As p only has homogeneous parts
with degrees in the range l + 1, . . . , n− k − 1, so does p′, and condition 1 of Theorem 3
fails. By condition 2, there must be z ∈ Z and disjoint K, L ⊆ [n] \ {i} with |K| = k − 1
and |L| = l so that substituting (6) yields a nonzero value. It follows directly that, with
respect to the same z, K ′ = K∪{i}, and the same L, the substitution (6) yields a nonzero
value when applied to p.
If p simplifies under a partial derivative ∂

∂xi∗ , then a similar analysis works. Set p′ ∈ Ck,l−1
to be the simplification with variables rescaled according to xi ← xi/(ai∗ − ai). That
is, write p as p = qxi∗ + r where q and r are polynomials that do not depend on xi∗ ,
and set p′(. . . , xi, . . . ) .= q(. . . , xi/(ai∗ − ai), . . . ). By induction, p′ is hit by RFEk

l−1. We
apply Theorem 3 to p′ with respect to the set of variables {x1, . . . , xi∗−1, xi∗+1, . . . , xn}
and l replaced by l − 1. As p′ has homogeneous parts of degrees one less than p does,
condition 1 of Theorem 3 fails. By condition 2, there is z ∈ Z and disjoint K, L ⊆ [n]\{i}
with |K| = k and |L| = l − 1 so that substituting (6) yields a nonzero value. It follows
directly that, with respect to the same z, the same K, and L′ = L∪{i∗}, the substitution
(6) yields a nonzero value when applied to p. ◀

Theorem 3 tells us that derivatives and zero substitutions suffice to witness when a
multi-linear polynomial p is hit by SV or RFE. One can ask, if we know more information
about p, can we infer which derivatives and zero substitutions form a witness? In some cases
we know. For example, if p has a low-support monomial x1 · · ·xl, then it suffices to take
derivatives with respect to each of x1, . . . , xl. On the other hand, consider that whenever
two polynomials p and q are hit by SV, then so is their product pq. Given explicit witnesses
for p and q, we do not know how to obtain an explicit witness for the product pq.
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A RFE as a Hitting Set Generator

An ambiguity in Definition 1 is how to parameterize the seed by scalars. There are qualitatively
distinct ways to go about this. They are all equivalent over large enough fields, however,
so the option to choose is a source of convenience. Some natural parameterizations are the
following:
Coefficients. Select scalars g0, . . . , gk, h0, . . . , hl ∈ F and set

f(α) = gkαk + gk−1αk−1 + · · ·+ g1α + g0

hlαl + hl−1αl−1 + · · ·+ h1α + h0
,

ignoring choices of h0, . . . , hl for which the denominator vanishes on some ax.
Evaluations. Fix two collections, B = {b1, . . . , bk+1} and C = {c1, . . . , cl+1}, each of distinct

scalars from F. Then select scalars g1, . . . , gk+1 and h1, . . . , hl+1 and set

f(α) = g(α)
h(α)

where g is the unique degree-k polynomial with g(b1) = g1, g(b2) = g2, . . . , g(bk+1) = gk+1,
and h is defined similarly with respect to C. Choices of h1, . . . , hl+1 that imply h(ai) = 0
for some i ∈ [n] are ignored.
Note that an explicit formula for g and h in terms of the parameters can be obtained
using the Lagrange interpolants with respect to B and C.

Roots. Select scalars z, s1, . . . , sk′ , t1, . . . , tl′ ∈ F for some k′ ≤ k and l′ ≤ l and set

f(α) = z · (α− s1) · · · · · (α− sk′)
(α− t1) · · · · · (α− tl′) ,

where {t1, . . . , tl′} is disjoint from {ai : i ∈ [n]}.
In fact, it is no loss of power to restrict to k′ = k and l′ = l.

Hybrids are of course possible, too. For example, Lemma 23 uses the evaluations parameter-
ization for the numerator and roots parameterization for the denominator.

Quantitative bounds on the number of substitutions to perform follow from the following
extension of the corresponding well-known result for polynomials [29, 8, 35, 32]:

▶ Lemma 21. Let F be field, and f = g/h ∈ F(τ1, . . . , τl) be a rational function in l variables
with deg(g) ≤ d and deg(h) ≤ d. Let S ⊆ F be finite. Then the probability that f vanishes
or is undefined when each τi is substituted by a uniformly random element of S is at most
2d/|S|.
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If F is not large enough to allow making the probability bound in Lemma 21 sufficiently
small, we work with a sufficiently large extension field of F instead of F itself.

In this paper we analyze RFE by using fresh formal variables in the above parameteriza-
tions of the seed, and calculate in the field of rational functions in those variables. Evaluating
p(RFEk

l ) for a polynomial p thus yields a rational function in those variables. Lemma 21
justifies that as long as F is large enough, this rational function is the zero rational function
if and only if for every choice of scalars for the seed parameters, p(RFEk

l ) is zero.

B Equivalence between RFE and SV

The Shpilka-Volkovich generator can be defined as follows in the format of our definition of
RFE.

▶ Definition 22 (SV Generator). The Shpilka–Volkovich (SV) Generator for polynomials in
the variables x1, . . . , xn is parameterized by the following data:

For each i ∈ [n], a distinct ai ∈ F.
A positive integer, l.

The generator takes as seed l pairs of scalars (y1, z1), . . . , (yl, zl) and substitutes

xi ←
l∑

j=1

zj ·
∏

i′∈[n]\{i}

yj − ai′

ai − ai′

 .

We abbreviate the generator to SVl or just SV.
Shpilka and Volkovich designed the mapping SVl so that any selection of l of the variables

could remain independent while the others were forced to zero. This can be viewed as an
algebraic version of l-wise independence. SV1 was realized with two seed variables, y and
z, using Lagrange interpolation. The fresh variable y enables selecting one of the original
variables xi, namely by setting y = ai. The selected variable xi is then set to z, while the
other variables are set to zero. For larger l, SVl is the sum of l independent copies of SV1.

We now formally state and argue the close relationship between SVl and RFEl−1
l that

we sketched in section 1.

▶ Lemma 23. Let {x1, . . . , xn} be a set of variables and l ≥ 1. There is an invertible diagonal
transformation A : Fn → Fn such that, for any polynomial p ∈ F[x1, . . . , xn], p(SVl) = 0 if
and only if (p ◦A)(RFEl−1

l ) = 0.

In particular, the vanishing ideals of RFEl−1
l and of SVl are the same up to the rescaling of

Lemma 23.

Proof of Lemma 23. Let F̂ be the field of rational functions in indeterminates υ1, . . . , υl,
ζ1, . . . , ζl over F. A polynomial p ∈ F[x1, . . . , xn] has p(SVl) = 0 if and only if p vanishes at
the point l∑

j=1
ζj

∏
i′∈[n]\{i}

υj − ai′

ai − ai′
: i ∈ [n]

 ∈ F̂n. (19)

Set A : Fn → Fn to be the diagonal linear transformation that divides the coordinate for xi

by
∏

i′∈[n]\{i}(ai − ai′). It is invertible. Applying A−1 to Equation (19) yields the point l∑
j=1

ζj

∏
i′∈[n]\{i}

(υj − ai′) : i ∈ [n]

 =

 l∑
j=1

ζj

∏
i′∈[n]

(υj − ai′)

 1
υj − ai

: i ∈ [n]

 . (20)
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p vanishes at Equation (19) if and only if p ◦A vanishes at Equation (20). Now let F̂′ be the
field of rational functions in indeterminates τ1, . . . , τl, σ1, . . . , σl over F. After the invertible
change of variables

ζj ←
1∏

i′∈[n](τj − ai′) ·
−σj∏

j′ ̸=j(τj − τj′) and υj ← τj

(20) becomes l∑
j=1

σj(∏
j′ ̸=j τj − τj′

) 1
ai − τj

: i ∈ [n]

 =

∑l
j=1 σj

∏
j′ ̸=j

ai−τj′

τj−τj′∏l
j=1 ai − τj

: i ∈ [n]

 ∈ F̂′n. (21)

Since the change of variables is invertible, p ◦A vanishes at Equation (20) if and only if it
vanishes at Equation (21).

Now, viewing σ1, . . . , σl, τ1, . . . , τl as seed variables, observe that the right-hand side of
Equation (21) is RFEl−1

l (g/h) where g is parameterized by evaluations (g(τj) = σj) and h is
parameterized by roots (τ1, . . . , τl). (See Appendix A for a discussion on parameterizations
of RFE.) It follows that p ◦A vanishes at Equation (21) if and only if (p ◦A)(RFEl−1

l ) = 0.
The lemma follows. ◀
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