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...Hungerford’s exposition is clear enough that an average graduate
student can read the text on his own and understand most of it. ...
and almost every section is followed by a long list of exercises of
varying degrees of difficulty. ...

–American Mathematical Monthly.

Anyone who has endured a 600 level Algebra course using Hungerford’s
Algebra is no doubt familiar with ability of one Hungerford problem to remain
unsolved for most of the term only to one day surprise you with an elegant and
obvious solution. While such episodes have their glorious endings, the process
of waiting for “an answer from the sky” can be tedious and hinder exploration of
new material. A student who dares lookup a reference to the problem is often
surprised to find very few solutions to Hungerford exercises are available – at
least they are not listed as solutions to these exercises and so are hard to find.
The following material seeks to solve this problem.

This is largely the product of work done through out the terms of a 600
level Algebra course at Portland State University taught by Associate Profes-
sor F.R. Beyl. The style of the proofs and examples reflect his philosophy for
exercises: while many of the exercises are bombastic and tangential to the
main material, they are the types of proofs everyone does once in their lives as
a reference for themselves since they will never be called out explicitly in the
literature. To quote Professor Beyl “...I can’t make you go back to Adam and
Eve, but you should know how to do this when you have to...” To this end the
proofs attempt to make use only of the material introduced by Hungerford, ex-
cept with noted exceptions, and only the material presented to that point in the
book – although many proofs are inspired by latter discovers that simplify the
understanding. Some effort has been placed at referencing the theorems and
previous exercises used in various proofs but many remain implicitly inferred.

The structural design of the exercises begins with the statement of the exer-
cise, as found in Hungerford, enumerated identically. For the purpose of cross
referencing and ease of use, a short descriptive title is added to each exercise.
This title can be found in both the index and table of contents. Next a short
paragraph lists some hints about the proofs employed by the authors. The
problems are rated for difficulty on a scale of 1 to 5, with 1 the easiest and 5
the hardest. This scale is somewhat arbitrary but attempts to rate problems
relative the the section material.

There are 825 exercises in Hungerford’s Algebra; so there are mistaken
solutions, and even the rare misprint and incorrect statements of the problem.
If you find a mistake in the solutions or know of a better, appropriate, solution,
please contact us with the relevant sources. Finally while many of the solutions
reflect our own creativity, it is inevitable that many solutions borrow extensively
from other authors. Where ever this is known we have cited the sources. For
those we have missed, we here recognise their work and offer our apologies
for miss appropriating it.
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.7.1 Lattice.
Hint(2/5): (a) Use intersec-
tions and unions to define the
greatest lower bound and least
upper bound. (b) Construct a
lattice with no unique candi-
date for greatest lower bound
or least upper bound. (Refer
to Appendix ?? for an expla-
nation of a graphic approach
to defining partial orderings.)
(c) The integers are a simple
example. Use pictures to illus-
trate two maximal elements.

Let (A,≤) be a partially ordered set and B a nonempty subset. A lower bound
of B is an element d ∈ A such that d ≤ b for every b ∈ B. A greatest lower
bound (g.l.b.) of B is a lower bound d0 of B such that d ≤ d0 for every other
lower bound d of B. A least upper bound (l.u.b.) of B is an upper bound t0
of B such that t0 ≤ t for every other upper bound t of B. (A,≤) is a lattice if
for all a, b ∈ A the set {a, b} has both a greatest lower bound and a least upper
bound. 1

(a) If S 6= ∅, then the power set P (S) ordered by set-theoretic inclusion is a
lattice, which has a unique maximal element.

(b) Give an example of a partially ordered set which is not a lattice.

(c) Give an example of a lattice with no maximal element and an example of a
partially ordered set with two maximal elements.

(a) Proof: Consider the power set of a nonempty set S. Since S is nonempty
so is its power set. Therefore let A,B be subset of S (that is, elements of
P (S)). There intersection A ∩ B contains only elements of S and so it is
included in P (S). By construction, A ∩ B ⊆ A and A ∩ B ⊆ B. Moreover

1Given two greatest lower bounds, d0 and d′0, by their definitions d0 ≤ d′0 and d′0 ≤ d0

forcing d0 = d′0. In the same way least upper bounds are unique.

11



12 Prerequisites and Preliminaries

given any subset C of S such that C ⊆ A and C ⊆ B, it follows by the
definition of the intersection that C is contained in the intersection. Thus
A ∩B is the greatest lower bound of A and B and is contained in P (S).
Following suit, the set A ∪ B contains only elements of S and so it is a
subset of S and even an element of P (S). Again A ∪ B is an upper bound
of A and B because it contains both sets by its definition. Once a subset
C of S is an upper bound of both A and B it must contain all elements of
A and B and so A ∪ B ⊆ C. Therefore A ∪ B is the least upper bound of
A and B and is contained in P (S). Therefore P (S) is a lattice under set
inclusion.

The set S is a subset of S and so included in P (S). Given any subset A,
A ∪ S = S, so in fact S is a maximal element of P (S). Furthermore any
subset, M , that is maximal still has the property that M ∪S = S. Therefore
either S is greater than M contradicting the maximality of M , or M is simply
S itself. Therefore P (S) has a unique maximal element. By the analogous
argument ∅ is the minimal element of P (S). ¤

(b) Example: Define a relation on {−1, 0, 1} as 0 < −1 and 0 < 1. Typically
this example is drawn as follows:

−−−−− −−−−−−

−1 1

0

Certainly a ≤ a. Whenever a 6= b either a < b or b < a exclusively; thus,
the relation is antisymmetric by the contrapositive. Finally a ≤ b and b ≤ c
implies either a = b or b = c hence a ≤ c thus verifying the relation is a
partial ordering.

However the ordering does not produce a lattice since {−1, 1} has no up-
per bounds and thus no least upper bound. ¤

(c) Example: The elements of N ordered in the traditional way form a lat-
tice. This can be seen because given any two elements m,n ∈ N, either
m ≤ n or n ≤ m (which means min and max functions on pairs are well-
defined) so the greatest lower bound is min{m,n} and least upper bound
is max{m,n}.
Suppose N has a maximal element M . By the Peano Axioms M + 1 ∈ N
and furthermore M + 1 6= M . Yet the ordering states M < M + 1 so we
contradict the maximality of M . Therefore N has no maximal element.

Return the ordering in part (b). The size of the example makes it visible
that −1 and 1 are maximal elements in the ordering, and they are certainly
distinct. ¤

.7.2 Complete.
Hint(5/5): Consider a chain
a ≤ f(a) ≤ f(f(a) ≤ · · · in
A, for some a ∈ A.

A lattice (A,≤) (see Exercise-.7) is said to be complete if every nonempty
subset of A has both a least upper bound and a greatest lower bound. A map
of partially ordered sets f : A → B is said to preserve order if a ≤ a′ in A
implies f(a) ≤ f(a′) in B. Prove that an order-preserving map f of a complete
lattice A onto itself has at least one fixed element (that is, an a ∈ A such that
f(a) = a).
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Proof: Given the entire set A as a subset we see A must have a greatest lower
bound and least upper bound – that is unique top and bottom elements. The
bottom element b has the property that b ≤ f(b). Thus we may construct a
chain

b ≤ f(b) ≤ f(f(b)) ≤ · · · ≤ fn(b) ≤ · · · .

This chains is a nonempty subset of A so it has a least upper bound f∞(b).
Clearly fn(b) ≤ f∞(b) for all n ∈ N; therefore, fn+1(b) ≤ f(f∞(b)) for all n ∈ N
(by applying the order preserving map f ) – which is way of stating f(f∞(b))
is an upper bound of the chain as well. Since f∞(b) was picked as the least
upper bound it follows f∞(b) ≤ f(f∞(b)).

We are now able establish the existence of a chain of chains:

b ≤ · · · ≤ fn(b) ≤ · · ·
≤ f∞(b) ≤ · · · ≤ fn(f∞(b)) ≤ · · ·
≤ f∞(f∞(b)) ≤ · · · ≤ fn(f∞(f∞(b))) ≤ · · ·
...

This chain must stop since A has a top element. Once the chain stops we have
the result that the top element a in the chain has the property that f(a) = a. ¤

.7.3 Well-ordering.
Hint(1/5): Take care in
showing the ordering is well-
defined; remember that frac-
tions are equivalence classes.
Consider a lexicographic or-
dering on reduced fractions.

Exhibit a well-ordering of the set Q of rational numbers.
Example: To avoid confusion let ≤ be the traditional order of Z and define a
new ordering v as follows: a

b v c
d if a

(a,b) < c
(c,d) or when a

(a,b) = c
(c,d)and

b
(a,b) ≤ d

(c,d) . Since the greatest common divisor is unique given any two in-

tegers a, b or c, d; the elements a
(a,b) , b

(a,b) , c
(c,d) , and d

(c,d) are defined, and by
the properties of G.C.D. they are integers ordered according to the traditional
ordering of Z. Furthermore we now see a

b = a
(a,b)/

b
(a,b) which is the fraction ex-

pressed in lowest terms – notice also since b 6= 0 neither does (a, b) so division
is defined. Therefore v is equivalent to testing the unique reduced fractions of
the equivalence classes a

b and c
d . Thus the order is nothing more than the lexi-

cographic ordering of the reduced fractions. We will now show a lexicographic
extension of a well-ordering is well-ordered.

Suppose S is a partially ordered set. Extend the ordering to S × S by
(a, b) ≤ (c, d) if a < c or when a = c, b ≤ c.

• a = a and b ≤ b in S so (a, b) ≤ (a, b).

• Suppose (a, b) ≤ (c, d) and (c, d) ≤ (a, b). Then: a < c and c < a, which
is a contradiction; or a = c and a < c, again a contradiction; or lastly a = c
and c = a. Now that a = c and c = a it follows: b ≤ d and d ≤ b, so by the
antisymmetry of ≤ in S, b = d. Therefore (a, b) = (c, d).

• Consider (a, b) ≤ (c, d) and (c, d) ≤ (e, f). Thus one of the following are
true:

a < c c < e a < e (a, b) ≤ (e, f)
a < c c = e a < e (a, b) ≤ (e, f)
a = c c < e a < e (a, b) ≤ (e, f)
a = c c = e b ≤ d d ≤ e a = e, b ≤ e (a, b) ≤ (e, f)

Therefore ≤ is transitive.
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So ≤S×S is a partial ordering whenever ≤ in S is a partial ordering.
Suppose S is linearly ordered. Given any two elements (a, b) and (c, d) in

S × S, it follows a < c, a = c, or c < a by the linear ordering in S. Therefore
(a, b) < (c, d) in case one and (c, d) < (a, b) in case three. In case two, again
we know b < d, b = d, or d < b. Thus either (a, b) < (c, d), (a, b) = (c, d), or
(c, d) < (a, b). Therefore S × S is linearly ordered.

Finally suppose S is well-ordered. Take any nonempty subset A of S × S.
Index the elements of A = {(ai, bi) | i ∈ I}. The set {ai | i ∈ I} is a subset of
S so it has a least element a, as does the set {bi | i ∈ I}, call it b; therefore,
(a, b) ∈ A; furthermore, a ≤ ai for all i ∈ I and b ≤ bi, so (a, b) ≤ (ai, bi) for
all i ∈ I. So every nonempty subset of S × S has a least element; so S × S is
well-ordered.

Returning to Q, we now see the well-ordering of Z makes v a well-ordering
of Q. ¤

.7.4 Choice Function.
Hint(3/5): Consider the
product of all nonempty sub-
sets of S. An element of this
product is a choice function by
Introduction, Definition-5.1.

Let S be a set. A choice function for S is a function f from the set of all
nonempty subsets of S to S such that f(A) ∈ A for all A 6= ∅, A ⊆ S. Show
that the Axiom of Choice is equivalent to the statement that every set S has a
choice function.
Proof: (⇒) Suppose the Axiom of Choice is true.

When S = ∅, the choice function has no definition since there are no
nonempty subsets of S. Therefore the function exists vacuously. Suppose
instead S 6= ∅.

The set of all nonempty subsets of S is nonempty since S is nonempty.
Index these sets by I = P (S)− {∅} as follows: {Ai = i | i ∈ I}. So we have a
family of nonempty sets indexed by a nonempty set so we may take its product
to apply the Axiom of Choice:

∏
i∈I Ai 6= ∅. We may now assume there is an

element, f : I → ⋃
i∈I Ai, in the product. Notice S =

⋃
i∈I Ai. We know by

Introduction, Definition-5.1, that f(i) ∈ Ai for all i ∈ I. Now recall I is the set
of all nonempty subsets of S, so in fact, given any nonempty subset A of S,
f(A) ∈ A. Thus f is a choice function of S.

(⇐) Suppose every set has a choice function. Given any family of nonempty
sets F = {Ai | i ∈ I} indexed by a nonempty set, define S =

⋃
i∈I Ai. Since S

is a set it has a choice function f : P (S)− {∅} → S such that f(A) ∈ A for all
A ⊆ S, A 6= ∅. Now define the mapping g : I → S by g(i) = f(Ai). Since every
Ai is uniquely indexed and f is well-defined, we know g to be well-defined. Fol-
lowing Introduction, Definition-5.1, g is an element of the product

∏
i∈I Ai; so

the product is nonempty. Therefore every product of nonempty sets, indexed
by a nonempty set, is none empty; the Axiom of Choice is true. ¤

.7.5 Semi-Lexicographic Order.
Hint(2/5): Use the linear or-
dering properties of the real
line.

Let S be the set of all points (x, y) in the plane with y ≤ 0. Define an ordering by
(x1, y1) ≤ (x2, y2) ⇔ x1 = x2 and y1 ≤ y2. Show that this is a partial ordering
of S, and that S has infinitely many maximal elements.
Proof: Given any order pairs (a, b), (c, d) and (e, f) the ordering (a, b) ≤ (c, d) is
well-defined since both the relations a = c and b ≤ d are well-defined. Notably
a = a and b ≤ b so (a, b) ≤ (a, b) so the new relation is reflexive. Assuming
(a, b) ≤ (c, d) and also (c, d) ≤ (a, b), then by the first we know a = c and b ≤ d,
and by the second also d ≤ b so the antisymmetry of ≤ in R shows b = d. Thus
(a, b) = (c, d) so the new relation is antisymmetric. Finally when (a, b) ≤ (c, d)
and (c, d) ≤ (e, f) the transitivity of equivalence shows a = c, c = d implies
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a = d. Likewise the transitivity of ≤ in R allows the assumed relations b ≤ d
and d ≤ e to imply b ≤ e. Therefore (a, b) ≤ (e, f) and so ≤ in S is transitive; so
furthermore it is a partial ordering. ¤
Example: The elements (n, 0) are comparable only to elements of the form
(n, y), where y ≤ 0 and n ∈ Z. However S allows (a, b) only if b ≤ 0 thus ev-
ery comparable element of (n, 0) is bounded above by (n, 0). Since (n, 0) ∈ S
it follows (n, 0) is a maximal element in S. As already presented, (n, 0) is
comparable with (m, 0) only if n = m. Since the integers have infinitely many
elements, there are correspondingly infinitely many maximal elements of the
form (n, 0). Therefore S has infinitely many maximal elements. ¤

.7.6 Projections.
Hint(1/5): Using the axiom
of choice, choose a function
f in the product to define a
new product element fa, for
each a ∈ Ak, with the prop-
erty fa(k) = a.

Prove that if all the sets in the family {Ai | i ∈ I 6= ∅} are nonempty, then each
of the projections πk :

∏
i∈I Ai → Ak is surjective.

Proof: By Introduction, Definition-5.1, the product
∏

i∈I Ai is the collection of
all functions of the form f : I → ⋃

i∈I Ai with the property that f(i) ∈ Ai for
all i ∈ I. By the Axiom of Choice – available since each Ai is nonempty and
the product is indexed by a nonempty set I– it follows the product is nonempty.
Therefore choose an element f : I → ⋃

i∈I Ai in
∏

i∈I Ai. Given any a ∈ Ak,
we can define a new mapping as follows:

fa(i) =
{

f(i) i 6= k,
a i = k

.

This function is well-defined as each image is still unique to the given domain
element. Therefore fa is in the product. The projection map πk now takes fa to
fa(k) = a; thus, the image of πk is Ai, so each projection is surjective. ¤

.7.7 Successors.
Hint(2/5): Use the proper-
ties of linear ordering to show
uniqueness of a maximal ele-
ment; such an element has no
immediate successor.

Let (A,≤) be a linearly ordered set. The immediate successor of a ∈ A (if it
exists) is the least element in the set {x ∈ A | a < x}. Prove that if A is well-
ordered by ≤, then at most one element of A has no immediate successor.
Give an example of a linearly ordered set in which precisely two elements have
no immediate successor.

Proof: Suppose A is well-ordered by ≤. Given any element x ∈ A, the set
Ax = {x ∈ A | a < x} is nonempty if even one element in A is greater than
x; that is, x is not a maximal element. So x is not maximal so that Ax is a
nonempty set. Since it is a subset of a well-ordered set it has a least element
x+ which lies in A. This least element is unique since well-ordered sets are
linearly ordered. 2 Therefore x+ is a well-defined immediate successor of x.

Now consider M to be a maximal element in A. The element M+ is no
longer defined since AM is empty. Thus if A has a maximal element, then
this element has no immediate successor. In the other direction, if x ∈ A has
no immediate successor, then Ax has no least element. But since A is well-
ordered this occurs only when Ax is empty; thus x is maximal in A.

A is a linearly ordered set; so given any two maximal elements M and N ,
either M < N , M = N , or N < M . Either of the extreme cases violates the
maximality of M or N ; thus we conclude M = N . Therefore at most one ele-
ment in A has no immediate successor. ¤

2Given min{a, b} always exists, then either a ≤ b or b ≤ a.



16 Prerequisites and Preliminaries

Example: Consider the set A = {0, . . . , 1/n, . . . , 1/2, 1} with the standard or-
dering of R. If a 0+ existed it would be the least element of (0, 1] ∩ A, and so
a lower bound of (1/n)n∈Z+ . However this sequence is bounded below only by
0, since it converges to 0. Thus (0, 1] ∩ A does not have a least element; so 0
has no immediate successor.

The element 1 is maximal, so by the above argument is has no immediate
successor.

Given any x ∈ A, x 6= 0, 1, then x = 1/n for some n > 1. Therefore 1/(n−1)
is defined and also included in A. The ordering of fractions makes it evident
that 1/n < 1/(n− 1) and in our set this is the immediate successor. Therefore
A has exactly two elements with no immediate successor. ¤
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.8.1 Pigeon-Hole Principle.
Hint(5/5): Make sure not to
assume what is to be proved.Let I0 6= ∅ and for each n ∈ Z+ let In = {1, 2, 3, . . . , n}.

(a) In is not equipollent to any of its proper subsets [Hint: induction.]

(b) Im and In are equipollent if and only if m = n.

(c) Im is equipollent to a subset of In but In is not equipollent to any subset of
Im if and only if m < n.

Proof:

(a) There are no proper subsets of I0 so vacuously it is not equipollent to any
proper subsets.

Now suppose every proper subset of In is not equipollent to In for some
positive integer n. Given any subset J of In+1, the map ι : J → In+1

defined by x 7→ x is well-defined and injective. Therefore J ¹ In+1 by In-
troduction, Definition-8.4, and in particular In ¹ In+1. Consider now that
J is a proper subset of In+1 (that is, J 6= In+1) and that furthermore it is
equipollent to In+1. Then there exists a bijection f : In+1 → J ; f |In re-
mains injective; therefore, In ¹ J by Introduction, Definition-8.4. Introduc-
tion, Theorem-8.7, describes how cardinal numbers are linearly ordered;
therefore, In ¹ J ¹ In+1. But recall J 6= In+1 so n ¹ J ≺ n + 1. Since
elements of a set are counted as wholes it follows |J | = n. Therefore we
need only consider if In is equipollent to In+1.

Suppose g : In+1 → In is a bijection; again g|In remains injective. Fur-
thermore, g|In is surjective onto In − {g(n + 1)}. Since g is assumed to be
well-defined g(n + 1) exists; therefore In − {g(n + 1)} 6= In and is in fact a
proper subgroup. What we now have constructed is a bijection from In to a
proper subset, which requires In be equipollent to a proper subset. How-
ever our induction hypothesis makes this impossible; therefore, g cannot
exist so In is not equipollent to In+1.

Therefore by induction, In is not equipollent to a proper subset for any
n ∈ N.

(b) (⇐) Given m = n, the definitions of Im and In are identical so Im = In;
therefore Im and In are equipollent.
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(⇒) Suppose Im and In are equipollent form some m and n in N. By the
well-ordering of the natural numbers we know m and n to be comparable
so without loss of generality let m ≤ n. This allows us to assert Im ⊆ In.
By part (a) we know In is not equipollent to any proper subset thus leaving
only the case that Im = In. However the definition of both is clear m is the
greatest element of Im and n that of In, so m = n since the sets are no the
same.

(c) (⇐) Suppose m < n and consider the sets Im and In. By construction
Im ⊆ In and by part (b) it is a subset not equal to In. Therefore Im is
equipollent to a subset of In as it is a proper subset. However if In is
equipollent to a subset of Im, then it is equipollent to a proper subset of
itself which violates the result of part (a). Therefore In is not equipollent to
any subset of Im.
(⇒) Now suppose Im is equipollent to a subset of In but In is not equipol-
lent to any subset of Im. Since Im is a subset of itself, In is not equipollent
to Im which by part (b) ensures m 6= n – that is m < n or m > n. If m > n
then In ⊆ Im and so Im is equipollent to a subset of a proper subset –
something that cannot occur by part (a); therefore, m < n.

¤

.8.2 Cardinality.
Hint(2/5): Use Introduction,
Theorem-8.8 for part (a). Part
(b) follows from part (a) and
Exercise-.8.

(a) Every infinite set is equipollent to one of its proper subsets.

(b) A set is finite if and only if it is not equipollent to one of its proper subsets
[see Exercise-.8].

Proof:

(a) By Introduction, Theorem-8.8 we know every infinite set A has a denumer-
able subset D. A denumerable subset by its definition is equipollent to N.
The proper subset Z+ is equipollent to N by the map n 7→ n + 1 which is
invertible through the inverse map n 7→ n − 1. Putting the pieces together
we now have: a bijection f : D → N and another g : N → Z+; a natural
inclusion ι : Z+ ↪→ N of a proper subset; and therefore a proper subset
D′ = f−1(ι(Z+)) of D together with a bijection f−1gf : D → D′. Defining
A′ = A ∩ (D−D′) we may construct a final function h : A → A′ as follows:

h(a) =
{

f−1gf(a), a ∈ D
a.

The map is well-defined since it is composed of well-defined maps. Clearly
h(D) = D′ and h(A−D) = A−D so h(A) = A′ forcing h to be surjective.
Also if x, y ∈ D then f−1gf(x) = h(x) = h(y) = f−1gf(y) so x = y; when
x, y ∈ A − D then x = h(x) = h(y) = y; and finally when x ∈ A − D and
y ∈ D, then h(x) ∈ D′ and h(y) = A′ −D′ so h(x) 6= h(y). In conclusion,
h is injective, and so even bijective; therefore, A is equipollent to A′ where
A′ is a proper subset of A.

(b) (⇐) This direction is simply the contrapositive of part (a).
(⇒) A set A is finite only if it is equipollent (say by f ) to the set In of
Exercise-.8 for some n ∈ N, by definition. In Exercise-.8 we settled that
In could not be equipollent to a proper subset. If A is equipollent by g to
a proper subset B, then the map fgf−1 is a bijection from In to a proper
subset of In – this cannot occur; thus g cannot exist.

¤
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.8.3 Countable.
Hint(2/5): Think of N as the
disjoint union of even and odd
numbers. For part (b) follow
the given hint.

(a) Z is a denumerable set.

(b) The set Q of rational numbers is denumerable. [Hint: show that |Z| ≤ |Q| ≤
|Z× Z| = |Z|.]

(a) Proof: We define a bijection between the integers and the natural numbers
by using even numbers to index non-negative integers and odd to index
negatives. 3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

←−−−−−−→ ←−−−−−−→ ←−−−−−−→ ←−−−−−−→ ←−−−−−−→ ←−−−−−−→ ←−−−−−−→ ←−−−−−−→ ←−−−−−−→

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

2n + 1 5 3 1 0 2 4 6 2n

−(n + 1) −3 −2 −1 0 1 2 3 n

So N and Z are equipollent making Z is denumerable. ¤

(b) Proof: The set of integers are typically identified with the fractions n/1 inQ,
so we have the natural injection f : Z→ Q defined as n 7→ n/1. Next define
g : Q→ Z× Z as a/b 7→ (a/(a, b), b/(a, b)). Since b 6= 0 neither does (a, b),
and thus (a, b) divides both a and b – the function does map into Z × Z.
Also the definition of the G.C.D. demonstrates that the fraction a/(a,b)

b/(a,b) is in
lowest terms; thus, the function is well-defined as each equivalent fraction
maps to the same image. Also g(a/b) = g(c/d) implies a/(a, b) = c/(c, d)
and b/(a, b) = d/(c, d) so

a

b
=

a/(a, b)
b/(a, b)

=
c/(c, d)
d/(c, d)

=
c

d
,

which again is valid since b, d, (a, b), and (c, d) are all nonzero. Therefore
g is injective. By Introduction, Theorem-8.12, |Z × Z| = |Z|. Thus we
have |Z| ≤ |Q| and |Q| ≤ |Z| so by the antisymmetry of cardinal ordering
|Z| = |Q|. Therefore Q is denumerable. ¤

.8.4 Cardinal Arithmetic.
Hint(1/5): Use the bijections
of the components to con-
struct bijections on the prod-
uct and sum. Introduction,
Theorem-5.2 may be helpful.

If A,A′, B,B′ are sets such that |A| = |A′| and |B| = |B′|, then |A × B| =
|A′×B′|. If in addition A∩B = ∅ = A′∩B′, then |A∪B| = |A′∪B′|. Therefore
multiplication and addition of cardinals is well-defined.

Proof: Given |A| = |A′| and |B| = |B′| we may assume the following bijections
exist: f : A → A′ and g : B → B′. Using the universal property of products we

3 Using the division algorithm we know every natural number to be of the form 2m + r
for some unique m and r, with r = 0, 1. If r = 0 we say the number is even; otherwise, it
is odd. For every even number m, m + 1 is odd; therefore, even and odd numbers are in a
one-to-one correspondence; moreover, they partition the set of natural numbers and so they
are both infinite sets.
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obtain the following commutative diagram:

−−−−−→

πA

−−−−−→

πB

−−−−−−−→

f

−−−−−−−→

h

−−−−−−−→

g

−−−−→

πA′

−−−−→

πB′

A A×B B

A′ A′ ×B′ B′.

But since fπA is a map into A′ and gπB a map into B′, Introduction, Theorem-
5.2 states there is a unique map h : A×B → A′×B′, as shown in the diagram,
such that fπA = πA′h and gπB = πB′h. Therefore if h(a, b) = h(c, d) then
f(a) = f(c), which, since f is injective, implies a = c, and symmetrically b = d.
Therefore h is injective. Given (a′, b′) ∈ A′ × B′ there exists elements a ∈ A
and b ∈ B such that f(a) = a′ and g(b) = b′ since both functions are surjective.
Therefore h(a, b) = (f(a), g(b)) = (a′, b′) so h is surjective, and thus even bijec-
tive. Therefore |A×B| = |A′ ×B′|.

Now assume A and B are disjoint as well as A′ and B′; maintain the same
bijections of the sets. We define a new mapping h : A ∪B → A′ ∪B′

h(x) =
{

f(x) x ∈ A,
g(x) x ∈ B

.

Since A and B are disjoint, this piecewise definition of h is well-defined. There-
fore h is a function. Given any x ∈ A′ ∪ B′, the is union is disjoint so x ∈ A′ or
in B′ exclusively; thus, x = f(a) for some element a ∈ A, or x = g(b) for some
element b ∈ B and so x = f(y) for some y ∈ A ∪ B; h is surjective. Suppose
h(x) = h(y), then both are in A or B exclusively, and with out loss of generality
suppose they are in A. f(x) = h(x) = h(y) = f(y) so x = y, proving h is
injective; therefore, h is bijective and |A ∪B| = |A′ ∪B′| ¤

.8.5 Cardinal Arithmetic Properties.
Hint(2/5): Replace the car-
dinals with sets. Exercise-.8
demonstrates any selection is
equivalent to showing for all
sets of the given cardinality.

For all cardinal numbers α, β, γ:

(a) α + β = β + α and αβ = βα (commutative laws).

(b) (α + β) + γ = α + (β + γ) and (αβ)γ = α(βγ) (associative laws).

(c) α(β + γ) = αβ + αγ and (α + β)γ = αγ + βγ (distributive laws).

(d) α + 0 = α and α1 = α.

(e) If α 6= 0, then there is no β such that α+β = 0 and if α 6= 1, then there is no
β such that αβ = 1. Therefore subtraction and division of cardinal numbers
cannot be defined.

Proof: Let A,B and C be a sets with |A| = α, |B| = β and |C| = γ. Exercise-.8
illustrates why this choice may be arbitrary. For simplicity assume the sets are
all disjoint.

(a) By definition |A ∪ B| = α + β – recall A ∩ B = ∅. Since A ∪ B is the least
upper bound of the unordered pair A and B, as is B∪A, they must be equal
as the least upper bound is unique. Therefore α + β = |A∪B| = |B ∪A| =
β+α. The product A×B maps to B×A by the simple bijection (a, b) 7→ (b, a)
making them equipollent; therefore, αβ = |A×B| = |B ×A| = βα.
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(b) The union (A∪B)∪C = A∪B∪C = A∪(B∪C) thus (α+β)+γ = α+(β+γ).
Given (A×B)×C we may use the map ((a, b), c) 7→ (a, (b, c)) as a bijection
to A× (B × C). Thus the two products are equipollent so (αβ)γ = α(βγ).

(c) Consider A × (B ∪ C). Since the union here is disjoint, we may partition
the elements as follows: {(a, x) | x ∈ B} = A × B, {(a, x) | x ∈ C} =
A × C. These two sets are disjoint and partition the whole product; thus
A× (B ∪C) = (A×B)∪ (A×C). Therefore α(β + γ) = αβ +αγ. In similar
fashion (mutatis mutandis): (α + β)γ = αγ + βγ.

(d) A∪∅ = A so α + 0 = α. A maps to A by the identity and to {0} trivially, so
applying Introduction, Theorem-5.2, there exists a map f : A → A × {0}.
f(a) = (a, 0) so it is easily seen as injective and surjective, and so bijective.
Therefore α1 = α.

(e) Suppose A 6= ∅. Then for all B, A ∪ B contains A so it is not empty. Thus
α +β 6= 0 if α 6= 0. If A = ∅ or B = ∅, then A×B = ∅: 4 α0 = 0β = 0 6= 1.
Now suppose {a, b} ⊆ A with a 6= b. Then A × B, for any set B with
an element c, has the elements (a, c) and (b, c) which are not equal since
a 6= b. Therefore if α 6= 1 then αβ 6= 1.

¤

.8.6 Finite Cardinal Arithmetic.
Hint(1/5): Notice A ∪ B is
a disjoint union. For the sec-
ond equivalence express the
integers of 1, . . . , mn in base
n: this creates a bijection be-
tween Imn and Im × In by
digit2, digit1 7→ (n · digit2 +
1, digit1 + 1).

Let In be as in Exercise-.8. If A ∼ Im and B ∼ In and A ∩ B = ∅, then
(A ∪ B) ∼ Im+n and A× B ∼ Imn. Thus if we identify |A| with m and |B| with
n, then |A|+ |B| = m + n and |A||B| = mn.
Proof: Assume A ∼ Im by a bijection f : A → Im and B ∼ In by another
g : B → In. Without loss of generality let m ≤ n. Now define the map h :
A ∪B → Im+n by

h(x) =
{

f(x), x ∈ A
g(x) + m, x ∈ B.

The map h is well-defined because the elements of the domain are partitioned
into A or B exclusively by the assumption that A ∩ B = ∅ – the rest comes
from the assumption f and g are already well-defined.

Armed with this new map, we see when ever 1 ≤ k ≤ m, k = f(a) = h(a)
for some a ∈ A and likewise for every m < k ≤ m + n, k = g(b) + m = h(b)
for some b ∈ B; therefore, h is surjective. Noticing the images of A and B are
disjoint we need only test whether h is injective on the respective partitions.
Clearly h is injective on A since it is equivalent to the bijective function f ; on
B, h is still injective since g(x) + m = g(y) + m is the same as assuming
g(x) = g(y) whence x = y. Therefore h is injective and so even bijective. Thus
A ∪B ∼ Im+n.

For convenience use the Jn = {0, . . . , n − 1} in place of In and adjust the
maps f and g accordingly. Define the map u : A×B → Jmn by 5

(a, b) 7→ nf(a) + g(b).

Since 0 ≤ f(a) ≤ m − 1 and 0 ≤ g(b) ≤ n − 1 we bound u by: 0 ≤ nf(a) <
n(m− 1), and so 1 ≤ u(a, b) ≤ mn; therefore, the map is well-defined.

Next define a map v : Jmn → A×B as 6

j 7→ (f−1(bj/nc), g−1(j (mod n))).
4The elements in A× B are functions f : 2 → A ∪ B with f(0) ∈ A, f(1) ∈ B. If A or B

is empty then f(0) or f(1) is not defined; thus, no such functions exist so A×B = ?.
5Notice since m ≤ n that u expresses the element (a, b) as a 2 digit integer in base n.
6This assumes the congruence classes begin with 0 and end with n− 1.
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Every fraction has a unique least integer upper bound and also a unique con-
gruence class modulo n; thus, v is well-defined.

Now together we see

vu(a, b) = v(nf(a) + g(b))
= (f−1(b(nf(a) + g(b))/nc), g−1((nf(a) + g(b)) (mod n)))
= (f−1(f(a)), g−1(g(b))) = (a, b).

Likewise

uv(j) = u(f−1(bj/nc), g−1(j (mod n)))
= nf(f−1(bj/nc)) + g(g−1(j (mod n)))
= nbj/nc+ j (mod n) = j.

Therefore uv = 1Jmn and vu = 1A×B so both are invertible and so they are
bijections: A×B ∼ Jmn ∼ Imn. ¤

.8.7 Cardinal Order.
Hint(1/5): Fill in the com-
mutative square diagram. If A ∼ A′, B ∼ B′ and f : A → B is in injective, then there is an injective map

A′ → B′. Therefore the relation ≤ on cardinal numbers is well-defined.

Proof: Assume A ∼ A′ by a bijective map v : A → A′ and B ∼ B′ by another
v : B → B′. From these pieces we may construct the following commutative
diagram:

←−−−−−→

u

↪−−−−−−−→

i

↪−−−−−−−→

v−1

←−−−−−→

v

A A′

B B′

The map vfu−1 is well-defined since each component in the composition is a
well-defined map – recall inverses exist for both u and v. Furthermore each
component is at least injective, and composition of injective functions is injec-
tive; thus we have constructed an injection from A′ to B′ as desired. ¤

.8.8 Countable Subsets.
Hint(1/5): Use Introduction,
Theorem-8.8. An infinite subset of a denumerable set is denumerable.

Proof: A denumerable set is equipollent to the natural numbers so it shares the
same cardinality ℵ0. Given any infinite subset B of a denumerable set A, the
inclusion map is an injection from B to A; thus, B ¹ A. However B is still and
infinite set so it must have an infinite cardinal value. Employing Introduction,
Theorem-8.8 it follows ℵ0 ≤ |B| ≤ A = ℵ0. Cardinal ordering is a partial or-
dering (Introduction, Theorem-8.7) so the law of antisymmetry forces |B| = ℵ0.
Therefore by definition B is denumerable. ¤



.8 Cardinal Numbers 23

.8.9 Cantor’s Diagonalization Method.
Hint(3/5): Follow the hint as
specified; it is known as Can-
tor’s Diagonalization Method.

The infinite set of real numbers R is not denumerable (that is ℵ0 < |R|). [Hint: It
suffices to show that the open interval (0, 1) is not denumerable by Exercise-.8.
You may assume each real number can be written as an infinite decimal. If
(0, 1) is denumerable there is a bijection f : Z+ → (0, 1). Construct an infinite
decimal (real number) .a1a2 · · · in (0, 1) such that an is not the nth digit in the
decimal expansion of f(n). This number cannot be in Im f .]
Proof: Given the set of real numbers, if any subset is not denumerable then the
entire set is not denumerable by the contrapositive of Exercise-.8. Therefore
consider the open interval (0, 1). We take the elements to be expressed in
their unique decimal expansion, only base 2 instead of the traditional base 10.
We can expresses precisely as the product

∏
N 2 – where 2 = {0, 1} in the

traditional way.7 We attempt an indirect proof.
Suppose

∏
N 2 is denumerable and take any map f : N → ∏

N 2 that is a
bijection. We may now define a mapping hf : N → {0, 1} by hf (n) = f(n) + 1
(mod 2). The definition makes h visibly well-defined and by its construction we
see hf ∈ ∏

N2. However f(n) 6= hf for any n since f(n)(n) 6= hf (n) for all
n ∈ N. Therefore f cannot be a surjection ever; therefore, f is not a bijection
and so N is not equipollent to

∏
N 2 – R is not denumerable. ¤

.8.10 Cardinal Exponents.
Hint(5/5): Notice every map
f : B → A has f(b) ∈ A
so in fact AB and

∏
B A have

identical definitions: they are
the same sets. This may help
simplify notation and logic in
some instances.

If α, β are cardinals, define αβ to be the cardinal number of the set of all func-
tions B → A, where A,B are sets such that |A| = α, |B| = β.

(a) αβ is independent of the choice of A,B.

(b) αβ+γ = (αβ)(αγ); (αβ)γ = (αγ)(βγ); αβγ = (αβ)γ .

(c) If α ≤ β, then αγ ≤ βγ .

(d) If α, β are finite with α > 1,β > 1 and γ is infinite, then αγ = βγ .

(e) For every finite cardinal n, αn = αα · · ·α (n factors). Hence αn = α if α is
infinite.

(f) If P (A) is the power set of a set A, then |P (A)| = 2|A|.

Proof: A,B, and C be sets with cardinalities α, β, and γ respectively. For
simplicity assume they are all pairwise disjoint.

(a) Let A and A′ be equipollent sets with cardinality α and also let B be equipol-
lent to B′ both with cardinality β. Therefore there are bijections (invertible
functions) f : A → A′ and another g : B → B′. Now given any function
h : B → A and h′ : B′ → A′ – that is, h ∈ AB and h′ ∈ A′B

′
– the following

diagrams commute:

−−−−−−−→

h

−−−−−−−→

g−1

−−−−−−−→

f

−−−−−−−→

fhg−1

B A

B′ A′

−−−−−−−→

f−1h′g

−−−−−−−→

g

−−−−−−−→

f−1

−−−−−−−→

h′

B A.

B′ A′

7Here we may even replace 2N and write the cardinality as 2ℵ0 . This is sufficient, consid-
ering Exercise-.8, since N ≺ P (N) ∼ 2N.
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The diagrams induce the mappings i : AB → A′B
′

defined as h 7→ fhg−1

and i′ : A′B
′ → AB defined as h′ 7→ f−1h′g. Applying composition we

see: ii′(h) = f(f−1hg)g−1 = 1Ah1B = h, and i′i(h) = f−1(fh′g−1)g = h′;
therefore ii′ = 1A′B′ and i′i = 1AB . Since i is now seen as invertible it must
be bijective, and so |A||B| = |A′||B′|; αβ is well-defined.

(b) Consider AB∪C and AB × AC . Every function h : B ∪ C → A can be
defined equivalently by the restrictions h|B and h|C, since B and C are
disjoint. Therefore define a map i : AB∪C → AB × AC as h 7→ (h|B, h|C).
Restricting functions is a well-defined process so i is well-defined.8

Define an inverse map i−1 : AB × AC → AB∪C as (f, g) 7→ f ∪ g, where
f ∪ g is:

(f ∪ g)(x) =
{

f(x) x ∈ B
g(x) x ∈ C

.

This is of course traditional piecewise definition of function and is well-
defined since B and C are disjoint.

Now compose the two maps ii−1(f, g) = i(f ∪ g) = ((f ∪ g)|B, (f ∪ g)|C) =
(f, g). Likewise i−1i(h) = (h|B, h|C) = (h|B) ∪ (h|C) = h. Therefore they
are inverse functions and so they are bijective and the two sets as a result
are equipollent; αβ+γ = (αβ)(αγ).
Now consider (A × B)C compared with AC × BC . Following the same
strategy, define a map i : (A × B)C → AC × BC by h 7→ (πAh, πBh),
for all h : C → A × B; and another i−1 : AC × BC by (f, g) 7→ f × g,
(f : C → A, g : C → B), where f × g : C → A × B is the unique map
(with respect to f and g) with the property πAf × g = f and πBf × g = g,
as guaranteed by Introduction, Theorem-5.2. The first map, i, is defined
by composition of functions which is well-defined, and the resulting maps
are C → A and C → B as required. The latter map is well-defined by
Introduction, Theorem-5.2. Now their compositions are:

ii−1(f, g) = i(φ) = (πAf × g, πBf × g) = (f, g)
i−1i(h) = i−1(πAh, πBh) = h.

Since the maps are inverses the sets are equipollent. Therefore (αβ)γ =
(αγ)(βγ).
Finally consider the sets AB×C and (AB)C . Given any f : B × C → A,
defined fc : B → A as fc(b) = f(b, c) for all b ∈ B, c ∈ C. The definition
is well-defined since it is an evaluation of a well-defined function, and it
determines a mapping i : AB×C → (AB)C as i(f) = F : C → AB defined
as F (c) = fc.

An element of (AB)C is a function F : C → AB , so that F (c) : B → A for all
c ∈ C. Therefore define i−1 : (AB)C → AB×C as i−1(F ) = f : B × C → A
defined as: f(b, c) = (F (c))(b).
Once again take the compositions of these two functions:

(ii−1(F : C → AB))(c)(b) = (i(f : B × C → A)) = (F ′(c))(b)
= f(b, c) = fc(b) = (F (c))(b),

ii−1(F ) = F ;

(i−1i(h : B × C → A))(b, c) = (i−1(H : C → AB))(b, c) = h′(b, c)
= (H(c))(b) = hc(b) = h(b, c),

i−1i(f) = f.

8Restricting a function is defined even on empty sets.
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Therefore i and i−1 are invertible and furthermore they are bijections, so
αβγ = (αβ)γ .

(c) Suppose there exists an injection i : A → B. Given any maps f : C → A
the map if maps C → B so I : AC → BC defined as I(f) = if is well-
defined. Furthermore I(f) = I(g) implies if = ig. Introduction, Theorem-
3.1, states injective functions are left cancelable (or that they have a left
inverse i′ ); thus, f = 1Af = i′if = i′ig = 1Ag = g. Therefore I is injective;
thus, α ≤ β implies αγ ≤ βγ .

(d) Let α and β be finite cardinals both greater than 1, and γ an infinite cardinal.

Notice in Exercise-.8 we used the construction of
∏
N 2 to denote the unit

interval in base 2. In base three the set would be equivalent to the infinite
decimal expansions with three characters; thus

∏
N 3, and in general

∏
N n

for base n. However all these methods denote the same set (0, 1) ⊆ R and
so they all have the same cardinality. Therefore αℵ0 = βℵ0 . Thus

αγ = αℵ0γ = (αℵ0)γ = (βℵ0)γ = βℵ0γ = βγ .

(e) The set of all function f : n → A has the property f(n) ∈ A, thus it is
in the product

∏n
i=1 A. Also any function in the product maps n → A;

thus An =
∏n

i=1 A. Therefore |An| = αn. By Introduction, Theorem-8.12,
whenever α is infinite then |An| = |A| so, αn = α.

(f) Given a function f : A → 2 define a set Sf = f−1(1). Notice Sf is a subset
of A. Whenever f 6= g there exists an x ∈ A such that f(x) 6= g(x), and
so f(x) = 1 while g(x) = 0, or f(x) = 0 while g(x) = 1 – since these
are the only options in the image. Therefore Sf = f−1(1) 6= g−1(1) = Sg.
Therefore S is an injective map from 2A to P (A).
For any subset S of A, define fS : A → 2 as f(x) = 0 if x /∈ S and
f(x) = 1 if x ∈ S – this a general piecewise function over disjoint sets
so it is well-defined. When S 6= T then fS(x) 6= fT (x) for any element
x in their symmetric difference S + T , which is not empty since S 6= T .
Therefore fS 6= fT so that f is an injective map from P (A) to 2A. Apply-
ing the Schroeder-Bernstein Theorem, P (A) is equipollent to 2A; that is,
|P (A)| = 2|A|.

¤

.8.11 Unions of Finite Sets.
Hint(3/5): Turn the problem
on its head by swapping the
Ai’s with I.

If I is an infinite set, and for each i ∈ I Ai is a finite set, then |⋃i∈I Ai| ≤ |I|.
Proof: Index the elements of Ai with N as they are each finite. So Ai =
{a(i,0), . . . , a(i,n)}. Now we define I(n) = {i ∈ I | a(i,n) ∈ Ai} for all n ∈ N. We
identify the union through the indices to obtain:

⋃

i∈I

Ai ∼
◦⋃

n∈N
I(n) ⊆

◦⋃
n∈N

I.

Furthermore by part (e) of Exercise-.8, since I is infinite, |I|n = I and so

◦⋃
n∈N

I ∼
◦⋃

n∈N
In.

Using Introduction, Theorem-8.12 part (ii), |⋃ i ∈ IAi| ¹ |I|ℵ0. Since we as-
sumed I was infinite, |I|ℵ0 = |I|. ¤
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.8.12 Fixed Cardinal Unions.
Hint(2/5): Identify all the el-
ements of the sets Ai to a sin-
gle set A with the same cardi-
nality. Then show

⋃
i∈I Ai ∼

A× I.

Let α be a fixed cardinal number and suppose that for every i ∈ I, Ai is a set
with |Ai| = α. Then |⋃i∈I Ai| ≤ |I|α.
Proof: We connect sums with products of cardinals to show: the size of the
disjoint union of a set A with cardinality α indexed by a set B with cardinality β,
is

∑
β α = αβ.

We take the family {Ab | b ∈ B} to be pairwise disjoint sets all equipol-
lent to A; moreover we identify each element in Ab with those in a through the
maps ib : Ab → A. Next we define a map f :

⋃
b∈B Ab → A × B by setting

f(a) = (ib(a), b) where a ∈ Ab. Since each Ab is disjoint, the map is well-
defined. Furthermore, if f(a) = f(a′) then (ib(a), b) = (ib′(a′), b′). However
this requires b = b′ and so we have ib(a) = ib′(a′) = ib(a′), which results in
a = a′ since i is bijective: f is injective. Given any (a, b) ∈ A×B, i−1

b (a) ∈ Ab;
thus, f(i−1

b (a)) = (a, b) leaving f visibly surjective: f is bijective. We conclude
saying

⋃
b∈B Ab ∼ A×B so in cardinals

∑
β α = αβ. ¤
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I.1.1 Non-group Objects.
Hint(1/5): Consider subsets
of ordered groups. Other
examples from the Computer
Science field include: string
concatenation; finite state
machines, where the operation
is following arrows; and in gen-
eral any regular grammar. The
proofs for these are succes-
sively more difficult but can be
found in most compiler design
books.

Give examples other than those in the text of semigroups and monoids that are
not groups.
Example: Take G to be a linearly ordered group, such as: Z, Q, or R, but
not the trivial group. By definition we require the ordering respect the group
product, which is to say: a ≤ b implies ac ≤ bc.

Consider the subsets G+ = {a ∈ G | e < a} and G
+

= {a ∈ G | e ≤ a}.
Given any two elements a, b ∈ G+ (or G

+
) it follows e < a and e < b so

e < b = eb < ab thus ab ∈ G+. Since the product in G is associative and there
exist elements greater than e, it follows G+ is a semigroup as it is closed to the
associative operator. Furthermore G

+
is a monoid. Finally the linear ordering

requires a < e or e < a exclusively, for all non-trivial elements a. Thus multiply-
ing by inverses we notice the following: if a < e then e < a−1, and if e < a then
a−1 < e. Therefore neither G+ nor G

+
contain inverses (except for e) so they

cannot be groups. ¤

27
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I.1.2 Groups of Functions.
Hint(2/5): Think of
M(S, G) as the Cartesian
product of G, S times; every
function f : S → G can be
thought of as a n-tuple where
n is the size of S, and addi-
tion is simply done pointwise
with each tuple pair.Caution:
do not assume S is finite.

Let G be a group (written additively), S a nonempty set, and M(S, G) the set of
all functions f : S → G. Define additions in M(S, G) as follows: (f +g) : S → G
is given by s 7→ f(s)+g(s) ∈ G. Prove that M(S, G) is a group, which is abelian
if G is.
Proof: First knowing addition is well-defined in G it follows for any s ∈ S,
and f, g ∈ M(S, G), f(s) + g(s) is well-defined as an element in G. Therefore
f + g : S → G is a well-defined function and thus included in M(S, G). So
M(S,G) has a well-defined binary operation in the given addition.

Furthermore the operation is associative since given any f, g and h in M(S, G)
and s ∈ S it follows:

(f + (g + h))(s) = f(s) + (g + h)(s) = f(s) + (g(s) + h(s))
= (f(s) + g(s)) + h(s) = (f + g)(s) + h(s)
= ((f + g) + h)(s).

This proves f + (g + h) = (f + g) + h as required.
Now define 0 : S → G by 0(s) = e for all s ∈ S. Clearly 0 is a well-defined

map and so included in M(S,G) (note this makes M(S, G) a semigroup as it is
now provably nonempty). Next (0+ f)(s) = 0(s)+ f(s) = e+ f(s) = f(s) for all
f ∈ M(S,G). Finally given f : S → G, define −f : S → G as s 7→ −f(s). Since
each image element f(s) lies in the group G it has an inverse −f(s) so −f is
well-defined. Again by construction ((−f) + f)(s) = −f(s) + f(s) = e = 0(s).
Therefore we have 0 as a left identity together with −f as the left inverses for
any f so by Proposition-I.1.3 M(S, G) is a group under the prescribed addition.

Suppose now G is abelian. Then (f + g)(s) = f(s) + g(s) = g(s) + f(s) =
(g + f)(s) by the commutativity in G. Therefore f + g = g + f so M(S, G) is
abelian. ¤

I.1.3 Floops.
Hint(2/5): The assertion is
false; consider a set with 2 or
more elements and define for
it an operation of the form
xy = y. These objects are
sometimes called floops.

Is it true that a semigroup which has a left identity element and in which every
element has a right inverse (see Proposition-I.1.3) is a group?
Example: Let S be a set with cardinality greater than 1. For any two elements
x and y define their product as xy = y. Since y is already assumed to be in S
the product is uniquely defined for the pair (x, y), and also contained in S so it
is well-defined. Thus it is a valid binary operation. Take a, b and c as elements
from S. Simply by definition a(bc) = bc = (ab)c, so our product is associative.
Notice we may fix any element a in S to serve as a left identity since ay = y for
all elements y. For any y pick a to be a right inverse since ya = a. Thus all the
properties of the hypothesis are met.

However S together with this operation is not a group. We see this because
given S has at least two elements, we pick x to be any element and notice
e = xx−1 = x−1; thus, every inverse is the identity. But by Theorem-I.1.2.iv,
if S where a group under this operation then (x−1)−1 = x for all elements x.
Thus e = e−1 = (x−1)−1 = x which contradicts the assumption that S has two
or more elements. Thus S is not a group. ¤

I.1.4 D4 Table.
Hint(1/5): Use the princi-
ples of a Latin Squares (each
row and column contains one
and exactly one instance of ev-
ery element in the group) to
reduce the computation nec-
essary.

Write out a multiplication table for D∗
4 .
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Example:

I R R2 R3 Tx T2,4 Ty T1,3

I I R R2 R3 Tx T2,4 Ty T1,3

R R R2 R3 I T2,4 Ty T1,3 Tx

R2 R2 R3 I R Ty T1,3 Tx T2,4

R3 R3 I R R2 T1,3 Tx T2,4 Ty

Tx Tx T2,4 Ty T1,3 I R3 R2 R
T2,4 T2,4 Tx T1,3 Ty R I R3 R2

Ty Ty T1,3 Tx T2,4 R2 R I R3

T1,3 T1,3 Ty T2,4 Tx R3 R2 R I

¤

I.1.5 Order of Sn.
Hint(2/5): Consider the
problem combinatorially ignor-
ing the group structure. Af-
ter the first i characters are
permuted how many charac-
ters are left to choose as the
image of the i + 1 character?

Prove that the symmetric group on n letters, Sn, has order n!.
Proof: Take any permutation σ from Sn. σ(1) can be any of the n characters
in X = {1, . . . , n}. Suppose σ(i) can be any of the n − i characters from
X−σ({1, . . . , i−1}) for some 1 < i ≤ n. σ(i+1) 6= σ(j), for any j < i+1 since
σ is injective (it is in fact bijective). Thus σ(i + 1) can be any of the n− (i + 1)
characters in X − σ({1, . . . , i}).

σ(1) 1 n

σ(2) 2 n 1 n− 1

σ(3) 3 n 2 n− 1 2 n− 1 1 n− 2

σ(n)

−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−−−−−− −−−−−−

· · · · · · · · · ·

−−−−−− −−−−−−−−−

· · · · · · · · · · · · · · ·

−−−−−− −−−−−

· · · · · · · · ·

−−−−− −−−−−

· · · · · · ·

−−−−−− −−−−−

· · · · · · · ·

−−−−− −−−−−

· · · · · · · ·

· · · · · · · · ·

Therefore by induction the total number of permutations are n(n− 1) · · · 2 = n!
so the order of Sn is n!. ¤

I.1.6 Klein Four Group.
Hint(1/5): Compute the di-
agonal first: what is (x, y) +
(x, y)? 1

Write out an addition table for Z2⊕Z2. Z2⊕Z2 is called the Klein Four Group .

Example:
(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

¤
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I.1.7 Z×p .
Hint(4/5): Make sure Z∗p is
nonempty and use the given
hint to show it is closed
to multiplication. Introduc-
tion, Theorem-6.8 may also
be useful. It is best not
to assume the Little The-
orem of Fermat or Euler’s
Theorem (ap ≡ a (mod p),
(a, p) = 1; and aϕ(m) ≡ 1
(mod m), (a,m) = 1) since
later Exercise-I.4 will use this
result to prove these two the-
orems. [Eyn] 2

If p is prime, then the nonzero elements of Zp form a group of order p−1 under
multiplication. [Hint: a 6= 0 ⇒ (a, p) = 1; use Introduction, Theorem 6.5.] Show
that this statement is false if p is not prime.

Proof: Define Z∗p = {a ∈ Zp | a 6= 0}. The order of Zp is p, so Z∗p has order
p − 1 since it excludes only one element. The smallest prime is 2; thus each
Z∗p has at least one element so it is nonempty. By Introduction, Theorem-6.5,
we know the greatest common divisor always exists. Furthermore this theorem
states (a, p) = 1 or p, and p only when p|a. By assumption a 6= 0; thus p - a so
(a, p) = 1. Now take a and b in Z∗p. Suppose their product ab = ab = 0 = a · 0.
By Introduction, Theorem-6.8.iii, a and p are relatively prime; thus, ab ≡ a · 0
(mod p) implies b ≡ 0 (mod p). This contradicts the assumption b 6= 0 thus
ab 6= 0; therefore, ab ∈ Z∗p. Since multiplication module p is well-defined in Zp

and now seen as closed in Z∗p, it is well-defined as a binary operator in Z∗p.
Furthermore it inherits the associativity so it is a semigroup.

Since p - 1, 1 6= 0 for any p so 1 ∈ Z∗p. Also ab = ab = ba = ba – using the
commutativity of multiplication in integers. From here the conclusion is simpler:
a1 = a · 1 = a, forcing 1 to be the identity of Z∗p.

Given any a ∈ Z∗p, am ∈ Z∗p, for all m ∈ Z+, since Z∗p is closed to prod-
ucts. Since the set is finite, am ≡ an (mod p) for some m and n, m 6= n, or
otherwise there would be infinitely many elements. Without loss of generality
let m < n. Then using Introduction, Theorem-6.8, part (iii), and the fact we
know (a, p) = 1 so (am, p) = 1, we conclude 1 ≡ an−m (mod p). Now cer-
tainly this requires ak ≡ 1 (mod p) for some positive integer k, and we take
the least such k. Therefore either k = 1 which implies a = 1 or ak−1 6= 1 and
aak−1 = ak−1a = ak ≡ 1 (mod p) and so ak−1 = a−1. Since Z∗p is closed to
products, ak−1 ∈ Z∗p. So we may conclude our new set is closed to inverses
and so it is a group under multiplication; Z∗p = Z×p – the largest group inside the
multiplication. 3 ¤
Example: Suppose m is a composite positive integer (not 1), which means it is
a multiple of some k, k 6= m. Since m is positive we may take k to be positive
and it is less than m since it does not equal m. Therefore k 6= 0 and likewise
0 6= m/k < m implies m/k 6= 0 (recall m/k is an integer since k|m). Therefore
both are elements of Z∗m. However their product km/k = k m

k = m = 0 is not in
Z∗m. So when m is not prime Z∗m 6= Z×m. ¤

I.1.8 Q/Z – Rationals Modulo One.
Hint(2/5): In part (a) verify
all the properties. Theorem-
I.1.5 will help in defining part
(b). In part (b) consider how
many equivalence classes are
of the form 1

n + Z. 4

(a) The relation given by a ∼ b ⇔ a − b ∈ Z is a congruence relation on the
additive group Q [see Theorem-I.1.5].

(b) The set Q/Z of equivalence classes is an infinite abelian group.

Proof:

(a) Let a, b, and c be rational numbers.

• Certainly a− a = 0 is an integer so a ∼ a; ∼ is reflexive.

3This proof uses the fact that (a, p) = 1; however, we can extend this proof to say Z×m =
{n ∈ Zm | (m, n) = 1} is a group under multiplication without problem, only the order of
this group will now be smaller – in fact it will have the order of the Euler ϕ function, defined
as the number of elements relatively prime to m, between 1 and m inclusively.
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• Given a ∼ b implies a − b is an integer, in which case certainly −(a −
b) = b− a is an integer since the integer have additive inverses. Thus
b ∼ a, so ∼ is symmetric.

• Finally a ∼ b and b ∼ c implies c ∼ b from above, and so a−b and c−b
are integers. Therefore their difference (a − b) − (c− b) = a − c is an
integer; a ∼ b leaving ∼ transitive.

∼ is an equivalence relation on Q.

Now let a1, b1, a2, and b2 be rational numbers such that a1 ∼ a2 and b1 ∼ b2.
Then a1−a2 and b1− b2 are integers. The sum (a1−a2)+(b1− b2) = (a1 +
b1)− (a2 + b2) is an integer, leading to the conclusion (a1 + b1) ∼ (a2 + b2);
proving ∼ is a congruence relation on Q.

(b) By part (a) and Theorem-I.1.5 we know Q/Z is defined and furthermore an
abelian group since Q is one. Without loss of generality let m and n be
integers such that 1 < m ≤ n and furthermore assume the equivalence
classes 1

m + Z and 1
n + Z, are equal. Then 1

n ∼ 1
m by the definition of

equivalence classes and thus 1
m − 1

n is an integer. However 1 < m ≤ n

implies 0 < 1/n ≤ 1/m < 1 and so 0 ≤ 1
m − 1

n < 1. If this difference is
to be an integer then it must therefore equal 0 and so 1

m = 1
n or simply

m = n. Therefore 1
m + Z is distinct from 1

n + Z for all m 6= n of which there
are infinitely many. Therefore Q/Z contains an infinite subset and so it is
infinite.

¤

I.1.9 Rational Subgroups.
Hint(1/5): Make sure to
show the rules that define Rp

and Rp are well-defined – re-
member rational numbers are
equivalence classes.

Let p be a fixed prime. Let Rp be the set of all those rational numbers whose
denominator is relatively prime to p. Let Rp be the set of rationals whose de-
nominator is a power of p (pi, i ≥ 0). Prove that both Rp and Rp are abelian
groups under ordinary addition of rationals.
Proof: Let a and b 6= 0 be integers such that (b, p) = 1. Suppose a/b is not in
lowest terms so that there exists an a′ and b′ such that a/b = a′/b′ and a′/b′ is
in lowest terms. Then (b, b′) = b′ and thus (b′, p) = (b, b′, p) = 1 so the selection
of fractions with denominators relatively prime to p is well-defined. Therefore
Rp is given by a well-defined rule and thus is defined.

Furthermore any integer k has denominator 1; (1, p) = 1, so Z ⊂ Rp; thus
0 is in Rp. Since 0 is the additive identity of Q and we adopt the same addition
in Rp it is clear 0 is the identity of Rp – if Rp is shown to have a well-defined
addition.

Now let a/b, and c/d be elements of Rp; thus (b, p) = (c, p) = 1. So we add
a/b+ c/d = ad+bc

bd . But p|bd if and only if p|b or p|d by Introduction, Theorem-6.6
(Euclid’s Lemma). Neither of these is the case thus p - bd by the contrapositive;
therefore, the sum is in Rp so addition is closed (well-defined) in Rp. Clearly
addition remains associative since it is associative in all of Q. For the same
reason it is abelian. At last −(a/b) can be seen as a/(−b) which is the only
interesting case. However (−b, p) = (b, p) = 1 so once again Rp contains all
additive inverses. Therefore Rp is an additive abelian (sub)group.

Let a be an integer. Then a/pi is a rational number in Rp by definition.
Furthermore if a/pi reduces to a′/b′ then b′|pi so therefore b′ = pj for some
j ≤ i: equivalent reduced forms of rationals in Rp are still in Rp so the rule for
Rp is well-defined.

Taking 0/pi = 0 for any i shows that the additive identity is in Rp. Now
take a/pi and b/pj in Rp. Their sum is apj+bpi

pipj which can be seen as an
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element of Rp since pipj = pij . Thus Rp is closed under addition. Lastly
−(a/pi) = (−a)/pi which is in Rp by definition. Therefore Rp is a (sub)group.
¤

I.1.10 PruferGroup.
Hint(2/5): Notice Z(p∞) =
Rp/Z from Exercise-I.1. For
the infinity of the group con-
sider the elements 1/pi. How
many are there? It may be
useful to consider the visual
interpretation as outlined in
Exercise-I.1.

Let p be a prime and let Z(p∞) be the following subset of the group Q/Z (see
[Hun, 27]):

Z(p∞) = {a/b ∈ Q/Z | a, b ∈ Z and b = pi for some i ≥ 0}.
Show that Z(p∞) is an infinite group under the addition operation of Q/Z.
Proof: Clearly 0 = 0/p so 0 ∈ Z(p∞) thus the Prüfer Group is nonempty.

Next given a/pi and b/pj in Z(p∞) their sum is defined as apj+bpi

pij in Q/Z.
But clearly such a fraction fits the rule for inclusion so Z(p∞) is closed under
addition. Associativity is naturally inherited since the addition is associative in
Q/Z. Finally inverses (negatives) have the property −(a/pi) = (−a)/pi thus
are also included, so Z(p∞) is a (sub)group of Q/Z.

Take the elements 1/pi and 1/pj to be equal for some i and j. Then
1/pi ∼ 1/pj and thus 1/pi−1/pj is and integer. But clearly−1 < 1/pi−1/pj < 1
so the only integer between -1 and 1 is 0 forcing 1/pi = 1/pj . Therefore i = j.
Thus there are an infinite number of elements of the form 1/pi and so Z(p∞)
has an infinite subset forcing it to be infinite. ¤

I.1.11 Abelian Relations.
Hint(3/5): Use Theorems-
I.1.2 and I.1.9 to show (i),(ii),
and (iii) are equivalent;(i), (ii),
and (iii) imply (iv); and (iv)
implies and (v). Conclude
the equivalence by showing (v)
implies (i) by showing first
the relations abn = bna and
abn+1 = bn+1a are true. As
a counter example of part (v)
with only two consecutive in-
tegers, consider the two con-
secutive powers 0 and 1 in a
non-abelian group.

The following conditions on a group G are equivalent: (i) G is abelian; (ii)
(ab)2 = a2b2 for all a, b ∈ G; (iii) (ab)−1 = a−1b−1 for all a, b ∈ G; (iv) (ab)n =
anbn for all n ∈ Z and all a, b ∈ G; (v) (ab)n = anbn for three consecutive
integers n and all a, b ∈ G. Show (v)⇒(i) is false if “three” is replaced by “two.”
Proof: Suppose (i) is true. Then ab = ba for all a, b ∈ G; thus

(ab)2 = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a2b2,

so (i) implies (ii).
Now suppose (ii) is true. Then for all a and b, abab = (ab)2 = a2b2 = aabb;

thus, by cancellation, ba = ab, so G is abelian. Therefore (i) is equivalent to (ii).
By Theorem-I.1.2.v we know (ab)−1 = b−1a−1 and from here it is the simple

step of commuting to say (ab)−1 = a−1b−1; thus (i) implies (iii) as well.
Suppose instead (iii) is true. Then for all a and b, using Theorem-I.1.2, it

follows:

ba = (b−1)−1(a−1)−1 = (a−1b−1)−1 = (a−1)−1(b−1)−1 = ab.

So ba = ab and so G is abelian and (i) and (iii) are equivalent.
Again assume (i), and with it (ii), (iii) its equivalents. Suppose (ab)n = anbn

for some positive integer n. Then

(ab)n+1 = (ab)n(ab) = (anbn)(ab) = an(bna)b = an+1bn+1.

So by induction (ab)n = anbn for all positive integers n. When n = 0 by def-
inition (ab)0 = e = ee = a0b0 so in fact (ab)n = anbn for all non-negative
integers. Finally given a negative integer n, (ab)n = (ab)−(−n) = ((ab)−1)−n.
But by (iii) this is simply (a−1b−1)−n and since −n is positive we now see this
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as (a−1)−n(b−1)−n = anbn by Theorem-I.1.9 and the above. In conclusion
(ab)n = anbn for all integer n and elements a, b so (i) implies (iv). Clearly (v) is
true if (iv) is true.

Now suppose (v) is true. Then every pair of elements a and b together with
some integer n have the property that (ab)n = anbn, (ab)n+1 = an+1bn+1 and
(ab)n+2 = an+2bn+2. This leads to the following two relations:

an+1bn+1 = (ab)n+1 = (ab)n(ab) = anbnab,

which by cancellation reduces to abn = bna; next we swap the roles of a and b
(recall the assumed relations work for all a and b) for convenience later:

babn+1an+1 = (ba)(ba)n+1 = (ba)n+2 = bn+2an+2,

which thus infers the relation abn+1 = bn+1a. Together these imply:

babn = b(abn) = b(bna) = bn+1a = abn+1

and thus once again canceling on the right we arrive at the final form ba = ab,
so G is abelian. Therefore (i) implies (iv) which implies (v) which reciprocates
by implying (i). Thus (i),(ii),(iii),(iv), and (v) are equivalent relations for abelian
groups. ¤
Example: Consider the group S3. Certainly given any two elements σ and τ ,
(στ)0 = ε = εε = σ0τ0. Likewise (στ)1 = στ = σ1τ1 thus for two consecutive
integers all elements have the property (ab)n = anbn. However clearly S3 is
non-abelian since (12)(123) = (23) and (123)(12) = (13). Of course any non-
abelian group can serve in this counter example. ¤

I.1.12 Cyclic Conjugates.
Hint(1/5): Use the stan-
dard trick for conjugation: in-
sert b−1b between powers of a
to create conjugates of lower
powers where information is
given.

If G is a group, a, b ∈ G and bab−1 = ar for some r ∈ N, then biab−i = ari

for
all i ∈ N.
Proof: Let i = 0. By Definition-I.1.8 b0ab−0 = eae = a1 = ar0

. Now suppose
biab−i = ari

for some positive integer i. Then conjugating and using Theorem-
I.1.9 we see bi+1ab−(i+1) = b(biab−i)b−1 = bari

b−1. But here we employ the
standard trick of multiplying by the identity:

bari

b−1 = ba · · · ab−1 = ba(b−1b)a(b−1b) · · · (b−1b)ab−1 = (bab−1)ri

= (ar)ri

= ari+1
.

Therefore by induction biab−i = ari

. ¤

I.1.13 Groups of Involutions.
Hint(1/5): Use Exercise-I.1
part (ii).If a2 = e for all elements a of a group G, then G is abelian.

Proof: Let G be a group of involutions (i.e.: every non-trivial element has order
2.) Then (ab)2 = e = ee = a2b2. This is relation (ii) of Exercise-I.1 and thus is
equivalent to stating G is abelian. ¤

I.1.14 Involutions in Even Groups.
Hint(3/5): Partition the
group into classes [a] =
{a, a−1}. Since [e] has size 1,
what else must exist?

If G is a finite group of even order, then G contains an element a 6= e such that
a2 = e.
Proof: Define the relation a ∼ b if and only if a = b or a = b−1. Let a, b, and c
be elements of G:



34 Groups

• a = a thus a ∼ a – reflexive.

• a ∼ b implies a = b or a = b−1. If a = b then b = a so b ∼ a. Also if
a = b−1 then a−1 = (b−1)−1 = b by Theorem-I.1.2.iv; so in general b ∼ a
– symmetric.

• a ∼ b and b ∼ c implies a = b or a = b−1; and b = c or b = c−1. Naturally
if a = b and b = c then a = c so a ∼ c. If a = b and instead b = c−1 then
a = c−1 so a ∼ c. Next if a = b−1 and b = c clearly b−1 = c−1 so a ∼ c.
Finally if a = b−1 and b = c−1 then a = (c−1)−1 = c by Theorem-I.1.2.iv;
therefore, a ∼ c – transitive.

So we have an equivalence relation on G and with it equivalence classes which
partition the elements. By Theorem-I.1.2.iii we know inverses are unique and
coupled with part iv of the theorem it is clear each equivalence class has at
most 2 elements: [a] = {a, a−1}.

However e−1e = e = ee so by cancellation e−1 = e; thus [e] has only one
element. Since the equivalence classes partition the even order group G it
follows some equivalence class must have odd size so that together with the
odd equivalence class [e], the partition maintains the even order (note we know
other equivalence classes exist because if not the order of G would be 1 which
is not even). However as stated earlier each equivalence class has at most 2 el-
ements; thus, there must exist an equivalence class that is not only of odd size
but it must therefore be of size 1; call this class [a]. Therefore {a, a−1} = {a}
so a = a−1 which by multiplying by a shows a2 = e, and a 6= e. ¤

I.1.15 Cancellation in Finite Semigroups.
Hint(5/5): Consider a proof
that every finite integral do-
main is a field. Show first
an must be an identity (fol-
lows from the cancellation as-
sumed) for some positive in-
teger. Next decompose an to
an−1a = e to show inverses.

Let G be a nonempty finite set with an associative binary operation such that
for all a, b, c ∈ G ab = ac ⇒ b = c and ba = ca ⇒ b = c. Then G is a group.
Show that this conclusion may be false if G is infinite.
Proof: Given any element a ∈ G all powers of a must be in G – since G is
closed under the binary operation. In fact the set 〈a〉 = {an | n ∈ Z+} must be
a subset of G. Furthermore anam = an+m by Theorem-I.1.9 so it is a closed
subset of G and we consider it in place of G.

Since G is finite so must 〈a〉 be finite; say 〈a〉 has order n. Clearly an+1 is
defined; however, it must also lie in 〈a〉 which has only n representatives; thus,
there exists a j ≤ n such that an+1 = aj . If j = 1 then an+1 = a. Suppose
j > 1, then aj−1 is defined and still n + 1 > j, so an+1−j+1 is defined and
so an+1−j+1aj−1 = an+1 = aj = aaj−1. By cancellation we see an−j+2 = a.
Therefore for some power 2 ≤ k ≤ n, ak = a, (k = n−j+2), and ak−1 is defined,
and combined with the case j = 1 we see ak = a for some 1 < k ≤ n + 1 and
ak−1 is also defined..

Now take any b ∈ G. First bak = ba; thus by cancellation on the right,
bak−1 = b. In similar fashion akb = ab and so by cancellation on the left ak−1b =
b. Therefore ak−1 is the identity of G which we now call e – so G is a monoid.

Since e exists a0 is now defined so ak−2 will always be defined. Therefore
ak−2a = ak−1 = e so ak−2 is the left inverse of a. But in parallel aak−2 = ak−1 =
e so it is in fact a two-sided inverse. Since the a was chosen arbitrarily such an
inverse exists for all elements; so G is a group. ¤
Example: Consider the positive integers under addition. Certainly the addition
is associative so they are in fact a semigroup. Also given integers m,n and k,
m+n = m+k implies n = k and n+m = k +m implies n = k as we can prove
since the equations must hold in the larger additive group of integers as well
(refer to Proposition-I.1.4). Yet for instance, 1 + n 6= 1 for any positive integer
as is guaranteed by the ordering of the integers. Thus the positive integers do
not form a group under addition. ¤
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I.1.16 n-Product.
Hint(3/5): Use the given
hint directly. Prove each map-
ping is well-defined and apply
the theorem appropriately.

Let a1, a2, . . . be a sequence of elements in a semigroup G. Then there exists a
unique function ψ : Z+ → G such that ψ(1) = a1, ψ(2) = a1a2,ψ(3) = (a1a2)a3

and for n ≥ 1, ψ(n+1) = (ψ(n))an+1. Note that ψ(n) is precisely the standard n
product

∏n
i=1 ai. [Hint: Applying the Recursion Theorem 6.2 of the Introduction

with a = a1, S = G and fn : G → G given by x 7→ xan+2 yields a function
ϕ : N→ G. Let ψ = ϕθ, where θ : Z+ → N is given by k 7→ k − 1.]
Proof: The map θ : Z+ → N defined as k 7→ k − 1 is well-defined and bijective
since it is invertible. Therefore defining functions on N is equivalent to defining
them on Z+ – note in our case this is akin to simply indexing our sequence
beginning with 0 instead of 1.

The mappings fn : G → G defined by right translation as fn(x) = xan+2

relies on the well-defined definition of multiplication in G, since there always ex-
ists an an+2 ∈ G, and so the image is well-defined leaving fn well-defined for all
n. By the Recursion Theorem there must therefore exist a function ϕ : N → G
such that ϕ(n+1) = fn(ϕ(n)) = (ϕ(n))an+2 and ϕ(0) = a1. Now define ψ = ϕθ
so that ψ : Z+ → G. Clearly ψ(1) = ϕ(θ(1)) = ϕ(0) = a1; ψ(2) = ϕ(θ(2)) =
ϕ(1) = (ϕ(0))a2 = a1a2; ψ(3) = ϕ(θ(3)) = ϕ(2) = (ϕ(1))a3 = (a1a2)a3; and
finally in general ψ(n + 1) = ϕ(θ(n + 1)) = ϕ(n) = (ϕ(n))an+1 = (ψ(n))an+1.
So ψ defines the standard n-product for associative operators. ¤
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I.2.1 Homomorphisms.
Hint(2/5): For the counter
example consider the a homo-
morphism between the multi-
plicative monoids of Z3 and
Z6.

If f : G → H is a homomorphism of groups, then f(eG) = eH and f(a−1) =
f(a)−1 for all a ∈ G. Show by example that the first conclusion may be false if
G, H are monoids that are note groups.
Proof: Assuming f : G → H is a homomorphism of groups, then f(a) =
f(aeG) = f(a)f(eG) and likewise on the left, f(a) = f(eGa) = f(eG)f(a).
Therefore f(eG) acts like an identity in the image of f(G) in H. By Theorem-
I.2.5, eH = f(a)f(a)−1 ∈ f(G) and since identities are unique, by Theorem-
I.1.2, it follows f(eG) = eH .

Let a ∈ G. Since both G and H are groups the elements a−1 and f(a)−1 are
defined. From here eH = f(eG) = f(aa−1) = f(a)f(a−1) and in similar fashion
eH = f(a−1)f(a) – thus by Theorem-I.1.2 part iii (which states inverses are
unique) it follows f(a−1) = f(a)−1. ¤
Example: Both Z3 and Z6 contain a 1 with the property that n1 ≡ 1n ≡ n for all
integers n. Since multiplication modulo k is associative it follows Z3 and Z6 are
multiplicative monoids. Furthermore they are not multiplicative groups because
0 has no inverse: 0n ≡ 0 for all n; thus 0n 6= 1.

Now define the map f : Z3 → Z6 by f(0) = 0 and f(1) = 4 and f(2) = 2.
Note the image f(Z3) = {0, 2, 4} is closed to multiplication and has multiplica-
tive identity 4.

We may check this is a homomorphism under multiplication as follows:
(first note both the domain and codomain are commutative so we need to
check only one order of every pair) f(0n) = f(0) = 0 = 0f(n) = f(0)f(n)
for all n ∈ Z3. f(1n) = f(n), but furthermore, f(n) = 4f(n) since 4 is a
multiplicative identity within the image. Thus f(1n) = f(1)f(n). And finally
f(2 · 2) = f(1) = 4 = 2 · 2 = f(2)f(2). Therefore f is a multiplicative homomor-
phism; however, clearly f(1) 6= 1.

In general the multiplicative homomorphisms f : Zp → Zp × Zm where p is
prime and m > 1, defined as n 7→ (n, 0) have the property that f(1) 6= (1, 1)
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and so they function as counter examples. ¤

I.2.2 Abelian Automorphism.
Hint(1/5): Use Exercise-I.1
part (ii) to show the map is a
homomorphism.

A group G is abelian if and only if the map G → G given by x 7→ x−1 is an
automorphism.
Proof: Let G be an abelian group. Then by Exercise-I.1 part (ii) it is equivalent
to say (ab)−1 = a−1b−1; thus, a map defined as f(x) = x−1 is a homomorphism
since f(ab) = (ab)−1 = a−1b−1 = f(a)f(b).

For the converse assume f is a homomorphism. Thus (ab)−1 = f(ab) =
f(a)f(b) = a−1b−1 for all a, b ∈ G. But once again this is an equivalent defini-
tion for G being abelian so G is abelian. ¤

I.2.3 Quaternions.
Hint(1/5): Use the normal
form (AiBj) suggested. How
many elements of order 4 are
there?

Let Q8 be the group (under ordinary matrix multiplication) generated by the

complex matrices A =
(

0 1
−1 0

)
and B =

(
0 i
i 0

)
, where i2 = −1. Show that

Q8 is a non-abelian group of order 8. Q8 is called the quaternion group . [Hint:
Observe that BA = A3B, whence every element of Q8 is of the form AiBj .

Note also that A4 = B4 = I, where I =
(

1 0
0 1

)
is the identity element of Q8.]

Proof: Using standard matrix multiplication observe that

A2 =
(

0 1
−1 0

)(
0 1
−1 0

)
=

(−1 0
0 −1

)
= −1I = −I.

Let P =
(

0 1
1 0

)
and note it is a permutation matrix. Thus B = iP and so B2 =

(iP )2 = i2P 2 = −1I = −I. So A2 = B2 and −I2 = (−1)2II = 1I = I; thus
A4 = B4 = I and moreover A3 = −IA = −A and B3 = −B = −IB = A2B.

Next

PA = P

(
0 1
−1 0

)
=

(−1 0
0 1

)
=

(
0 −1
1 0

)
P = A3P ;

therefore, BA = iPA = iA3P = A3iP = A3B. Here we see Q8 will not be
abelian. Multiplication in Q8 has a normal form: given any product of A’s and
B’s we may express it in the form AiBj for some integers i and j; moreover,
B3 = −B = −IB = A2B so we in fact need only elements of the form Ai and
AiB. Since A has order 4 we have at least the following elements:

Q8 = {I,A, A2, A3, B,AB,A2B,A3B}
and if we write these as matrices we see these are all distinct elements:

Q8 =
{(

1 0
0 1

)
,

(
0 1
−1 0

)
,

(−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

)
,

(
0 −i
−i 0

)
,

(−i 0
0 i

)}
.

Notice for all X ∈ Q8, X 6= I,−I, X−1 = −X; thus the group is often described
as

Q8 = {1̂,−1̂, î,−î, ĵ,−ĵ, k̂,−k̂},
where î = A, ĵ = B, k̂ = AB. Therefore Q8 is a subgroup generated by A and
B.

In reference to Exercise-I.2 notice A4 = B4 = AB4 = −I2 = I so there are
six elements of order 4: î,−î, ĵ, −ĵ, k̂ and −k̂. ¤
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I.2.4 D4 in R2×2.
Hint(2/5): Consider
the rotation matrix

R(θ) =
(

cos θ sin θ
−cos θ sin θ

)

for θ = 90◦, and notice the
geometric action of D is
T1,3. How many elements of
order 4 does D4 have? How
many in Q8? The Principle of
Refinement, Corollary-A.2.2
may be helpful. Refer to
Exercise-I.1.

Let H be the group (under matrix multiplication) of real matrices generated by

C =
(

0 1
−1 0

)
and D =

(
0 1
1 0

)
. Show H is a non-abelian group of order 8

which is not isomorphic to the quaternion group of Exercise-I.2, but is isomor-
phic to the group D∗

4 .
Proof: Notice that R(90◦) = C thus C is a linear transformation that rotates the
plane (and thus a square contained in the plane) by 90◦. So identify C with R
in D∗

4 . D~ex = ~ey and D~ey = ~ex so D acts like the transform T1,3 on the plane.
Therefore C4 = I, since R has order 4, and D2 = I by T1,3; further-

more, DC =
(−1 0

0 1

)
= −CD, C−1 = C3 = −C so once again we have

a normal form for all the elements: CiDj – note from here we see it will
not be abelian. Therefore our new set has the following elements: H =
{I, C, C2, C3, D, CD, C2D, C3D}. If we construct these matrices we see each
of these elements is distinct:

H =
{(

1 0
0 1

)
,

(
0 1
−1 0

)
,

(−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 −1
−1 0

)
,

(−1 0
0 1

)}
.

So define the function f : D∗
4 → H as follows:

f =
(

I R R2 R3 T1,3 RT1,3 R2T1,3 R3T1,3

I C C2 C3 D CD C2D C3D

)

Notice that f(RiT j
1,3) = CiDj for all i and j, given Ri, Rj ∈ D∗

4 ,

f(RiRj) = f(Ri+j) = Ci+j = CiCj = f(Ri)f(Rj);

f((RiT1,3)(RjT1,3)) = f(Ri−jT1,3) = Ci−jD = (CiD)(CjD) = f(RiT1,3)f(RjT1,3);

so f is a homomorphism which is in fact bijective. By Theorem-A.2.1 H is a
group, and so f is an isomorphism.

D4 has only two elements of order 4: C and C3; yet Q8 has six: A, −A, B,
−B, AB and −AB; thus these groups are not isomorphic. ¤

I.2.5 Subgroups.
Hint(3/5): For the forward
direction show S is the equiv-
alence class of the identity.

Let S be a nonempty subset of a group G and define a relation on G by a ∼ b if
and only if ab−1 ∈ S. Show that ∼ is an equivalence relation if and only if S is
a subgroup of G.
Proof: (⇒) Suppose ∼ is an equivalence relation on G. S is nonempty and
thus it contains an element a. An element a is in S if and only if a ∼ e, since
a = ae = ae−1. Therefore S = e, and so for all a, b ∈ S, a ∼ e and b ∼ e so by
the symmetry e ∼ b and by the transitivity of ∼, a ∼ b; thus, ab−1 ∈ S by the
definition of ∼. Theorem-I.2.5 is satisfied thus S is a subgroup of G.

(⇐) Let a, b and c be elements of G and suppose S is a subgroup of G. S be-
ing a subgroup implies it contains the identity e, so aa−1 = e ∈ S, thus implying
a ∼ a so that ∼ is reflexive. Next, whenever a ∼ b, ab−1 ∈ S. S is a subgroup
so it must contain the inverse of ab−1 which by Theorem-I.1.2 is simply ba−1;
therefore, b ∼ a and ∼ is symmetric. Finally assuming a ∼ b and b ∼ c, the
definition of ∼ requires that ab−1, bc−1 be in S. Furthermore S is a subgroup so
it is closed to products, such as: (ab−1)(bc−1) = a(b−1b)c−1 = ac−1. So a ∼ c
and in conclusion ∼ is transitive and so it is an equivalence relation. ¤
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I.2.6 Finite subgroups.
Hint(3/5): Use Exercise-I.1.

A nonempty finite subset of a group is a subgroup if and only if it is closed
under the product in G.
Proof: Let S be a nonempty finite subset of G.

(⇒) Suppose S is a subgroup of G. S must therefore be a group it self, so
the product of two elements a, b ∈ S must be a well-defined element in S. We
assume G is a group so the product ab is well-defined in G and thus all that is
required is that ab be in S. Therefore S is closed under the product in order to
be a group, and thus a subgroup.

(⇐) Suppose S is closed under products in G. Given the elements a, b, and
c in S we have assumed ac and bc are in S. Furthermore whenever ac = bc,
it must also be true in all of G where there exists a c−1. Thus we can can-
cel to produce a = b in S (also in G). On the left we take the elements ca
and cb which are also in S since S is assumed closed. Once again whenever
ca = cb in S then it does so also in G thus a = b in G and so also in S. There-
fore S is a nonempty finite semigroup with left and right cancellation; therefore,
it satisfies the hypothesis of Exercise-I.1 which results in the statement that S
is a group. Since S is a group under the operation of G it is a subgroup of G. ¤

I.2.7 nZ.
Hint(1/5): Use the Princi-
ple of Refinement, Corollary-
A.2.2.

If n is a fixed integer, then {kn | k ∈ Z} ⊆ Z is an additive subgroup of Z, which
is isomorphic to Z.
Proof: Define nZ = {nk | k ∈ Z}. Since multiplication in Z is commutative this
set is equivalent to that assumed in the hypothesis.

Define a function f : Z → nZ in the natural way so that f(k) = nk. Every
element of nZ is of the form nk, so f is well-defined. Next f(i+ j) = n(i+ j) =
ni + nj = f(i) + f(j) so f is an additive homomorphism. Given x ∈ nZ, there
exists a k such that x = nk = f(k); therefore, f is surjective. By Corollary-
A.2.2 it follows f(Z) = nZ is a group. Since nZ is a group under addition in Z;
it is a subgroup of Z.

Now define the map f−1 : nZ → Z by f(nk) = k. The integers have the
property nk = nj if and only if k = j; thus every element of nZ is uniquely rep-
resented as an element nk. Therefore f−1 is well-defined. Finally ff−1(nk) =
f(k) = nk so ff−1 = 1nZ and f−1f(k) = f−1(nk) = k so that f−1f = 1Z.
Therefore f is an isomorphism since it is a bijective homomorphism – proof of
Theorem-I.2.3. ¤

I.2.8 Subgroups of Sn.
Hint(1/5): Use the Princi-
ple of Refinement, A.2. The
statement here proved actu-
ally allows any character to be
fixed, not only the letter n.

The set {σ ∈ Sn | σ(n) = n} is a subgroup of Sn, which is isomorphic to Sn−1.
Proof: Define Sk

n = {σ ∈ Sn | σ(k) = k} for any 1 ≤ k ≤ n. Define the mapping
f : Sn−1 → Sn as follows:

f(σ)(x) =

{
σ(x) x < k
k x = k
σ(x− 1) + 1 x > k

.

Each f(σ) is a map of the form {1, . . . , n} → {1, . . . , n} and bijective on {1, . . . , n}−
{k} since it is simply the bijective mapping σ in this case. Furthermore the
added definition of f(σ(k)) = k ensures it is bijective on all {1, . . . , n}. There-
fore it is a permutation of n elements so it is in Sn. Therefore f is well-defined.
Furthermore f(σ) is also in Sk

n as it fixes k.
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Given σ, τ ∈ Sn−1, consider f(στ): when x < k, f(στ)(x) = σ(τ(x)) =
f(σ)f(τ)(x); when x > k then

f(στ)(x) = στ(x− 1) + 1 = σ(τ(x− 1)) + 1
= σ(τ(x− 1) + 1− 1) + 1
= σ(f(τ)(x)− 1) + 1 = f(σ)f(τ)(x);

finally when x = k, f(στ)(x) = k = f(σ)f(τ)(x); therefore, f(στ) = f(σ)f(τ),
so f is a homomorphism. By the Principle of Refinement f(Sn−1) = Sk

n is a
group, and so a subgroup of Sn. ¤

I.2.9 Subgroups and Homomorphisms.
Hint(1/5): For part (a) do
f−1(B) which solves for the
kernel since 0 = {e} is a sub-
group of H. Use the Princi-
ple of Refinement, A.2, in part
(b).

Let f : G → H be a homomorphism of groups, A a subgroup of G, and B a
subgroup of H.

(a) Ker f and f−1(B) are subgroups of G.

(b) f(A) is a subgroup of H.

Proof: The identity of H is in B, and f(e) = e, so f−1(B) contains e and is
nonempty. Take any two elements a, b ∈ f−1(B) and using the definition let
x, y ∈ B, be x = f(a) and y = f(b). Exercise-I.2 shows f(b−1) = f(b)−1

and so f(ab−1) = f(a)f(b)−1 = xy−1 ∈ B, by Theorem-I.2.5 as applied to the
subgroup B in H. Therefore ab−1 ∈ f−1(B) which means by Theorem-I.2.5,
f−1(B) is a subgroup of G.

The nonempty subset 0 = {e} contains the identity and trivially all inverses.
Therefore it is a group, and so even a subgroup of H. Thus Ker f = f−1(0) is
a subgroup of G.

Certainly f |A : A → f(A) is a well-defined function (refer to Introduction,
section 3). Now f(ab) = f(a)f(b) for all elements in G so it must also for all
element in A, which naturally come from G. Therefore f |A is a homomorphism.
By the Principle of Refinement (Corollary-A.2.2) f(A) is a group and so it is a
subgroup of H. ¤

I.2.10 Z2 ⊕ Z2 lattice.
Hint(1/5): Show any homo-
morphism Z4 → Z2⊕Z2 can-
not be injective.

List all subgroups of Z2 ⊕ Z2. Is Z2 ⊕ Z2 isomorphic to Z4?
Example:

−−−−−−− −−− −−−−−−−

−−−−−−−− −−− −−−−−−−−

Z2 ⊕ Z2

〈(1, 0)〉 〈(1, 1)〉 〈(0, 1)〉

0

−−−

−−−

Z4

〈2〉

0

¤
Proof: Suppose f : Z4 → Z2⊕Z2 is a homomorphism. Then f(1) = (a, b). Yet
Exercise-I.1 shows (a, b) + (a, b) = (0, 0). Thus f(2) = (0, 0) = f(0). Therefore
f is not injective. Thus f has no inverse mapping so no homomorphism f−1

exists such that f−1f = 1Z4 . Therefore the groups are not isomorphic. ¤
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I.2.11 Center.
Hint(1/5): Verify the defini-
tion of a subgroup. If G is a group, then C = {a ∈ G | ax = xa for all x ∈ G} is an abelian subgroup

of G. C is called the center of G.
Proof: The identity element has the property ex = x = xe for any element
x ∈ G; thus e ∈ C so C is nonempty. Given any two elements a, b ∈ C, xa = ax
and xb = bx for all x ∈ G, which allows

x(ab) = (xa)b = (ax)b = a(xb) = a(bx) = (ab)x.

So ab ∈ C. Finally xa = ax implies

a−1x = a−1x(aa−1) = a−1(xa)a−1 = (a−1a)xa−1 = xa−1.

Therefore C is closed to inverses so it is a subgroup of G. ¤

I.2.12 Generators.
Hint(2/5): Refer to Exercise-
I.2. How many generators are
required in Z2 ⊕ Z2? How
many might then be needed in
Z⊕ Z?

The group D∗
4 is not cyclic, but can be generated by two elements. The same is

true of Sn (nontrivial). What is the minimal number of generators of the additive
group Z⊕ Z? 5

Example: The group Z⊕Z needs no more than two generators as is seen with
this example: given (a, b) ∈ Z⊕Z notice (a, b) = (a, 0)+(0, b) = a(1, 0)+b(0, 1).
Therefore any subgroup of Z ⊕ Z which contains the set {(1, 0), (0, 1)} must
contain all of Z⊕ Z, so by Definition-I.2.7 this set generates Z⊕ Z.

Additionally Z ⊕ Z cannot be generated by less than 2 elements. This is
because given any lone element (a, b), Theorem-I.2.8 claims it generates only
{n(a, b) | n ∈ Z}. However n(a, b) = (na, nb). Yet (−a, b) is clearly also an ele-
ment of Z⊕Z. If it is not in 〈(a, b)〉 then by definition the Z⊕Z is not generated
by one element. If however (−a, b) ∈ 〈(a, b)〉, then (−a, b) = (na, nb) requires
b = nb, or simply n = 1. Thus −a = a so a = 0. Therefore the element (1, 0) is
excluded from 〈(a, b)〉. Therefore no lone element generates Z⊕ Z. ¤

I.2.13 Cyclic Images.
Hint(1/5): Use induction to
show f(an) = f(a)n for all in-
tegers n.

If G = 〈a〉 is a cyclic group and H is any group, then every homomorphism
f : G → H is completely determined by the element f(a) ∈ H.
Proof: Consider any element x ∈ f(G). By this assumption there exists an
element in the domain b such that x = f(b). However the domain is cyclic
so by definition there exists an integer n such that b = an. Using the axiom of
replacement, x = f(an). Suppose n = 0, then x = f(a0) = f(e) = e = f(a)0 so
the element is determined by f(a)0. Assume for induction that f(an) = f(a)n

for some non-negative integer n; thus,

f(an+1) = f(ana) = f(an)f(a) = f(a)nf(a) = f(a)n+1.

Therefore f(an) = f(a)n for every non-negative integer n by induction.
Exercise-I.2 demonstrates that f(a−1) = f(a)−1 so now consider f(an)

when n < 0:

f(an) = f(a−(−n)) = f((a−1))−n) = f(a−1)−n = (f(a)−1)−n = f(a)n,

5The use of “minimal number of generators” is misleading. The set
{(2, 0), (3, 0), (0, 2), (0, 3)} is minimal in the sense that no proper subset generates all
of Z ⊕ Z, but as shown in the proof the small set {(1, 0), (0, 1)} is also a minimal generating
set. It is best to answer what is a minimum number of generators, which in fact will have to
be a minimal number as well.
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using of course the fact that −n ≥ 0. Therefore f(an) = f(a)n for all integers.
In conclusion every image element of f is of the form f(a)n for some integer

n and thus f(a) determines the homomorphism. ¤

I.2.14 Cyclic Groups of Order 4.
Hint(1/5): Identify a gener-
ator in each and use Exercise-
I.2.

The following cyclic subgroups are all isomorphic: the multiplicative group 〈i〉
in C, the additive group Z4 and the subgroup

〈(
1 2 3 4
2 3 4 1

)〉
of S4.

Example: The group 〈i〉 contains by definition all integral powers of i; thus it
includes {i, i2 = −1, i3 = −i, i4 = 1}. Notice i5 = i so we need not pursue
any more positive powers. Similarly i(−i) = (−i)i = 1 thus the inverse of i is
already accounted for so no negative powers are required.

We abbreviate the permutation notation in the traditional way and write

(1234) in place of
(

1 2 3 4
2 3 4 1

)
. Now the set generated by this element

contains {(1234), (13)(24), (1432), ε}. Again (1234)5 = (1234) and clearly this
implies (1234)3 = (1234)−1 so these elements are in fact all the elements of
our subgroup generated by (1234).

Define the mapping f : Z4 → 〈i〉 by f(1) = i; the mapping g : Z4 → 〈(1234)〉
by f(1) = (1234). By Exercise-I.2 these functions determine a unique homo-
morphism. By the Principle of refinement f(Z4) and g(Z4) are subgroups and
as we have shown both are surjective. We furthermore have a natural inverse
mapping f1−(i) = 1 and g−1((1234)) = 1. These are again homomorphism
from Exercise-I.2. Finally ff−1(in) = in, so ff−1 = 1〈i〉; f−1f(n · 1) = n · 1 so
f−1f = 1Z4 ; gg−1((1234)n) = (1234)n, so gg−1 = 1〈(1234)〉; g−1g(n · 1) = n · 1
thus g−1g = 1Z4 . Therefore the groups are all isomorphic. ¤

I.2.15 Automorphisms of Zn.
Hint(5/5): (a) Notice each
automorphism is a permuta-
tion and show Aut G is simply
a subgroup of SG. (b) Con-
sider Exercise-I.2. (c) Con-
sider Exercise-I.3 and the Eu-
ler ϕ function.

Let G be a group and Aut G the set of all automorphisms of G.

(a) Aut G is a group with composition of functions as a binary operation. [Hint:
1G ∈ Aut G is an identity; inverses exist by Theorem-I.2.3.]

(b) Aut Z ∼= Z2 and Aut Z6
∼= Z2; Aut Z8

∼= Z2 ⊕Z2; Aut Zp
∼= Zp−1 (p prime).

(c) What is the Aut Zn for arbitrary n ∈ Z+?

(a) Proof: Given any automorphism α : G → G it is required that α be an
isomorphism and therefore have an inverse map. However inverse maps
exist if and only if a map is bijective; thus each automorphism is a bijection,
and furthermore by mapping G → G they are in fact permutations. That is
to say Aut G is a subset of SG. As desired the operation of Aut G when
considered as a group is composition as it is in SG; so we need only show
Aut G is a subgroup of SG.

The map 1G(ab) = 1G(a)1G(b) and its inverse is 1G; thus by Theorem-I.2.3
it is an isomorphism and so even an automorphism. Therefore Aut G is
nonempty.

Given an two automorphisms α : G → G and β : G → G it follows from
Theorem-I.2.3 that there exists an inverse isomorphism β−1 : G → G which
is evidently an automorphism. Now αβ−1 is a composition of permutations
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and so it is again a permutation and thus invertible. Further more the com-
position remains a homomorphism since:

αβ(xy) = α(β(xy)) = α(β(x)β(y)) = α(β(x))α(β(y)) = αβ(x)αβ(y)

for any two elements x, y ∈ G. Therefore the composition is an invert-
ible homomorphism. Take the inverse in SG and note by Theorem-I.1.2
(αβ−1)−1 = βα−1. Notice the above argument was conducted on any au-
tomorphisms α and β so the results must also be true when α is β and
when β is α; that is to say βα−1 is an invertible homomorphism. Further-
more by their definition in SG, (αβ−1)(βα−1) = 1G = (βα−1)(αβ−1) so by
Theorem-I.2.3 αβ−1 is an isomorphism and therefore an automorphism of
G. Therefore αβ−1 is in Aut G.

Finally by Theorem-I.2.5, Aut G is a subgroup of SG and so it is a group
under composition. ¤

(b) Example: By Exercise-I.2 we know every abelian group has the automor-
phism −1G : x 7→ −x (here expressed additively) so there may often be at
least two automorphisms – notice sometimes −1G = 1G.

Given Z the automorphism −1G 6= 1G since −1G(1) = −1 6= 1 = 1G(1).
Therefore the automorphism group of Z has at least the elements {1Z,−1Z}.
Notice this set is isomorphic to Z2 by the map 1 7→ −1Z. Now consider any
automorphism α of Z. By Exercise-I.2 it follows α is uniquely defined by
α(1) since 1 is a generator of Z. We need α to be bijective and so α(1)
must generate all of Z. But in Exercise-I.2 we saw m ∈ Z generates a
proper subgroup mZ whenever m 6= 1,−1; therefore, Aut Z ∼= Z2.

Again in Z6, the set maps 1Z6 and −1Z6 are distinct automorphisms since
2 6= −2. Given any other automorphism α, using Exercise-I.2 we concen-
trate on the image of 1. α(1) must be a generator of Z6 of which me may
empirically identify only 1, and 5=-1, work. Therefore there are no other
automorphism and Aut Z ∼= Z2.

With Z8 again −2 6= 2 so we have the two automorphism 1Z8 and −1Z8

as usual. Now we once again look for all the generators of Z8, which we
discover are 1,3,5,and 7=-1. Given any generator g, α(n) = gn is injective
since gi ≡ gj (mod 8) implies i ≡ j (mod 8) as we know (g, 8) = 1; there-
fore, α is bijective by the Pigeon-Hole-Principle. Finally α(i+j) = g(i+j) =
gi+gj = α(i)+α(j), so in fact the automorphisms of Z8 are αk(i) = ki with
k = 1, 3, 5, 7. To identify the group we consider 32 ≡ 52 ≡ 72 ≡ 1 (mod 8);
thus we see it is the group Z2 ⊕ Z2 as defined in Exercise-I.1.

For Zp we locate all generators as 1, . . . , p − 1, which leads to the au-
tomorphism group Z∗p as defined in Exercise-I.1. When p = 2 trivially
Z∗p = 0 = Zp−1. Now let p > 2; therefore, 2 ∈ Z∗p. Every prime has a
primitive root, that is, an element a where (a, p) = 1 and |a| = p − 1 in
Z∗p.[Eyn] ¤

(c) The automorphisms of Zm are isomorphic to the group of generators of Zm

as a multiplicative group, that is, Z×m.

Proof: Suppose α : Zm → Zm is an automorphism. We know Zm is
cyclic and generated by 1, so using Exercise-I.2, α(1) defines the homo-
morphism. Since we want α to be an automorphism, α(1) must be a gen-
erator of Zm; therefore,

α(k) = α(k · 1) = kα(k) = k(g · 1) = gk,

where g is any generator of Zm. But we also require that α be invertible
which provides there exist a g−1 such that g−1(gk) = k. Therefore each
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generator is an invertible element in Zm under multiplication. In Exercise-
I.3 we saw Z×m = {k ∈ Zm | (k, m) = 1} is the largest group under multi-
plication. Therefore every generator is in Z×m as Z×m contains all invertible
elements.

To check this we take any element g in Z×m. Then (g,m) = 1 so we know
gi ≡ gj (mod m) implies i ≡ j by Introduction, Theorem-6.8; therefore,
α(k) = gk is an injective function, and so by the Pigeon-Hole-Principle it is
bijective. Finally, α(i + j) = g(i + j) = gi + gj = α(i) + α(j), so α is an
automorphism. Therefore the automorphism group of Zm is isomorphic to
Z×m. ¤

I.2.16 Generators of PruferGroup.
Hint(1/5): Notice these gen-
erators are not independent:
in fact, {1/pn | n ∈ Z+, n >
k} is also a generating set for
any k ∈ Z+.

For each prime p the additive subgroup Z(p∞) of Q/Z (Exercise-I.1) is gener-
ated by the set {1/pn | n ∈ Z+}.
Proof: Given an element a/b ∈ Z(p∞) we know b = pn for some n ∈ N. Notice
a/pn − a(1/pn) = 0 ∈ Z, so a/pn = a1/pn; therefore, Z(p∞) = 〈1/pn | n ∈ Z+〉.

Notice that given any m > n, pm−n1/pm = 1/pn so any set {1/pn | n ∈
Z+, n > k} is also a generating set for any k ∈ Z+. ¤

I.2.17 Join of Abelian Groups.
Hint(2/5): Use Theorem-
I.2.8. In general H1 ∨ · · · ∨
Hn = H1 · · ·Hn in an abelian
group.

Let G be an abelian group and let H,K be subgroups of G. Show that the join
H ∨K is the set {ab | a ∈ H, b ∈ K}. Extend this result to any finite number of
subgroups of G.
Proof: Denote the set {ab | a ∈ H, b ∈ K} by HK. Since e ∈ H and e ∈ K,
the elements ae = a and eb = b are in HK for all a ∈ H, b ∈ K. Thus HK
contains H and K. Now given any element generated by H ∪ K, we know
by Theorem-I.2.8 that every element in the join is of the form an1

1 · · · ant
t , with

ai ∈ H ∪K, ni ∈ Z. But we know G to be abelian so we may commute all the
elements so that we begin with all the elements in H and end with the elements
in K. That is (ani1

i1
· · · anij

ij
)(a

nij+1
ij+1

· · · anit
it

) where aik
∈ H for all 1 ≤ k ≤ j and

in K otherwise. So every element in H ∨K is of the form ab, where a ∈ H and
b ∈ K. Thus H ∨K ⊆ HK.

Finally every element ab ∈ HK is a finite product of powers of the genera-
tors H ∪K, so HK ⊆ H ∨K by the Theorem-I.2.8. Therefore HK = H ∨K.

Now suppose we have a finite collection of subgroups H1, . . . , Hn of G.
Since multiplication is associative, H1 · · ·Hn = (H1 · · ·Hn−1)Hn, as the ele-
ments a1 · · · an = (a1 · · · an−1)an. Suppose H1 · · ·Hn = H1 ∨ · · · ∨ Hn for
some n ∈ Z+. Then H1 · · ·Hn+1 = (H1 · · ·Hn)Hn+1 = (H1 ∨ · · · ∨Hn)Hn+1 =
(H1∨· · ·∨Hn)∨Hn+1. Finally 〈⋃n

i=1 Hi〉∨Hn+1 is defined as 〈(⋃n
i=1 Hi)∪Hn+1〉

Which is simply H1 ∨ · · · ∨ Hn+1. Therefore by induction, H1 ∨ · · · ∨ Hn =
H1 · · ·Hn, for all n ∈ Z+. ¤

I.2.18 Join of Groups.
Hint(2/5): Demonstrate the
family of subgroups must con-
tain its least upper bound with
respect to set inclusion.

(a) Let G be a group and {Hi | i ∈ I} a family of subgroups. State and prove a
condition that will imply that

⋃
i∈I Hi is a subgroup, that is, that

⋃
i∈I Hi =

〈⋃i∈I Hi〉.
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(b) Give an example of a group G and a family of subgroups {Hi | i ∈ I} such
that

⋃
i∈I Hi 6= 〈⋃i∈I Hi〉.

(a) Proof: Consider the family of subgroups {Hi | i ∈ I} to contain its least
upper bound, H, by set theoretic inclusion. Therefore H =

⋃
i∈I Hi, since

H = Hi for some i ∈ I. Since H is in the family it was assumed to be
a subgroup, and since it is the least upper bound it is the join; that is,⋃

i∈I Hi = 〈∪i∈IHi〉. ¤

(b) Example: Take the subgroups 〈3〉 = {0, 3} and 〈2〉 = {0, 2, 4} of Z6. Their
union is {0, 2, 3, 4} which is not a subgroup of Z6 because of the sum
2 + 3 = 5, which is not in the union; the union is not closed and so it
does not have a well-defined binary operation in the sum. ¤

I.2.19 Subgroup Lattices.
Hint(2/5): Show the com-
pleteness first. The lattice
property will be an immediate
consequence.

(a) The set of all subgroups of a group G, partially ordered by set theoretic
inclusion, forms a complete lattice (Introduction, Exercise-.7 and Exercise-
.7) in which the g.l.b. of {Hi | i ∈ I} is

⋂
i∈I Hi and the l.u.b. is 〈⋃i∈I Hi〉.

(b) Exhibit the lattice of subgroups of the groups S3, D∗
4 , Z6, Z27, and Z36.

(a) Proof: Given any nonempty collection of subgroups {Hi | i ∈ I}, the sets
〈⋃i∈I Hi〉 and

⋂
i∈I Hi are subgroups of G by Corollary-I.2.6 and Theorem-

I.2.8.

Given any S ∈ G such that Hi ≤ S for all i ∈ I implies S contains the
union

⋃
i∈I Hi, and so it must contain the group generated by this union

which is defined as the join. Therefore
∨

i∈I Hi is the least upper bound of
{Hi | i ∈ I}.
Whenever any subgroup S is contained in Hi for all i ∈ I, we know the
elements of S are contained in the intersect of Hi by the set-theoretic def-
inition of intersection. Therefore

⋂
i∈I Hi is the greatest lower bound of

{Hi | i ∈ I}.
Therefore if we take any two subgroups H and K, H ∩ K is the greatest
lower bound and H ∨ K is the least upper bound; so the collection of all
subgroups forms a lattice under set-theoretic inclusion. Finally the above
shows this lattice is in fact complete as every nonempty set of subgroups
has both a greatest lower bound and least upper bound. ¤

(b) Example:

−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−

−−− −−−−−−−−−−−−−

S3

〈(123)〉

〈(12)〉 〈(13)〉 〈(23)〉

0

−−−−−

−−−−−−−−−

−−−−−−−−−

−−−−−

Z6

〈2〉

〈3〉

0



46 Groups

Let a = R =
(

0 1
−1 0

)
, b = Tx =

(
1 0
0 −1

)
, for D4; and î =

(
0 i
i 0

)
,

ĵ =
(

0 1
−1 0

)
, k̂ =

(
i 0
0 −i

)
, and −1̂ = −I, in Q8.

−−−

−−−

−−−

Z8

〈2〉

〈4〉

0

−−−− −−− −−−−

−−−− −−− −−−− −−− −−−− −−− −−−−

−−−−−−−−−−−−−− −−− −−−−−−−−−−−−−

D4

〈a2, b〉 〈a〉 〈a2, ab〉

〈b〉 〈a2b〉 〈a2〉 〈ab〉 〈a3b〉

0

−−−− −−− −−−−

−−−− −−− −−−−

−−−

Q8

〈̂i〉 〈ĵ〉 〈k̂〉

〈−1̂〉

0

−−−−−−−−−−−−−

−−−−−−−−−−−−−

−−−−−−−−−−−−−

Z27

〈3〉

〈9〉

0

−−−−−−−−−

−−−−−−−−−−−−−−

−−−−−−−−−

−−−−−−−−−−−−−−

−−−−−−−−−

−−−−−−−−−−−−−−

−−−−−−−−−−−−−−

−−−−−−−−−

−−−−−−−−−−−−−−

−−−−−−−−−

−−−−−−−−−−−−−−

−−−−−−−−−

Z36

〈2〉

〈3〉

〈4〉

〈6〉

〈9〉

〈12〉

〈18〉

0

¤
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I.3.1 Order of Elements.
Hint(1/5): Use Theorem-
I.3.4 for both infinite and fi-
nite order cases. Make sure
a case is made that two ele-
ments of infinite order involve
the same infinity (recall mul-
tiple infinite cardinals exist).
Show (cac−1)n = canc−1.

Let a, b be elements of a group G. Show that |a| = |a−1|; |ab| = |ba|, and
|a| = |cac−1| for all c ∈ G.
Proof: Consider the cyclic group generated by an element a. By Theorem-
I.2.8 every element in the group is of the form an for some integer n; however,
an = (a−1)−n by Theorem-I.1.9, and furthermore every integer is a negative for
a unique other integer; thus 〈a−1〉 = 〈a〉 and so by Definition-I.3.3, |a| = |a−1|.

Suppose the order, n, of ab is finite, so that (ab)n = e. We re-associate the
product as follows: (ab) · · · (ab) = a(ba) · · · (ba)b = a(ba)n−1b. So a(ba)n−1b = e
which implies (ba)n−1 = a−1b−1 = (ba)−1, and thus finally (ba)n = e. Therefore
the order of ba is less than or equal to the order of ab. However the argument is
completely symmetric if we begin with the order of ba (notice this has implicitly
guaranteed the order of ba is finite so we satisfy the hypothesis to begin); thus
we have |ba| ≤ |ab| and |ab| ≤ |ba| so by the antisymmetry of integer ordering
we know |ab| = |ba|.

The above proof actually states the stronger condition that if either the order
of ab or ba is finite, then so is the other. Therefore if the order of one is infinite,
then the other is as well. Definition-I.3.3 defines the order of an element as the
order of the cyclic group generated by the element. Theorem-I.3.2 furthermore
states that every infinite cyclic group is isomorphic (and thus equipollent) to the
integers. Therefore |ab| = ℵ0 = |ba| even when infinite.

When n = 0, (cac−1)0 = e = cc−1 = cec−1 = ca0c−1. Suppose (cac−1)n =
canc−1, then

(cac−1)n+1 = (cac−1)n(cac−1) = canc−1cac−1 = can+1c−1;

therefore, (cac−1)n = canc−1 for all n ∈ N, by induction. Also, (cac−1)−1 =
(c−1)−1a−1c−1 = ca−1c−1, which leads to

(cac−1)n = (cac−1)−(−n) = ((cac−1)−1)n = (ca−1c−1)n = ca−(−n)c−1 = canc−1,

and so in general (cac−1)n = canc−1 for all n ∈ Z. If n is the finite order of a,
then an = e and so (cac−1)n = cec−1 = e; so |cac−1| ≤ |a|. Equally important,
when the order of cac−1 is m, e = (cac−1)m = camc−1; thus am = c−1c = e,
so |a| ≤ |cac−1|. Once again the conditions implicitly imply that if one order is
finite, then so is the other; therefore, |a| = |cac−1| when either has finite order.
However as illustrated above, if one it infinite, then both are, and infinity here is
always the first infinite cardinal ℵ0; thus |a| = |cac−1| always. ¤
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I.3.2 Orders in Abelian Groups.
Hint(4/5): Consider
(m,n)a + b. It may be useful
to know mn = (m,n)[m,n],
where [m,n] is the least
common multiple of m and n.
6

Let G be an abelian group containing elements a and b of orders m and n re-
spectively. Show that G contains an element whose order is the least common
multiple of m and n. [Hint: first try the case when (m,n) = 1.]
Proof: Consider (m,n)a + b: using property (iv) of Exercise-I.1 for our abelian
group,

[m, n]((m,n)a + b) = [m,n](m,n)a + [m,n]b = (mn)a + [m, n]b = 0 + 0 = 0;

therefore, the order, k, of (m,n)a + b divides [m,n]. We are assuming:

k((m,n)a + b) = k(m,n)a + kb = 0.

This sets up the two cases: either k(m,n)a = −kb, or k(m,n)a = kb = 0. In
the first case we observe a is generated by b, and thus we know the order of
a divides that of b, so the least common multiple is simply the order of b, and
we take b as our required element. 7 In the second case we must conclude
n|k and m

(m,n) |k; therefore, [n, m
(m,n) ]|k. But we notice any primes removed from

m by (m,n) are replaced by their copy in n, that is, [n, m
(m,n) ] = [n,m]; thus,

k = [m,n] and so we have (m,n)a + b as our element of order [m, n]. ¤

I.3.3 Zpq.
Hint(1/5): Use Exercise-I.3.

Let G be an abelian group of order pq, with (p, q) = 1. Assume there exists
a, b ∈ G such that |a| = p, |b| = q and show that G is cyclic.
Proof: G is abelian so from Exercise-I.3 there must exist an element of order
[p, q]. As before we know pq = [p, q](p, q) which is simply pq = [p, q] in our case.
Since there is an element x ∈ G, of order pq, using the Pigeon-Hole Principle,
the order of the subset 〈x〉 is pq inside a group with of order pq, so G = 〈x〉.
Thus G is cyclic. ¤

I.3.4 Orders under Homomorphisms.
Hint(1/5): Use Theorem-
I.3.4. If f : G → H is a homomorphism, a ∈ G, and f(a) has finite order in H, then

|a| is infinite or |f(a)| divides |a|.
Proof: Suppose |a| does not have infinite order. Assume n is the order of a.
Therefore an = e and as shown in the proof of Exercise-I.2, f(e) = f(an) =
f(a)n. Therefore the order of f(a) divides n, by Theorem-I.3.4, part (iv). ¤

I.3.5 Element Orders.
Hint(1/5): It is best simply
to multiply and observe. Let G be a multiplicative group of all nonsingular 2 × 2 matrices with rational

entries. Show that a =
(

0 −1
1 0

)
has order 4 and b =

(
0 1
−1 −1

)
has order

3, but ab has infinite order. Conversely, show that the additive group Z2 ⊕ Z
contains nonzero elements a, b of infinite order such that a + b has finite order.

Example: a2 =
(−1 0

0 −1

)
= −I, and −I2 = (−1)2I2 = I. Therefore a4 = I

and a has order 4. Also b2 =
(−1 −1

1 0

)
and from here b3 =

(
1 0
0 1

)
, so b has

order 3.
7Notice this is still the element (m, n)a+ b since in such a case (m, n) = m so (m, n)a = 0.
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Now ab =
(

1 1
0 1

)
. Suppose (ab)n =

(
1 n
0 1

)
for some positive integer n.

Then (ab)n+1 = (ab)(ab)n which is
(

1 n + 1
0 1

)
. Therefore (ab)n =

(
1 n
0 1

)
for

all positive integers n. Certainly (ab)0 = I by definition, so we extend the rule

for all non-negative integers. Finally (ab)n

(
1 −n
0 1

)
= I and

(
1 −n
0 1

)
(ab)n =

I; therefore (ab)−n =
(

1 −n
0 1

)
, for all n > 0. So we conclude (ab)n =

(
1 n
0 1

)

for all integers n.
We take our matrices to lie in the rational 2 × 2 matrix space, therefore

(ab)n = (ab)m only if m = n. Therefore the order of ab is infinite. ¤
Example: Take the elements (1, 1) and (0,−1) in Z2 ⊕ Z. Given any integer n,
n(1, 1) = (n · 1, n), so n(1, 1) = m(1, 1) only if m = n, and likewise n(0,−1) =
m(0,−1) only when −n = −m, or simply m = n. Therefore both elements
generate infinite cyclic groups, so they have infinite order by definition.

However (1, 1) + (0,−1) = (1, 0) which clearly has order 2 since 2(1, 0) =
(0, 0). ¤

I.3.6 Cyclic Elements.
Hint(2/5): Use the Needle-
in-the-Haystack Heuristic
(A.1) to show all k order
elements are in the same
subgroup.

If G is a cyclic group of order n and k|n, then G has exactly one subgroup of
order k.
Proof: Let G = 〈a〉 be a cyclic group of order n, and let k|n.

Suppose an element b ∈ G has order k. Since G is cyclic and finite, b = ar

for some integer 0 ≤ r < n. From here we notice e = bk = (ar)k = ark. By
Theorem-I.3.4, part (iv), n|rk, that is, nj = rk for some positive integer j. But
we know also k|n so r = (n/k)j.

Now we turn to the existence. Given k|n, clearly s = n/k also divides n, so
by Theorem-I.3.4, part (vii), we know |as| = n/s = k. Since as has order k it
determines a cyclic subgroup of order k which we enumerate as follows:

〈ar〉 = {e, as, a2s, . . . , a(k−1)s}.

Recall above we showed any element of order k was of the form ar where
r = (n/k)j. Now we notice 〈as〉 contains all the elements of the form a(n/k)j

so it contains each ar; therefore, 〈as〉 is the unique subgroup of order k in G. ¤

I.3.7 PruferGroup Structure.
Hint(2/5): Recall in
Exercise-I.2 we proved
a/pi = a1/pi. In part (e)
notice G is defined in terms
of equivalence classes so the
case for well-defined must be
explicit.

Let p be prime and H a subgroup of Z(p∞) (Exercise-I.1).

(a) Every element of Z(p∞) has finite order pn for some n ≥ 0.

(b) If at least one element of H has order pk and no element of H has order
greater than pk, then H is the cyclic subgroup generated by 1/pk, whence
H ∼= Zpk .

(c) If there is no upper bound on the orders of elements in H, then H = Z(p∞);
[see Exercise-I.2].

(d) The only proper subgroups of Z(p∞) are the finite cyclic groups Cn =
〈1/pn〉 (n = 1, 2, . . . ). Furthermore, 〈0〉 = C0 ≤ C1 ≤ C2 ≤ C3 ≤ · · · .
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(e) Let x1, x2, . . . be elements of an abelian group G such that |x1| = p, px2 =
x1, px3 = x2, . . . , pxn+1 = xn, . . . . The subgroup generated by the xi(i ≥
1) is isomorphic to Z(p∞). [Hint: Verify that the map induced by xi 7→ 1/pi

is a well-defined isomorphism.]

Proof:

(a) Every element in Z(p∞) is of the form a/pi for some i ∈ N. In taking the
sum of a/pi, pi times we have a/pi+· · ·+a/pi = pi(a/pi) = a ∼ 0; therefore,
(pi)a/pi = 0. By Theorem-I.3.4, part (iv), the order of a/pi must therefore
divide pi, and so by Introduction, Theorem-6.6, (Euclid’s Lemma) it must
be pn for some n ≥ 0.

(b) Let H be a subgroup of G with an element a/pi of highest order, pk, in H.

Note in Q that a/pi = a/(a,pi)
pi/(a,pi) which is the reduced fraction ( (ai, p

i) 6= 0
since pi 6= 0). So take the fraction to be in lowest terms so that (a, pi) = 1.
Then (pk)(a/pi) ∈ Z only when i ≤ k or a = 0, and the lowest power is
clearly when k = i. Thus the order of the reduced fraction form a/pi is pi,
so we know write a/pk.

Notice a/pk = a1/pk and we also know (a, pk) = 1, so by Theorem-I.3.6,
a/pk is a generator of 〈1/pk〉 and therefore H contains the subgroup 〈1/pk〉.
Now given any element b/pi, it must by assumption have an order less than
pk, and so by part (a), one that divides pk. So we may take b/pi to be in
lowest terms and then i ≤ k. Therefore b/pi = bpk−i/pk = bpk−i1/pk.
Therefore every element in H is generate by 1/pk so it is cyclic and further-
more of order pk.

By Theorem-I.3.2 every proper subgroup is isomorphic to Zpk .

(c) Suppose there is no upper bound on the order of elements in H. We know
from Exercise-I.2 that Z(p∞) is generated by {1/pk | k ∈ N}. Given any
element (expressed in lowest terms) a/pi in H, we know H contains 1/pi.
Since H has no upper bound on orders, and each element has finite or-
der, then H must contain an infinite number of increasingly higher order
elements. We make a chain of these elements by ordering them according
to their order and take only the generator 1/pi of each order represented.
However by part (b) we know a generator 1/pi generates all elements of an
equal or lesser order. Thus our chain generates all lower order elements.
And since our chain can have no top element, because no element has
infinite order, it must eventually contain every generator of the form 1/pi,
for i ∈ N. Thus H = Z(p∞).

(d) In part (b) we see Ci contains all Cj , where j ≤ i. Suppose C0 ≤ C1 ≤
· · · ≤ Cn for some n. Then Cn+1 contains this whole chain so C0 ≤ C1 ≤
· · · ≤ Cn ≤ Cn+1. Therefore through induction C0 ≤ C1 ≤ · · · ≤ Cn ≤ · · · .
By part (b) any subgroup that is finite must have a maximum order element,
and so it is a Cn for some n. If a subgroup is infinite it must have an
infinite number of distinct elements. Since each element has finite order,
the number of these must be unbounded in our infinite subgroup; therefore,
it is the entire group by part (c). Thus every proper subgroup is Cn for some
n ∈ N.

(e) Assume G = 〈x1, x2, . . . 〉 has the required properties and define the map
f : G → Z(p∞) so that xi 7→ 1/pi. First we notice xi is equivalent to pnxi+n

so we must verify its image also equal:

1/pi = f(xi) = f(pnxi+n) = pnf(xi+n) = pn1/p(i+n) = pn/p(i+n) = 1/pi;
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therefore, f is well-defined on the generators. First we notice from Theorem-
I.2.8, every element in G is a finite sum of multiples of xi, that is,

x =
k∑

i=1

nixi =
k∑

i=1

ni · pk−ixk = axk,

where a is some integer. So take the canonical generalization f to be

f(x) = f(axk) = af(xk) = a1/pk = a/pk.

Since f is well-defined on the generators and generalized accordingly it is
well-defined.

Now evaluate a sum across the map:

f(axi) + f(bxj) = a/pi + b/pj = (apj + bpi)/pi+j

= f((apj + bpi)x(i+j)) = f(apjx(i+j) + bpix(i+j))
= f(axi + bxj);

therefore, f is a homomorphism.

Given any a/pi ∈ Z(p∞), we know a/pi = f(axi); therefore, f(G) = Z(p∞)
making f surjective.

Before continuing, we say axi is in reduced terms if pj - a for any j > 0,
in this way axi 6= bxj for any other b or j, and every element has such a
reduced form. Finally, f(xi) = f(xj) implies 1/pi ∼ 1/pj and so i = j which
requires xi = xj . So in general, two reduced elements axi, and bxj , with
the property f(axi) = f(bxj), implies a/pi ∼ b/pj , and each fraction is in
lowest terms; therefore, i = j and a = b, so axi = bxj .

¤

I.3.8 Finite Groups.
Hint(2/5): Prove the state-
ment in the contrapositive.A group that has only a finite number of subgroups must be finite.

Proof: Suppose a group G is infinite. Therefore G has an infinite number
of elements. Introduction, Theorem-8.8, ensures there are at least countably
many elements in G which we enumerate {ai | i ∈ N} ⊆ G, where ai = aj if
and only if i = j.

Each element generates a subgroup 〈ai〉 of G. For each subgroup 〈ai〉 we
have two options: it is infinite, or it is finite. If any such subgroup is infinite
then it is isomorphic to Z which we saw in Exercise-I.2 has the infinite list of
subgroups mZ for each m ∈ Z; therefore no such case can exist.

Therefore we require G have no infinite cyclic subgroups, that is, that ev-
ery element has finite order. Once again consider the subgroups 〈ai〉. These
subgroups are a subset of the lattice of subgroups of G (see Exercise-I.2) and
therefore they are partially ordered. If they have either an infinite chain, or an
infinite number of finite chains, there are infinitely many subgroups. Therefore
suppose that there are only a finite number of chains and that each is finite.

This requires that an infinite number of elements be packaged in a finite
number of subgroups all of which are finitely generated. A finite number of fi-
nite sets has only a finite number of elements; therefore, this last case cannot
be. So G must have an infinite number of elements. ¤
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I.3.9 Torsion Subgroup.
Hint(1/5): Consider the pre-
vious exercises: Exercise-I.1,
and Exercise-I.3. Note this
subgroup of all finite elements
is called the Torsion subgroup.

If G is an abelian group, then the set T of all elements of G with finite order is
a subgroup of G. [Compare Exercise-I.3.]
Proof: Adopt an additive notation throughout the proof.

The zero element has order 1 trivially; thus T is never empty. Given two
torsion elements a, b ∈ T , with |a| = m and |b| = n, consider their sum. Since
mn(a + b) = (mn)a + (mn)b = n(ma) + m(nb) = 0 (notice the implicit use of
Exercise-I.1 part (iv) which is where abelian comes into play) we see that a + b
is a torsion element, a + b ∈ T , so T is closed. Finally by Exercise-I.3 we know
|a| = | − a|, so T is closed to inverses. Therefore T is a subgroup of G by
Theorem-I.2.5. ¤

I.3.10 Infinite Cyclic Groups.
Hint(2/5): Use Exercise-I.2
and Theorem-I.3.2. An infinite group is cyclic if and only if it is isomorphic to each of its proper

subgroups.
Proof: (⇒) Suppose G is an infinite cyclic group then by Theorem-I.3.2 it
is isomorphic to Z. Exercise-I.2 shows the groups mZ are subgroups of Z
which are furthermore isomorphic to Z. Consider any subgroup H 6= 0 of
Z. By Theorem-I.3.1 we know H = 〈m〉 = {mk | k ∈ Z} = mZ, where m
is the least positive integer in H. Therefore every proper subgroup of Z is
of the form mZ, for m ∈ Z, m 6= 0,±1. Since every infinite cyclic group is
isomorphic to Z they have, by Exercise-I.2 and Exercise-I.2, the same lattice of
subgroups. Therefore every infinite cyclic subgroup is isomorphic to each of its
proper subgroups.

(⇐) Suppose G an infinite group isomorphic to each of its proper sub-
groups. In order to have a bijection, let alone an isomorphism, between G
and a subgroup H of G, H must also be infinite. Given any element a ∈ G,
we know the group 〈a〉 to be a subgroup of G. Assume a 6= e, then either 〈a〉
is a proper subgroup of G, or G = 〈a〉. This last case admits G is cyclic so it
does not need to be pursued. Assume then that 〈a〉 is a proper subgroup of
G. The assumption that G is isomorphic to each proper subgroup thus states
G ∼= 〈a〉. Take f : 〈a〉 → G to be the isomorphism. In Exercise-I.2 we showed
f(a) determines the whole map and so since f is surjective (in fact bijective),
〈f(a)〉 = G. Therefore G is cyclic. ¤
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I.4.1 Cosets.
Hint(1/5): Make sure
to prove every element in⋂

i∈I Hia has the form ha for
some well-defined element h.

Let G be a group and {Hi | i ∈ I} a family of subgroups. Then for any a ∈ G,
(
⋂

i Hi)a =
⋂

i Hia.

Proof: Given any element h of
⋂

i∈I Hi, h is in each Hi by definition, therefore
ha ∈ (

⋂
i∈I Hi)a is an element of Hia for each i ∈ I. Therefore (

⋂
i∈I Hi)a ⊆⋂

i∈I Hia.
Take any element k from ∩i∈IHia. Since k is in each Hia, it follows for each

i ∈ I, there exists an hi ∈ Hi such that k = hia. Therefore hia = hja for all
i, j ∈ I. But this requires hi = hj by cancellation. Therefore there exists a
unique h ∈ ⋂

i∈I Hi such that k = ha. Thus (
⋂

i∈I Hi)a ⊆
⋂

i∈I Hia.
Therefore (

⋂
i∈I Hi)a =

⋂
i∈I Hia. ¤

I.4.2 Non-normal Subgroups.
Hint(1/5): Refer to Exercise-
I.2 for the subgroup lattice of
S3 which may be helpful.

(a) Let H be the cyclic subgroup (of order 2) of S3 generated by
(

1 2 3
2 1 3

)
.

Then no left coset of H (except H itself) is also a right coset. There exists
a ∈ S3 such that aH ∩Ha = {a}.

(b) If K is the cyclic subgroup (of order 3) of S3 generated by
(

1 2 3
2 3 1

)
, then

every left coset of K is also a right coset of K.

Example: The subgroup H = 〈(12)〉 in S3 is not normal. The following are the
left cosets of the subgroup:

{{ε, (12)}, {(13), (123)}, {(23), (132)}},

and these next are the right cosets:

{{ε, (12)}, {(13), (132)}, {(23), (123)}}.
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Therefore since all nontrivial left cosets (although it is sufficient that only one
fail) are not equal to their right cosets, H is not normal. Furthermore (13)H ∩
H(13) = {(13)} and also (23)H ∩H(23) = {(23)}.

However the subgroup K = 〈(123)〉 is normal in S3 as seen with the cosets
(left, then right):

{{ε, (123), (132)}, {(12), (23), (13)}},
{{ε, (123), (132)}, {(12), (13), (23)}}.

Since each left coset equals its right coset, K E S3. ¤

I.4.3 p-groups.
Hint(2/5): Use the Theorem
of Lagrange. The following conditions on a finite group G are equivalent.

(i) |G| is prime.

(ii) G 6= 〈e〉 and G has no proper subgroups.

(iii) G ∼= Zp for some prime p.

Proof: Suppose G has prime order p. Since we do not allow 1 to be prime
(otherwise nothing would have unique factorization since 1 = 1 · 1) we know
G 6= 0. Given any subgroup H ≤ G, by the Theorem of Lagrange (Corollary-
I.4.6) it follows |G| = [G : H]|H|, and thus the order of H divides the order of
G. However n|p if and only if n = 1 or p by the very definition of prime numbers.
When n = 1 then H is forced to be the trivial subgroup 0. When n = p,
the order of H matches the finite order of G so by the Pigeon-Hole-Principle
H = G. Therefore G has no proper subgroups. (i) ⇒ (ii).

Suppose G is a finite nontrivial group with no proper subgroups. Given any
element a ∈ G, the group generated by a is a subgroup of G and so 〈a〉 = 0
or G. If a 6= e then 〈a〉 contains a and so it has an order greater than 1; thus
〈a〉 = G. Since G is nontrivial there exists such an element a 6= e, so G is
cyclic.

By Theorem-I.3.2, G is isomorphic to a group Zm for some positive integer
m. Since the order of Zm is m, the order of G must be m. Given any composite
number m, there exists a k|m, k 6= m, k 6= 1. Therefore by Theorem-I.3.4, ak is
an element of order m/k 6= 1,m. Thus the subgroup 〈ak〉 is a proper subgroup
of G, which is a contradiction. Therefore m may not be composite. Therefore
G ∼= Zp for some prime p. (ii) ⇒ (iii).

If G ∼= Zp for some prime p, then G has the same order of Zp which is the
prime p. Thus (iii) ⇒ (i).

Therefore (i), (ii), and (iii) are equivalent. ¤

I.4.4 Little Theorem of Fermat.
Hint(2/5): What must the
order of every element of Z×p
divide?

Let a be an integer and p a prime such that p - a. Then ap−1 ≡ 1 (mod p).
[Hint: Consider a ∈ Zp and the multiplicative group of nonzero elements of Zp;
see Exercise-I.1.] It follows that ap ≡ a (mod p) for any integer a.
Proof: For every integer a ∈ Z for which p - a, it follows a 6= 0 (mod p).
Exercise-I.1 demonstrates all such nonzero integers form a multiplicative group,
mod p, called Z×p , which furthermore has order p − 1. Therefore by the Theo-
rem of Lagrange, every element in Z×p must have an order dividing p−1. Recall
the identity is now multiplicative and so it is the equivalence class of 1. Thus
we have, for all a such that p - a, then a ∈ Z×p and therefore a|a| ≡ 1 (mod p).
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However since |a| divides p− 1, by Theorem-I.3.4, ap−1 ≡ 1 (mod p).

Notice if we use the result of Exercise-I.2, part (c), we know the automor-
phisms of Zm are isomorphic to the multiplicative group of all cyclic generators
of Zm, denoted Z×m. Armed with Theorem-I.3.6 we now know an element a of
Zm is a cyclic generator if and only if (a,m) = 1. Therefore the order of the Z×m
is equal to the number of integers between 1 and m that are relatively prime to
m. This is defined as the Euler-ϕ Function. Thus as above, the order of each
element in Z×m must divide ϕ(m). Therefore aϕ(m) ≡ 1 (mod m) for all a and m
such that (a,m) = 1. ¤

I.4.5 Groups of Order 4.
Hint(2/5): Refer to Exercise-
I.2 and use the given hint.Prove that there are only two distinct groups of order 4 (up to isomorphism),

namely Z4 and Z2⊕Z2. [Hint: By Lagrange’s Theorem-I.4.6 a group of order 4
that is not cyclic must consist of an identity and three elements of order 2.]

Example: In Exercise-I.2 we demonstrated that Z4 and Z2⊕Z2 are not isomor-
phic. Therefore there are at least to groups of order 4. Theorem-I.3.2 strictly
states any cyclic group of order 4 must be isomorphic to Z4; thus only one
group of this from exists. So let us assume G is a group of order 4 which is not
cyclic.

By the Theorem of Lagrange, every element in G must have an order divid-
ing 4. Since G is not to be cyclic, no element in G may have order 4, or else
by the Pigeon-Hole-Principle it would generate all of G forcing G to be cyclic.
Therefore each element must have order 1 or 2. Since an element of order 1
has the property a = a1 = e, then only one element, the trivial element, may
have order 1. So we resolve this by stating G has one element of order 1, e,
and three elements of order 2: a, b, c. If we recall Exercise-I.1 we now know G
is abelian, since all its elements are involutions; this simplifies our check for a
homomorphism. We note ab 6= a or b, as otherwise a = e or b = e; nor does
ab = e, or otherwise a = b−1 = b; thus ab = c as it is all that is left.

Define a map f : Z2 ⊕ Z2 → G as follows:

f(0, 0) = e; f(1, 0) = a; f(0, 1) = b; f(0, 0) = c.

The mapping is well-defined as each domain has a unique image, and it is
also bijective as the inverse map is evident. Now we need only check for the
homomorphism property:

f((0, 0) + (x, y)) = f(x, y) = ef(x, y) = f(0, 0)f(x, y)
f((1, 0) + (0, 1)) = f(1, 1) = c = ab = f(1, 0)f(0, 1)
f((0, 1) + (1, 1)) = f(1, 0) = a = cb−1 = bc = f(0, 1)f(1, 1)
f((1, 0) + (1, 1)) = f(0, 1) = b = ca−1 = ac = f(1, 0)f(1, 1)

and the rest of the sums are valid by the commutativity. Therefore f is a homo-
morphism which is bijective, so G ∼= Z2 ⊕ Z2. ¤

I.4.6 Join.
Hint(3/5): Consider how in
Exercise-I.2, the abelian prop-
erty of G was used. Does
HK = KH replace the need
for this property?

Let H, K be subgroups of a group G. Then HK is a subgroup of G if and only
if HK = KH.
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Proof: (⇒) Let HK be a subgroup of G. It must therefore be closed to inverses.
For every group we know for every element g ∈ G, g is the inverse of another
element, in fact of the element g−1, so G = {g−1 | g ∈ G}. Therefore:

HK = {hk | h ∈ H, k ∈ K} = {h−1k−1 | h ∈ H, k ∈ K}
= {(kh)−1 | h ∈ H, k ∈ K} = {kh | k ∈ K, h ∈ H}
= KH.

(⇐) Let HK = KH. Since e ∈ H and e ∈ K, we know e ∈ HK, so HK
is nonempty. Given any hk, h′k′ ∈ HK, the product (hk)(h′k′) = h(kh′)k′. But
since HK = KH, for every kh′ there exists h′′ ∈ H and k′′ ∈ K such that
kh′ = h′′k′′, and substituting we see: (hk)(h′k′) = h(h′′k′′)k′ = (hh′′)(k′′k′).
Since H and K are subgroups, they are closed to products; therefore, hh′′ =
i ∈ H, and k′′k′ = j ∈ K, so (hk)(h′k′) = ij ∈ HK. Therefore HK is closed to
products.

Finally given hk ∈ HK, (hk)−1 = k−1h−1 which is an element of KH. But
KH = HK so it is in fact an element of HK. Therefore HK is closed to in-
verses. So HK is a subgroup of G. ¤

I.4.7 p-group Complex.
Hint(3/5): Follows from
Theorem-I.4.7. Let G be a group of order pkm, with p prime and (p, m) = 1. Let H be a

subgroup of order pk and K a subgroup of order pd, with 0 < d ≤ k and
K 6⊆ H. Show that HK is not a subgroup of G.
Proof: Given |H| = pk and |K| = pd, it follows both are finite subgroups of G
so Theorem-I.4.7 applies: |HK| = |H||K|/|H ∩K|. Since K is not completely
contained in K it follows H ∩ K has an order less than pd. The intersect is a
subgroup of H and K so by the Theorem of Lagrange its order must divide that
of H and K. Since the order order of K is pd ≤ pk we are concerned only that
it divide pd. Since it must be less than pd, there exits a 0 ≤ c < d such that
|H ∩K| = pc. Therefore we have |HK| = (pkpd)/pc = pk+d−c. Since c < d it
follows k < k + d− c. Therefore the order of HK, if it is a group, is a power of p
greater than k. However k is the largest integer for which pk divides the order
of G. Therefore by the Theorem of Lagrange, HK cannot be a subgroup of G
since its order would not divide G. ¤

I.4.8 HK-subgroup.
Hint(5/5): Notice [G :
K][K : H ∩K] = [G : H][H :
H ∩K].

If H and K are subgroups of finite index of a group G such that [G : H] and
[G : K] are relatively prime, then G = HK.
Proof: We let [G : K] = k, [G : H] = h, [H : H ∩K] = i, and [K : H ∩K] = j.
Then we have the following subset lattice (notice the labels on the lines indicate
the index of the lesser in the greater):

−−−−−−−−−−−−

h

−−−−−−−−−−−−−−−−−

k

· · ·

m

−−−−−−−−−

j

−−−−−−−−−−−−

i

−−−−−−−−−−−−

i

−−−−−−−−

j

G

HK

H

K

H ∩K
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H ∩ K is a subgroup in G. Furthermore both [G : H] and [G : K] are
finite indices, so by the Lemma of Poincaré (Proposition-I.4.9) we know [G :
H ∩K] ≤ [G : H][G : K] and is therefore finite. From the Theorem of Lagrange
(Theorem-I.4.5) we know: [G : H][H : H ∩ K] = [G : H ∩ K] = [G : K][K :
H ∩K], which are all finite products.

We must resolve when hi = kj knowing (h, k) = 1. Since h and k are rela-
tively prime it follows h|j and k|i, so h ≤ j and k ≤ i. But by Proposition-I.4.8
we see j = [K : H ∩K] ≤ [G : H] = h and likewise i ≤ k. Therefore i = k and
j = h. Finally Proposition-I.4.8 concludes since [H : H ∩ K] = [G : K] then
G = HK. ¤

I.4.9 Subgroups and the Complex.
Hint(2/5): Show HN = N .

If H, K and N are subgroups of G such that H ≤ N , then HK∩N = H(K∩N).
Proof: We begin by showing H(K ∩N) = HK ∩HN :

H(K ∩N) = {hy | h ∈ H, y ∈ K ∩N} = {hx | h ∈ H, x ∈ K, y ∈ N, x = y}
before continuing notice that hx = hy if and only if x = y by cancellation,
therefore:

H(K ∩N) = {hx = hy | h ∈ H,x ∈ K, y ∈ N}
= {hk | h ∈ H, k ∈ K} ∩ {hn | h ∈ H, n ∈ N}
= HK ∩HN.

Observe e ∈ H so N ⊆ HN , but since H ≤ N , HN ⊆ N , so again N = HN ;

H(K ∩N) = HK ∩HN = HK ∩N.

¤

I.4.10 Identifying Subgroups.
Hint(4/5): Notice the proof
of Proposition-I.4.8 constructs
a map from all left cosets of
H∩K into the left cosets of K
in G. Show this map is always
onto the left cosets of K in
HK, even if HK is not a sub-
group. Then the proposition
actually states [H : H ∩K] =
[HK : K] where [HK : K] is
the number of left cosets of K
in HK.

Let H, K, N be subgroups of a group G such that H ≤ K, H ∩N = K ∩N , and
HN = KN . Show H = K.
Proof: First expand the proof of Proposition-I.4.8. For convenience denote all
left cosets of B in A as A/B. Use the same definition of ϕ : H/H ∩K → G/K
as h(H ∩ K) 7→ hK. ϕ was previously shown to be well-defined. Suppose
ϕ(h(H ∩ K)) = ϕ(h′(H ∩ K)) for some arbitrary elements h, h′ ∈ H. Thus
hK = h′K and so h′h−1K = K, or simply h′h−1 ∈ K. Since H is a subgroup it
contains h′h−1 and so h′h−1 ∈ H∩K, which is equivalent to stating: h(H∩K) =
h′(H ∩K). Therefore ϕ is injective. Now restrict the image to the set HK/K,
and since we do not require HK/K to be a group we will not need HK to
be a group either. Every left coset in HK/K is of the form (hk)K = hK,
for some h ∈ H; therefore, (hk)K = ϕ(h(H ∩ K)). So ϕ is surjective onto
HK/K. Therefore if we define [HK : K] = |HK/K| then we have in fact
shown [H : H ∩K] = [HK : K].

This facilitates our proof since HN = KN and so:

[H : H ∩N ] = [HN : N ] = [KN : N ] = [K : K ∩N ].

But also H∩N = K∩N we furthermore know (using the Theorem of Lagrange):

[K : H][H : H ∩N ] = [K : H ∩N ] = [K : K ∩N ] = [H : H ∩N ];

thus [K : H] = 1 (by Exercise-.8), so K = H. ¤
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I.4.11 Groups of order 2n.
Hint(2/5): Use Exercise-I.1

Let G be a group of order 2n; then G contains an element of order 2. If n is odd
and G is abelian, there is only one element of order 2.
Proof: In Exercise-I.1 we proved G has an element of order 2. Now suppose
n is odd and that G is abelian.

Suppose a, b ∈ G are both elements of order 2. They both generate groups
〈a〉 and 〈b〉. Since G is abelian we may use Exercise-I.2 to show H = 〈a, b〉 =
{ma + nb | m,n ∈ Z}. Since we have the order of the two elements fixed at 2,
we in deed generate a group: H = {0, a, b, a + b}. By assumption a 6= b and
since both have order 2 neither equals 0. Suppose a + b = e, then a = −b = b;
if a + b = a, then b = 0; and lastly when a + b = b, a = 0 – all of which are
contradictions of our assumptions. Therefore a + b is a distinct element and H
has order 4. However since n is odd it follows 4 - 2n so H cannot be a subgroup
because it would violate the Theorem of Lagrange. Therefore G has a unique
element of order 2. ¤
Example: S3 has order 2 · 3 and in fact it has elements of order 2: (12), (13),
and (23). However S3 is not abelian so there is not a unique element of order
2. ¤

I.4.12 Join and Intersect.
Hint(2/5): Use the product
of the hint for Exercise-I.4. If H and K are subgroups of a group G, then [H ∨K : H] ≥ [K : H ∩K].

Proof: Given any element hk ∈ HK, the element is in a finite product of the
generators of H∨K, so by Theorem-I.2.8 it must be included in H∨K; so in fact
HK ⊆ H ∨K. Now we know from Exercise-I.4 that [K : H ∩K] = [HK : H],
and the cosets of H in H ∨ K must contain all the cosets of H in HK since
the complex is a subset of the join; therefore, [HK : H] ≤ [H ∨ K : H]; thus
[K : H ∩K] ≤ [H ∨K : H]. ¤

I.4.13 pq-groups.
Hint(1/5): Use the hint pro-
vided. If p > q are primes, a group of order pq has at most one subgroup of order p.

[Hint: Suppose H, K are distinct subgroups of order p. Show H ∩K = 0; use
Exercise-I.4 to get a contradiction.]
Proof: Suppose that H and K are distinct subgroups G of order p. The
intersection H∩K is a subgroup of both H and K and therefore by the Theorem
of Lagrange its order must divide p. Since p is a prime this forces H ∩ K to
have order 1 or order p. We assumed H and K were distinct therefore the
order of H ∩ K cannot be p or else by the Pigeon-Hole-Principle we would
have H ∩K = H = K. Therefore H ∩K = 0.

Now using Exercise-I.4, we see [K : H ∩ K] = |K| = p ≤ [H ∨ K : H]
and therefore |H ∨ K|/p ≥ p, which implies |H ∨ K| ≥ p2. However pq < p2

since p < q, and thus H ∨K is greater than the group that contains it, which is
impossible. Therefore there cannot be two distinct groups of order p. ¤

I.4.14 Quaternion Presentation.
Hint(2/5): Notice (iii) gives
a normal form. Let G be a group and a, b ∈ G such that (i) |a| = 4 = |b|; (ii) a2 = b2; (iii)

ba = a3b = a−1b; (iv) a 6= b; (v) G = 〈a, b〉. Show that |G| = 8 and G ∼= Q8. (See
Exercise-I.2; observe that the generators A,B of Q8 also satisfy (i)-(v).)
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Proof: The presentation given for Q8 always determines a group. What is
required is that Q8 have order 8, and that it be the only group with this presen-
tation of that order.

To show this first we construct a maximal set of elements of which Q8 must
be a subset. Given ba = a−1b we may assume a normal form for all elements:
for all x ∈ Q8, x = aibj for some i, j ≥ 0. Now define c = a2 = b2 and notice:

c(aibj) = a2+ibj = aicbj = aibj+2 = (aibj)c;

therefore, c is central in Q8. The order of a is at most 4, and thus the order
of b divides 4. Using the property of c notice aib3 = aicb = a2+ib; therefore,
all elements are of the form aibj with j = 0, 1. This produces the following
maximal list of elements:

A = {e, a, a2, a3, b, ab, a2b, a3b}.
Since A visibly has 8 elements, by the Pigeon-Hole-Principle in fact we see
A = Q8. Therefore Q8 exists and is unique. ¤
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I.5.1 Index 2 Subgroups.
Hint(1/5): Check left and
right cosets agree. If N is a subgroup of index 2 in a group G, then N is normal in G.

Proof: Suppose [G : N ] = 2. Therefore there are only two left/right cosets.
Since e ∈ G, eN = N , one of the left cosets must always be N . Therefore the
remaining left coset must be G−N . Again since Ne = N , N is always a right
coset, so the remaining right coset must be G −N . Therefore every left coset
equals its corresponding right coset; therefore N E G. ¤

I.5.2 Normal Intersections.
Hint(1/5): Conjugate the in-
tersection. If {Ni | i ∈ I} is a family of normal subgroups of a group G, then

⋂
i∈I Ni is a

normal subgroup of G.
Proof: Suppose {Ni | i ∈ I} is a family of normal subgroups of G. Therefore
aNia

−1 = N for all a ∈ G. Given any element in ana−1 ∈ a(
⋂

i∈I Ni)a−1 it
follows n ∈ ⋂

i∈I Ni and so from the definition of intersection, n ∈ Ni for all
i ∈ I. Therefore ana−1 ∈ aNia

−1 for all i ∈ I. Together this means:

a(
⋂

i∈I

Ni)a−1 =
⋂

i∈I

aNia
−1 =

⋂

i∈I

Ni.

Therefore
⋂

i∈I Ni is normal in G. ¤
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I.5.3 Normal and Congruence.
Hint(2/5): Remember in
Exercise-I.2 we showed that
any subgroup determines
an equivalence relation. All
that remains is to show
it respects products (see
Definition-I.4.1).

Let N be a subgroup of G. N is normal in G if and only if (right) congruence
modulo N is a congruence relation on G.
Proof: Suppose N E G, then it is first a subgroup of G so by Exercise-I.2 we
know left congruence is an equivalence relation. Suppose a ≡ b (mod N) and
c ≡ d (mod N).8 Therefore ab−1, cd−1 are in N , and furthermore ab−1e, cd−1e ∈
N so ab−1 ≡ cd−1 ≡ e (mod N). By substituting we see:

e ≡ ab−1 ≡ aeb−1 ≡ a(cd−1)b−1 ≡ (ac)(bd)−1 (mod N).

Therefore ac ≡ bd (mod N); so N is a congruence relation.
Now suppose that left congruence modulo N is a congruence relation. Take

a ∈ G and any n ∈ N . Since ne ∈ N , n ≡l e (mod N). We know a ≡l a
(mod N) and so an ≡l a (mod N). Therefore (an)a−1 ∈ N ; this then ensures
aNa−1 ⊆ N , which satisfies Theorem-I.5.1, part (iv); therefore, N is normal in
G. ¤

I.5.4 Congruence.
Hint(3/5): Use Theorem-
I.5.1.Let ∼ be an equivalence relation on a group G and let N = {a ∈ G | a ∼ e}.

Then ∼ is a congruence relation on G if and only if N is a normal subgroup of
G and ∼ is a congruence module N .
Proof: (⇒) Suppose ∼ is a congruence relation on G. Given a ∈ G and n ∈ N ,
a ∼ a – since ∼ is reflexive – and n ∼ e – by the definition of N . Since this is a
congruence we further know an ∼ ae = a. Now multiplying by inverses on the
left (again since a−1 ∼ a−1) we obtain ana−1 ∼ e. Therefore aNa−1 ⊆ N so
by Theorem-I.5.1, part (iv), N is normal in G. Furthermore, a ∼ b if and only if
ab−1 ∼ e which is to say if and only if ab−1 ∈ N . Therefore ∼ is a congruence
module N .

(⇐) Now suppose ∼ is a congruence module N , where N is a normal sub-
group of G. In Theorem-I.5.1 we see N is normal forces left and right con-
gruence to agree; therefore, N determines a congruence relation on G. Fur-
thermore, given n ∈ N , ne = ne−1 ∈ N ; therefore, n ∼ e. And a ∼ e implies
ae−1 = ae = a ∈ N ; therefore, N = {a ∈ G | a ∼ e}. ¤

I.5.5 Normality in Sn.
Hint(1/5): No. Use
Exercise-I.2 to justify N is a
subgroup. Then demonstrate
some left coset is not its right
coset.

Let N ≤ S4 consist of all those permutation σ such that σ(4) = 4. Is N normal
in S4?
Example: In Exercise-I.2 we proved the set Sk

n – all permutations with a fixed
point at k – was a subgroup of Sn. Therefore we know S4

4 is a perfectly fine
subgroup of S4 which is in fact isomorphic to S3. Now consider the cosets
(13)(24)S4

4 and S4
4(13)(24).

(13)(24)S4
4 = (13)(24){ε, (123), (132), (12), (13), (23)}

= {(13)(24), (142), (234), (1423), (24), (1342)}.
S4

4(13)(24) = {(13)(24), (243), (124), (1324), (24), (1243)}

Since not every left coset of S4
4 agrees with the right coset; S4

4 is not normal in
S4. ¤

8By Theorem-I.5.1, part (i), we know the left and right labels are interchangeable.
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I.5.6 Conjugate Subgroups.
Hint(3/5): Show λg : G →
G defined as x 7→ gxg−1 is
an automorphism. Then use
Exercise-I.2 and/or Theorem-
I.5.11.

Let H ≤ G; then the set aHa−1 is a subgroup of G for each a ∈ G, and
H ∼= aHa−1. 9

Proof: Let g be an arbitrary element of G. Define the map λg : G → G
as x 7→ gxg−1. Conjugation is a well-defined product in G; therefore, λg is
well-defined. Given any x, y ∈ G notice λg(xy) = gxyg−1 = gxg−1gyg−1 =
λg(x)λg(y); therefore, λg is a homomorphism. Furthermore, λg(x) = e only
when gxg−1 = e which implies gx = g or simply x = e. Therefore since
Ker λg = 0, by Theorem-I.2.3, λg is a monomorphism. Finally, given x ∈ G,
x = (gg−1)x(gg−1) = g(g−1xg)g−1 = λg(g−1xg), therefore λg is surjective; thus
it is bijective, and so even an isomorphism, or simply an automorphism.

This result, combined with Exercise-I.2, states whenever H ≤ G, λg(H) =
gHg−1 is also a subgroup of G. Now consider restricting λg to H. The re-
striction is well-defined and leads to a mapping f : H → gHg−1 defined as
f(x) = λg(x). f retains the injectivity of λg and since we have chosen as a
codomain the image of H under f , f is surjective as well. Finally f(xy) =
λg(xy) = λg(x)λg(y) = f(x)f(y), therefore f is a bijective homomorphism – an
isomorphism. ¤

I.5.7 Unique Subgroups Are Normal.
Hint(2/5): Use Exercise-I.5.

Let G be a finite group and H a subgroup of G of order n. If H is the only
subgroup of G of order n, then H is normal in G.
Proof: In Exercise-I.5 we saw that gHg−1 is a subgroup, isomorphic to H, of
G for every g ∈ G. Therefore H and gHg−1 have the same order, since there
exists a bijection between them. Since H is the only subgroup of order n, it
follows gHg−1 = H for all g ∈ G. Therefore, by Theorem-I.5.1, H is normal in
G. ¤

I.5.8 Normality in Q8.
Hint(1/5): Immediate result
of Exercise-I.5 and Exercise-I.5
(see Exercise-I.2).

All subgroups of the quaternion group are normal (see Exercise-I.2 and Exercise-
I.4).

Example: As seen in Exercise-I.2, the subgroups of Q8 are: 0,〈−1̂〉, 〈̂i〉, 〈ĵ〉,
〈k̂〉, and Q8. Both 0 and Q8 are normal trivially as they lead to trivial partitions.
The subgroups generated by î, ĵ and k̂ all have index 2; so by Exercise-I.5 they
are normal in Q8. Finally 〈−1̂〉 is the intersection of normal subgroups of Q8;
so by Exercise-I.5 it also is normal in Q8. Therefore every subgroup of Q8 is
normal.

Notice that Q8 is non-abelian. ¤

I.5.9 Center of Sn.
Hint(1/5): Apply the defini-
tions. (a) If G is a group, then the center of G is a normal subgroup of G (see

Exercise-I.2);

(b) the center of Sn is the identity subgroup for all n > 2.

9Notice this says if any subgroup exists that is not isomorphic to any other subgroups,
then it must be normal. The converse is generally not true: consider the integers.
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(a) Proof: From Exercise-I.2 we know C is a subgroup of G. Now given any
element g ∈ G, and any x ∈ C, it follows gx = xg; therefore, gC = {gx | x ∈
C} = {xg | x ∈ C} = Cg; so by Theorem-I.5.1, part (iii), C E G. ¤

(b) Example: Let n > 2 and consider the center of Sn. Since cycles are
independent of each other we may test for centrality on just the elements
in the cycle. Given a central element σ, pick a cycle of the element κ =
(a1, . . . , ai), with 2 < i ≤ n. Next choose τ to be τ = (a1, a2) Then κτ =
(a1, a3, a4, . . . , ai) and τκ = (a2, a3, . . . , ai). This means κτ leaves a2 fixed
while τκ fixes a1; therefore, κ is not central and in fact the entire permuation
σ is not central as none of the disjoint cycles are.

This leaves us only the case where σ is a product of disjoint transpositions.
Now consider a cycle in such an element: it must be κ = (a1, a3). But since
n > 2 we know there exists a τ = (a1, a2, a3), but once again κτ fixes a1

and τκ fixes a2 only in the cycle; therefore, no non-trivial element of Sn is
central when n > 2. ¤

I.5.10 Normality is Not Transitive.
Hint(1/5): Refer to Exercise-
I.2.Find groups H and K of D∗

4 such that H E K and K E D∗
4 , but H is not normal

in D∗
4 .

Example: Notice 〈b〉 is a subgroup of index 2 in 〈a2, b〉, and therefore by
Exercise-I.5 it is normal in 〈b, a2〉. Likewise 〈a2, b〉 is of index 2 in D4, so it
is normal in D4. However 〈b〉 is not normal in D4 because a〈b〉 = {a, ab} but
〈b〉a = {a, ba = a3b}. ¤

I.5.11 Normal Cyclic Subgroups.
Hint(1/5): It may help to use
the proof of Exercise-I.3 where
it was shown (gag−1)k =
gakg−1.

If H is a cyclic subgroup of a group G and H is normal in G, then every sub-
group of H is normal in G. [Compare Exercise-I.5.]
Example: Let H = 〈a〉 be a subgroup of G and assume H E G. Consider a
subgroup K of H. Every subgroup of H is cyclic by Theorem-I.3.5, and further-
more K = 〈ak〉 for some k ∈ Z+. So we now take g ∈ G: gag−1 = am for some
m ∈ Z, since H is normal. It follows then that gakg−1 = (gag−1)k = (am)k =
(ak)m. So we see gKg−1 ⊆ K, for all g ∈ G; thus K E G by Theorem-I.5.1 part
(iv). ¤

I.5.12 Finitely Generated.
Hint(4/5): Notice H gives a
normal form to the elements
of G: every element is of the
from

yj1
i1
· · · yjk

ik
xt1

s1
· · ·xtu

su

where the y′s are generators
in G/H and the x’s are gen-
erators in H. Since H is nor-
mal, we may group the x’s to-
gether.

If H is a normal subgroup of a group G such that H and G/H are finitely
generated, then so is G.
Proof: Since H is normal in G, G/H is a group. By assumption there exists
a finite set X ⊆ H that generates H and likewise a finite set Y ′ ⊆ G/H that
generates G/H. We take a transversal of G/H and elect Y to represent Y ′
in the transversal, that is: Y ⊆ G such that Y ′ = {yH | y ∈ Y } and y1H =
y2H implies y1 = y2. We know |Y | = |Y ′| so we index the elements of Y for
convenience.

Now every element in G/H is by definition a finite product of Y ′ so it has
the form:

yj1
i1

H · · · yjk

ik
H = (yj1

i1
· · · yjk

ik
)H
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where each yim
∈ Y , for m = 1, . . . , k. Likewise the elements in H can be

described as xt1
s1
· · ·xtu

su
where xsv

∈ X for v = 1, . . . , u. We now combine
these results.

G/H is a partition of G, so G =
⋃

x∈G xH; therefore,

G =
⋃

Y

(yj1
i1
· · · yjk

ik
)H =

⋃

Y

⋃

X

{yj1
i1
· · · yjk

ik
xt1

s1
· · ·xtu

su
}.

Therefore G is generated by Y ∪X which is finite. 10 ¤

I.5.13 Normal Subgroup Lattice.
Hint(1/5): As in Exercise-I.2,
show that the partial ordering
is complete and the lattice will
follow directly.

(a) Let H E G, K E G. Show that H ∨K is normal in G.

(b) Prove that the set of all normal subgroups of G forms a complete lattice
under inclusion (Introduction, Exercise-.7).

Proof: First, the normal subgroup partial ordering is nonempty because 0 and
G are normal in G always.

Let {Ni | i ∈ I} be a collection of normal subgroups of G. Given any g ∈ G:
an element of g(

∨
i∈I Ni)g−1 is of the form:

gng = gnk1
1 · · ·nkj

j g−1 = (gnk1
1 g−1)(gnk2

2 g−1) · · · (gn
kj

j g−1).

Since each Ni is normal, gnki
i g−1 ∈ Ni for all i and all g. Therfore gng ∈∨

i∈I Ni, and g(
∨

i∈I Ni)g−1 ⊆ ∨
i∈I Ni. So the general join is of normal groups

is normal.11

By Exercise-I.5 we know the that intersection of normal subgroups are nor-
mal. Therefore the partial ordering of normal subgroups is complete. Therefore
the partial ordering is in fact a lattice which can be verified by taking the great-
est common divisor and least common multiple of {N1, N2}, as guaranteed by
the completeness. ¤

I.5.14 Quotient Products.
Hint(2/5): Use the Funda-
mental Homomorphism Theo-
rem.

If N1 E G1, N2 E G2 then (N1 ×N2) E (G1 ×G2) and (G1 ×G2)/(N1 ×N2) ∼=
(G1/N1)× (G2/N2).
Proof: Given the canonical epimorphisms µ1 : G1 → G1/N1 and µ2 : G2 →
G2/N2. Using the projections of the product G1 × G2 we obtain the functions
µ1π1 and µ2π2 and so by the universal mapping property of product (Intro-
duction, Theorem-5.2) there exists a map ϕ : G1 × G2 → G1/N1 × G2/N2

such that π′1ϕ = µ1π1 and π′2ϕ = µ2π2. Since each is a homomorphisms,
and composition of homomorphisms is a homomorphism, we know ϕ to be a
homomorphism.

10 Although Y ∪X generates elements such as x1y3x7
4x1y−1

1 which do not at first seem to
be of the form y · · · yx · · ·x, notice H is normal, so xy = yx′ for some x′ ∈ H; thus we have
a normal form theorem which allows us to group the elements of Y and X as we see in the
proof.

11Alternately to prove just part (a), use Theorem-I.5.3, part (iii), to state H ∨K = HK.
Thus for every element g ∈ G: gH ∨ Kg−1 = gHKg−1 = gHg−1gKg−1 = HK; therefore
H ∨K EG.
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−−−−−−−−−→→

π1

−−−−−−−−−→→

π2

−−−−−−−→→

µ1

=======⇒

ϕ

−−−−−−−→→

µ2

−−−−−→→

π′1

−−−−→→

π′2

G1 G1 ×G2 G2

G1/N1 G1/N1 ×G2/N2 G2/N2.

Now we identify the kernel of ϕ (recall the identity in G1/N1 × G2/N2 is
(N1, N2)): ϕ(g, h) = (N1, N2) only if gN1 = N1 and hN2 = N2. Therefore
N1 ×N2 is the kernel of ϕ, and so it is normal in G1 ×G2.

Also µ1 and µ2 are epimorphisms, as are π1 and π2, so their composition
is an epimorphism. Since ϕ is defined by these two compositions, it too is an
epimorphism. Therefore we now apply the Fundamental Homomorphism The-
orem (Corollary-I.5.7): G1 ×G2/N1 ×N2

∼= G1/N1 ×G2/N2. ¤

I.5.15 Normal Extension.
Hint(4/5): Use Theorem-
I.5.9. G is said to be an ex-
tension of K by N .

Let N E G and K E G. If N ∩K = 0 and N ∨K = G, then G/N ∼= K.
Proof: Since N is normal, by Theorem-I.5.3, part (iii), G = N ∨ K = NK.
Furthermore from The Second Isomorphism Theorem (Theorem-I.5.9), we can
assert

H ∼= H/0 = H/N ∩K ∼= NK/N = G/N.

¤

I.5.16 Abelianization.
Hint(3/5): Use Corollary-
I.5.12.If f : G → H is a homomorphism, H is abelian and N is a subgroup of G

containing Ker f , then N is normal in G.
Proof: Since H is abelian, f(H) is an abelian subgroup. By the First Iso-
morphism Theorem f(H) ∼= G/Ker f , and so it too is abelian. Thus for
every g ∈ G, n ∈ N , (gH)nH(g−1H) = (gH)(g−1H)nH = nH. There-
fore (gH)(N/H)(g−1H) = N/H and so N/H is normal in G/N . From here
Corollary-I.5.12 concludes N must be normal in G since N/H is normal in
G/Ker f . ¤

I.5.17 Integer Quotients.
Hint(2/5): Use integer arith-
metic.(a) Consider the subgroups 〈6〉 and 〈30〉 of Z and show 〈6〉/〈30〉 ∼= Z5.

(b) For any k, m > 0, 〈k〉/〈km〉 ∼= Zm; in particular, Z/〈m〉 = 〈1〉/〈m〉 ∼= Zm.

(a) Example: Define a map f : 〈6〉/〈30〉 → Z5 by 6m + 30Z 7→ m + 5Z.
Whenever 6m ∼= 6n (mod 30) then 6(m−n) ∼= 0 (mod 30); therefore 5|m−
n, which implies m ∼= n (mod 5). Therefore f is well-defined. Moreover

f((6m + 30Z) + (6n + 30Z)) = f(6(m + n) + 30Z) = (m + n) + 5Z
= (m + 5Z) + (n + 5Z) = f(6m + 30Z) + f(6n + 30Z);

so f is a homomorphism.
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Next suppose f(6m + 30Z) ∼= f(6n + 30Z) (mod 5); thus m ∼= n (mod 5).
5|m − n so in fact 30|6(m − n) = 6m − 6n; therefore 6m ∼= 6n (mod 30),
so f is injective. Finally, given m + 5Z, there exists a 6m ∈ Z and so
6m + 30Z ∈ 〈6〉/〈30〉; therefore f(6m + 30Z) = m + 5Z, and f is surjective;
thus f is an isomorphism. ¤

(b) Proof: First note that every subgroup of an abelian group is normal. Since
Z is cyclic it is abelian, and furthermore so are Zm for any m as well as the
subgroups mZ.

Now define a map f : 〈k〉/〈km〉 → Zm by ki + kmZ 7→ i + mZ. Whenever
ki ∼= kj (mod km) then k(i − j) ∼= 0 (mod km); therefore m|i − j, which
implies i ∼= j (mod m). Therefore f is well-defined. Moreover

f((ki + kmZ) + (kj + kmZ)) = f(k(i + j) + kmZ) = (i + j) + mZ
= (i + mZ) + (j + mZ) = f(ki + kmZ) + f(kj + kmZ);

so f is a homomorphism.

Next suppose f(ki+kmZ)) ∼= f(kj+kmZ)) (mod m); thus i ∼= j (mod m).
m|i − j, so in fact km|k(i − j) = ki − kj; therefore ki ∼= kj (mod km),
so f is injective. Finally, given i + mZ, there exists a ki ∈ Z and so
ki + kmZ ∈ 〈k〉/〈km〉; therefore f(ki + kmZ) = i(mZ), and f is surjec-
tive; thus f is an isomorphism. ¤

I.5.18 Homomorphic Pre-image.
Hint(3/5): Show any NK ≤
S ≤ G with K/N = S/N im-
plies KN = SN .

If f : G → H is a homomorphism with kernel N and K ≤ G, then prove that
f−1(f(K)) = KN . Hence f−1(f(K)) = K if and only if N ≤ K.

Proof: Take g : f(H) → G/N to be the isomorphism guaranteed by the First
Isomorphism Theorem (Corollary-I.5.7); thus gf = π, the canonical epimor-
phism.

We know gf(K) = K/N by Corollary-I.5.12. Likewise gf(KN) = KN/N .
Now given any kn ∈ KN , knN = kN . Therefore KN/N = K/N in G/N .
Therefore f(K) = g−1(K/N) = g−1(NK/K) = f(KN); thus f−1(f(K)) =
f−1(f(KN)) ≥ KN .

Suppose NK ≤ S ≤ G, and K/N = S/N . Then we have for each kN a
unique sN such that kN = sN ; so KN = SN . Therefore f−1(f(KN)) ≤ KN ,
and so f−1(f(KN)) = KN ; thus f−1(f(K)) = KN . ¤

I.5.19 Locating Finite Kernels.
Hint(3/5): Use the Parallelo-
gram Law (Proposition-I.4.8). If N E G, [G : N ] finite, N ≤ G, |H| finite, and [G : N ] and |H| are relatively

prime, then H ≤ N .

Proof: Since N is normal, HN is a subgroup of G by Theorem-I.5.3. This pro-
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duces that standard subgroup diagram labeled with the relevant finite indices:

−−−

d

−−−−−−−−−−

−−−−−

c

−−−−−−−−−−

−−−−−

b

−−−

a

G

HN

N

H

H ∩N

0.

Now using Proposition-I.4.8, we see b = c, and both are finite since they are
less than |H| and [G : N ] respectively. Since we assume (ab, cd) = 1 and now
know b = c, it follows b = c = 1. Therefore [H : H ∩ N ] = 1 so H = H ∩ N
which implies H ≤ N . ¤

I.5.20 Locating Finite Subgroups.
Hint(4/5): Use the Parallel-
ogram Law (opposite sides are
congruent), Theorem-I.4.8, to
show a N/H ∩N ∼= 0.

If N E G, |N | finite, H ≤ G, [G : H] finite, and [G : H] and |N | are relatively
prime, then N ≤ H.
Proof: Since N is normal it follows from Theorem I.5.3 that HN is a subgroup
of G containing N and H as subgroups. We also know H ∩N to be a subgroup
of H and N . Therefore we know the following subgroup lattice to exists and
we conveniently label each edge in the lattice by the index of the groups it
connects.

−−−

[G:HN ]

−−−−−

j

−−−−−−−−−−

i

−−−−−−−−−−

i

−−−−−

j

−−−

G

HN

H

N

H ∩N

0

We may now apply Theorem I.4.8 to state [N : H ∩ N ] = j = [HN : N ].
Now N is finite and H ∩N ≤ N so H ∩N is finite. Therefore by the Theorem
of Lagrange (Corollary I.4.6) we know [N : H ∩ N ]|H ∩ N | = |N | and two
components are finite, therefore so is the third, that is, [N : H ∩N ] is finite. We
also know H ≤ HN ≤ G so by Lagrange (Theorem I.4.5) we find [G : H] =
[G : HN ][HN : H].

We now recall that [N : H ∩N ] = [HN : H] and both are finite. Clearly we
notice [HN : H] divides [G : HN ][HN : H] = [G : H] and [N : H ∩ N ] also
divides [N : H ∩N ]|H ∩N | = |N |. However we assume [G : H] and |N | to be
relatively prime. We now have a positive integer m = [HN : H] = [N : H ∩N ]
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which divides both; therefore, m divides their greatest common factor which is
simply 1; therefore, m = 1 and so we see that [N : H ∩N ] = 1.

There is therefore only one coset in N/H ∩ N . Given e ∈ N we know
eH ∩N = H ∩N is a coset. Therefore for all x ∈ N , xH ∩N = H ∩N and so
it follows N ≤ H ∩N which requires that N ≤ H. ¤

I.5.21 PruferQuotients.
Hint(2/5): Use Exercise-I.3
part (d) and follow the given
hint.

If H is a subgroup of Z(p∞) and H 6= Z(p∞), then Z(p∞)/H ∼= Z(p∞). [Hint:
if H = 〈1/pn〉, let xi = 1/pn+i + H and apply Exercise-I.3(e).]
Proof: Given H is a proper subgroup of Z(p∞), by Exercise-I.3 part (d),
H = 〈1/pi〉 = Ci. Now we have the canonical projection homomorphisms
πi : Z(p∞) → Z(p∞)/Ci. Notice the image contains the elements xn =
1/pn+i + Ci = f(1/pn+i); therefore,

pxn+1 = pf(1/p(n+1)+i) = f(p/p(n+1)+i) = f(1/pn+i) = xn.

Also, i is finite, so xn exists for any n ∈ Z+. The element x1 6= Ci, and
px1 = p/pi+1 + Ci = Ci, so |xi| = p. Finally, Z(p∞)/Ci = 〈f(1/pi) | i ∈ N〉 =
〈xi | i ∈ Z+〉. We have satisfied the hypothesis of Exercise-I.3 part (e), so
Z(p∞)/Ci

∼= Z(p∞) for all i ∈ N. ¤
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I.6.1 Lattice of S4.
Hint(1/5): Exercise-I.2 may
be helpful.Find four different subgroups of S4 that are isomorphic to S3 and nine isomor-

phic to S2.
Example: The subgroups S1

4 , S2
4 , S3

4 , and S4
4 , as defined in Exercise-I.2, are

distinct subgroups of S4 all isomorphic to S3. The involutions of S4 are simply:
(12),(13),(14),(23),(24),(34), and their products, (12)(34),(13)(24), and (14)(23).
These all generate distinct subgroups isomorphic to S2. Notice we can show
this by considering (12) as S3,4

4 , etc. ¤

I.6.2 Sn generators.
Hint(1/5): Reference
Corollary-I.6.5.(a) Sn is generated by the n − 1 transpositions (12), (13), (14), . . . , (1n). [Hint:

(1i)(1j) = (ij).]

(b) Sn is generated by the n − 1 transpositions (12), (23), (34), . . . , (n − 1 n).
[Hint: (1j) = (1 j − 1)(j − 1 j)(1 j − 1); use (a).]

Proof: As suggested we note (ij) = (1i)(1j) for any two characters i, j where
i 6= j. In Corollary-I.6.5 we see every permutation in Sn can be written as a
product of transpositions. Since the set A = {(12), . . . , (1n)} generates every
transposition (ij), we know in fact that the set will generate every permutation
in Sn.

Likewise given the set B = {(12), . . . , (n−1 n)}, we may produce any trans-
position in A by taking the product (1 j− 1)(j− 1 j)(1 j− 1) = (1j). Thus since
we generate a set of generators, A, form the set B, it follows B is a set of gen-
erators for Sn as well as A. ¤

I.6.3 Permutation Conjugates.
Hint(3/5): Show
τ(isit)τ−1 = (τ(is)τ(it))
then use Corollary-I.6.5.

If σ = (i1i2 · · · ir) ∈ Sn and τ ∈ Sn, then τστ−1 is the r-cycle (τ(i1)τ(i2) · · · τ(ir)).
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Proof: Notice (i1 · · · ir) = (i1ir)(i1ir−1) · · · (i1i2); therefore

τστ−1 = τ(i1ir)τ−1τ(i1ir−1)τ−1 · · · τ(i1i2)τ−1.

Now let τ(isit)τ−1 = υ. Next τ(isit) = υτ , so τ(isit)(is) = υτ(is) and therefore
τ(it) = υ(τ(is)); likewise τ(is) = υ(τ(it)); and finally ik, k 6= s, t, implies
τ(ik) = ik = υ(τ(ik)). Whence υ = (τ(is)τ(it)). Applying this to the whole we
notice:

τστ−1 = (τ(i1)τ(ir))(τ(i1)τ(ir−1)) · · · (τ(i1)τ(i2)) = (τ(i1)τ(i2) · · · τ(ir)).

¤

I.6.4 More Sn Generators.
Hint(1/5): It may help to
write σi = τ i−1σ1τ

−i+1. [See
Also:Exercise-I.2]

(a) Sn is generated by σ1 = (12) and τ = (123 · · ·n). [Hint: Apply Exercise-I.6
to σ1, σ2 = τσ1τ

−1, . . . , σn−1 = τσn−1τ
−1 and use Exercise-I.6(b).]

(b) Sn is generated by (12) and (23 · · ·n).

Proof: Notice τ−1 = (n · · · 21). Define σi = τ i−1σ1τ
−i+1 for i = 1, . . . , n− 1.

Notice by Exercise-I.6 that σi = (τ i−1(1)τ i−1(2)) = (i i + 1). Therefore
G = 〈τ, σ〉 contains the set {(12), . . . , (n−1 n)} and so by Exercise-I.6, G = Sn.

Likewise when τ = (23 · · ·n) we have σi = (τ i−1(1)τ i−1(2)) = (1τ i−1(2)) =
(1 i+1). Therefore the generators produce the elements (12),(13),. . . ,(1 n), so
again by Exercise-I.6 they generate Sn. ¤

I.6.5 Permutation Conjugation.
Hint(1/5): Use the rules of
parity: even+even=even;
odd+even=odd;
odd+odd=even.

Let σ, τ ∈ Sn. If σ is even (odd), then so is τστ−1.
Proof: Suppose σ is even; then by definition it decomposes into an even
number, 2n, of transpositions. Let m be the number of transpositions in some
decomposition of τ into transpositions; that is τ = (a1a2) · · · (a2m−1a2m); thus
τ−1 = (a2m−1a2m) · · · (a1a2) – so it has the same parity as τ .

It follows τστ−1 decomposes into m+2n+m transpositions by simply sub-
stituting, and thus we see that one possible decomposition into transpositions
is of length 2(m + n) which is always even. Therefore τστ−1 is even, which is
guaranteed to be well-defined by Theorem-I.6.7.

If σ is instead odd, then it has a decomposition into transposes of length
2n + 1 for some n. Again τστ−1 has a transposition decomposition of length
2(m + n) + 1 which is always odd; therefore, τστ−1 is odd. ¤

I.6.6 Index 2 subgroups of Sn.
Hint(3/5): Show that a sub-
group of index 2 must contain
all 3-cycles of Sn and apply
Lemma-I.6.11.

An is the only subgroup of SN of index 2.

Remark I.6.1 In fact, Sn does not have subgroups of index k, where 2 < k < n,
n > 4. (The proof follows from the simplicity of An and the induced group action
of on the left cosets.)

Proof: If n = 2 then Sn is isomorphic to Z2 and so it has only one subgroup of
index 2 which is 0, and only one element is even, which is ε. Therefore A2 is
the only subgroup of index 2 in S2.
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Now let n > 2; thus Sn contains some 3-cycle, α; and consider T ≤ Sn

so that [Sn : T ] = 2. Suppose α /∈ T . As it is a three cycle it has order 3. If
α−1 ∈ T then all powers of it are in T which means α ∈ T – a contradiction
so we know α−1 /∈ T . Since T is of index 2 this leaves both α and α−1 in the
nontrivial coset αT . However T = αTαT = α2T = α−1T = αT ; so we once
again reach a contradiction; therefore in fact α ∈ T for any 3-cycle α ∈ Sn.

Finally apply Lemma-I.6.11, T contains all 3-cycles so it must generate An.
But since we assumed T to have index 2, and An has index 2, so by the theo-
rem of Lagrange |T | = |An| and hence T = An by the Pigeon-Hole-Principle.
¤

I.6.7 A4 is not Simple.
Hint(2/5): Notice N is the
kernel of the group action
of conjugation on the three
copies of D4 in S4.

Show that N = {ε, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is a normal subgroup of S4

contained in A4 such that S4/N ∼= S3 and A4/N ∼= Z3.

Example: Three copies of D4 are embedded in S4 as 〈(k 4), (k 4 a b)〉, where
k = 1, 2, 3, and a < b, a, b /∈ {k, 4} (from the presentation alone we determine
there are only 3 possible, and it is a simple check to verify they are all distinct.)
As they contain the same composition of elements, they are all conjugate as
each combination of disjoint cycles is conjugate to all others of the same com-
bination. Therefore, S4 acts on Dk

4 by conjugation and so there is a non-trivial
homomorphism f : S4 → S3, the kernel of which must be the intersection of the
normalizers of each Dk

4 . Notice D1
4 ∩D2

4 ∩ D3
4 = N so clearly N is contained

in each normalizer and subsequently in the kernel of f . Notice Dk
4 ≤ NS4(D

k
4 )

as usual, and so if the kernel is to be any larger than N , we require that each
normalizer of order greater than 8 – that is order 12 or 24, or simply A4 and S4

respectively. Neither will serve as each leads to quotient group too small to act
transitively on three elements. Therefore, Ker f = N , and hence N is normal,
S4/N ∼= S3, and A4/N ∼= Z/3.12 ¤

I.6.8 A4 is not solvable.
Hint(3/5): Refer to Exercise-
I.6. Notice Sx

4 all have odd el-
ements and so are not in A4,
and S4 has no elements of or-
der 6.

The group A4 has has no subgroup of order 6.

Example: As in the proof of Corollary-I.6.5, we knowing that (ab · · · z) = (az) · · · (ab);
thus σ ∈ S4 is even only if it is of the form ε, (abc), or (ab)(cd) – even when these
last two transpositions are not disjoint.

A4 = {ε, (123), (321), (124), (421), (134), (431), (234), (432), (12)(34), (13)(24), (14)(23)}.

Let S be a subgroup of A4 of order 6. Since a group of order 6 has even
order, by Exercise-I.4 it must have an element of order 2; thus S contains
(12)(34), (13)(24), or (14)(23). Furthermore any two of these generates the
Klein Four Group N described in Exercise-I.6; so S contains only one element
of order 2 as 4 - 6. Therefore S contains four elements of order 3, since no
element in A4 is of order 6. So far we know S contains the following:

S = {ε, α, β, α−1, β−1, χ},

where α, β are elements of order 3 in A4 and χ is an element of order 2 in A4.
Therefore αβ = βα = χ; however, for no two distinct (also distinct with respect

12This proof is not the most simple, but it illustrates an important proof technique.
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to inverses) α, β in A4 is αβ = βα, as we see in the following checks:

(123)(124) = (13)(24) 6= (14)(23) = (124)(123);
(123)(134) = (234) /∈ S

(123)(234) = (12)(34) 6= (13)(24) = (234)(123);
(124)(134) = (13)(24) 6= (12)(34) = (134)(124);
(124)(234) = (123) /∈ S

(134)(234) = (13)(24) 6= (12)(34) = (134)(234);

therefore A4 does not contain a subgroup of order 6. 13 ¤

I.6.9 Matrix Form of Dn.
Hint(3/5): Use Theorem-
I.6.13. In particular notice
that e2πi/n is a primitive nth

root of unity.

For n ≥ 3, let Gn be the multiplicative group of complex matrices generated by

x =
(

0 1
1 0

)
and y =

(
e2πi/n 0

0 e−2πi/n

)
, where i2 = −1. Show that Gn

∼= Dn.

[Hint: recall that e2πi = 1 and ek2πi 6= 1, where k is real, unless k ∈ Z.]
Example: The matrix x is a transposition so it has order 2. In the case of y,

suppose yk =
(

ek 2πi
n 0

0 e−k 2πi
n

)
, for some positive integer k; then

yk+1 = yky =
(

ek 2πi
n 0

0 e−k 2πi
n

)(
e

2πi
n 0
0 e−

2πi
n

)
=

(
e(k+1) 2πi

n 0
0 e−(k+1) 2πi

n

)
;

so by induction yk =
(

ek 2πi
n 0

0 e−k 2πi
n

)
, for all positive integers k. Therefore

yn =
(

e2πi 0
0 e−2πi

)
=

(
1 0
0 1

)
. Thus y has order at most n. Furthermore

1 = ek 2πi
n = cos 2πk

n + i sin 2πk
n only if n|k, and likewise for e−k 2πi

n ; therefore y

has order n; so y−1 = yn−1.
Now take the products xy and y−1x:

y−1x =
(

0 e(n−1)2πi/n

e−(n−1)2πi/n 0

)
= x

(
e−(n−1)2πi/n 0

0 e(n−1)2πi/n

)

= x

(
e−2πie2πi/n 0

0 e2πie−2πi/n

)
= xy;

thus xy = y−1x. Therefore letting a = y and b = x, Theorem-I.6.13 confirms
Gn

∼= Dn. ¤

I.6.10 Dn is Meta-cyclic.
Hint(1/5): Exercise-I.5 trivi-
alizes the question. Let a be the generator of order n in Dn. Show that 〈a〉E Dn and Dn/〈a〉 ∼= Z2.

Proof: Since a has order n, so does its subgroup 〈a〉. By Theorem-I.6.13 we
know Dn has order 2n therefore the index [Dn : 〈a〉] = 2. Using the result of
Exercise-I.5 it is clear 〈a〉E Dn. ¤

13Alternatively, it can be shown the only subgroups of order 6 are Z6 and S3. No element of
S4 is of order 6, and every Sx

4 contains odd permutations; therefore A4 contains no subgroups
of order 6.
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I.6.11 Normality in Dn.
Hint(2/5): It may be useful
to observe every subgroup of
Dn is isomorphic Dn/i, where
i|n or is cyclic, then consider
Exercise-I.5.

14 Find all normal subgroups of Dn.
Example: Let 〈a, b〉 = Dn where |a| = n and |b| = 2 as allowable by Theorem-
I.6.13.

From Exercise-I.6 we see 〈a〉 is normal in Dn and so using Exercise-I.5 all
subgroups of 〈a〉 are also normal in Dn. We now break up into two cases.

For all j it follows a(ajb)a−1 = aj+2b, so that ajb is conjugate to aj+2b.
Indeed this tells us of two possible cases: either there is one conjugacy class
for all flips when n is odd, or there are precisely 2 conjugacy classes:

[b] = {b, a2b, a4b, . . . }, [ab] = {ab, a3b, a5b, . . . },
when n is even. Thus when n is odd, any normal subgroup which contains
one flip must contain them all, and thus must be the entire group as with the
inclusion of the identity element we have more than half the elements of the
group.

When n is even, given any a normal subgroup containing any flip, it must
contain the entire conjugacy class; thus, it contains [b] or [ab]. If it contains both
then it is the entire group, so without loss of generality suppose it contains only
[b]. Certainly then it also contains 〈a2〉 and so it is precisely the group 〈a2, b〉.
As this has index 2 it is in fact normal. In the case where it contains [ab] we
simply get the subgroup 〈a2, ab〉 which is again normal.

Thus we conclude: if n is odd the only proper normal subgroups are of the
from 〈ai〉. If n is even we also include the subgroups 〈a2, b〉 and 〈a2, ab〉. ¤

I.6.12 Center of Dn.
Hint(1/5): Test the elements
ai and aib for centrality.The center (Exercise-I.2) of the group Dn is 〈e〉 if n is odd and isomorphic to

Z2 if n is even, n > 2.
Proof: Suppose ai is central form some i. Then certainly

aib = bai = a−ib;

thus, ai = a−i and so i = n/2 and we require that 2|n, or else the center does
not contain any rotations.

Now suppose it contains any flip aib. Again,

ai−1b = (aib)a = a(aib) = ai+1b

so here ai−1 = ai+1 or rather n = 2, at which point Dn
∼= Z2⊕Z2 and the center

is the entire group.
Thus the center of Dn when n > 2 is trivial if 2 - n and 〈an/2〉 ∼= Z2 when

2|n. ¤

I.6.13 Dn representation.

For each n ≥ 3 let Pn be a regular polygon of n sides. A symmetry of Pn is a
bijection Pn → Pn that preserves distances and maps adjacent vertices onto
adjacent vertices.

14 A geometric proof is best: any subgroup must be a group of symmetries for an inscribed
regular polygon. Every inscribed polygon must have a vertex count dividing n. If all the
symmetries of the inscribed polygon are counted, it must be a subgroup of the form Dn/i. If
not, then it can have no reflections, as any reflection together with a rotation will generate a
dihedral group. Therefore all non-cyclic subgroups are dihedral. (Notice the group of a single
reflection is always a cyclic C2 group, but can equally be classified as D1 group.)
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(a) The set D∗
n of all symmetries of Pn is a group under the binary operation of

composition of functions.

(b) Every f ∈ D∗
n is completely determined by its action on the vertices of

Pn. Number the vertices consecutively 1, 2, . . . , n; then each f ∈ D∗
n de-

termines a unique permutation σf of {1, 2, . . . , n}. The assignment f 7→ σf

defines a monomorphism of groups ϕ : D∗
n → Sn.

(c) D∗
n is generated by f and g, where f is a rotation of 2π/n degrees about the

center of Pn and g is a reflection about the “diameter” through the center
and vertex 1.

(d) σf = (1 2 3 · · ·n) and σg = (2 n)(3 n− 1)(4 n− 2) · · · , whence Im ϕ = Dn

and D∗
n
∼= Dn.

Proof:

(a) Given that the identity map is a clear isometry it is included in D∗
n so that D∗

n
is non-empty. Function composition is well-defined and associative so we
have a semigroup. Composition with the identity is transparent so we have
a monoid. Finally given any symmetry f of D∗

n, f is bijective so its inverse
exists. Since f is an isometry it follows for all A,B, d(A,B) = d(f(A), f(B))
and so in fact

d(f−1(C), f−1(D)) = d(f−1(f(A)), f−1(f(B)) = d(f(A), f(B)) = d(C, D)

so f−1 is an isometry. Finally, as f takes adjacent vertices to adjacent
vertices, so does f−1. Therefore f−1 ∈ D∗

n proving D∗
n is a group under

composition.

(b) We require that adjacent vertices go to adjacent vertices. So suppose f
is a symmetry, and A and B two adjacent vertices of the regular n-gon
embedded in the plane. To every point P on the edge between A and
B, there corresponds a unique t ∈ [0, 1] such that P = tA + (1 − t)B.
The distance of P to A is t and the distance of P to B is (1 − t). As
this distance must be preserved it follows the distance of f(P ) to f(A)
is t and the likewise the distance of f(P ) to B is (1 − t). Thus in fact
f(tA+(1− t)B) = tf(A)+(1− t)f(B) for all t ∈ [0, 1]. Therefore the action
on each edge is uniquely determined by the action on the edge’s vertices.
Moreover, adjacent vertices go to adjacent vertices so the action on the
regular n-gon is determined entirely by the action on the vertices.15

Enumerate the vertices of Pn A1 to An counter clockwise. To each symme-
try f , assign σf ∈ Sn to be

(
1 2 · · · n

#f(A1) #f(A2) · · · #f(An)

)
,

where # returns the number of the index of each vertex. Since f is bi-
jective, σf is as well, and thus, it is a permutation in Sn. Thus the map
ϕ : f 7→ σf is well-defined. Given any f, g ∈ D∗

n, it follows σfg = σfσg and
so we have a homomorphism. Finally, if σf = ε then f(Ai) = Ai for all i,
and so f = id; thus, we have a monomorphism ϕ.

(c) Given a rotation of 2π/n radians it follows the vertex A1 is carried to A2,
and in general Ai moves to Ai+1. Thus this determines a unique symmetry
ρ. Likewise, we may flip along the diagonal by a symmetry ζ.

Clearly every rotational symmetry is simply a power of ρ, and thus any flip
along a diagonal through a vertex is a rotation followed by ζ. All That re-
mains to explain are the possible flips along diagonals which do not pass

15Notice in fact the regularity of the n-gon was never used so the concept can be extended
to other shapes.
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through a vertex.16 Such a symmetry can only occur when n is even, and
thus ρn/2 is defined, and moreover we notice all such symmetries are ac-
commodate by taking ρn/2 followed by ζ followed by some rotation.

(d) Clearly the order of ρ is n and the order of ζ is 2. More importantly we can
easily see σρ = (1 2 · · ·n) and σζ = (2 n)(3 n− 1)(4 n− 2) · · · , as it leaves
1 fixed and flips all other vertices to the vertex directly opposite from the
diagonal. This means in fact Im ϕ = Dn and D∗

n
∼= Dn as ϕ is monic.

¤

16Here the use of diagonal is perhaps unfortunate. This does not describe a line segment
connecting two vertices, but any axis of symmetry.
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I.7.1 Pointed Sets.
Hint(1/5): Use the categori-
cal properties of the category
of sets.

A pointed set is a pair (S, x) with S a set and x ∈ S. A morphism of pointed
sets (S, x) → (S′, x′) is a triple (f, x, x′), where f : S → S′ is a function such
that f(x) = x′. Show that pointed sets form a category.

Proof: Note there is an implicit requirement that the set S, of a pointed set
(S, x), be non-empty as it must contain the point x.

Given three pointed set (S, x), (T, y) and (U, z) and two morphisms (f, x, y) :
(S, x) → (T, y) and (g, y, z) : (T, y) → (U, z) we define their composition as
composition of functions: (gf, x, z) : (S, x) → (U, z) is defined by gf : S → U .
Since f(x) = y and g(y) = z we see in fact gf(x) = z so composition induces
a proper morphism of pointed sets and so the composition is well-defined.

Given three morphisms (f, x, y), (g, y, z) and (h, z, w) we test for associativ-
ity. Since h(gf) = (hg)f in the category of sets so it applies here;

(h, z, w)((g, y, z)(f, x, y)) = (h, z, w)(gf, x, z) = (h(gf), z, w) = ((hg)f, z, w)
= (hg, y, w)(f, x, y) = ((h, z, w)(g, y, z))(f, x, y).

Finally the identity map, 1S , for S in the category has the property 1S(x) = x;
thus it is a morphism (1S , x, x) : (S, x) → (S, x) which furthermore has the
property that (1S , y, y)(f, x, y) = (1Sf, x, y) = (f, x, y) and (f, x, y)(1S , x, x) =
(f1S , x, y) = (f, x, y); therefore we have identity maps for each pointed set, so
pointed sets form a category. ¤

I.7.2 Equivalence.
Hint(2/5): Make sure not to
assume C is concrete; that is,
do not assume f or g are func-
tions.

If f : A → B is an equivalence in a category C and g : B → A is the morphism
such that g ◦ f = 1A, f ◦ g = 1B , show that g is unique.

Proof: Suppose g : B → A and g′ : B → A have the property that g ◦ f = 1A =
g′ ◦ f and f ◦ g = 1B = f ◦ g′. Therefore g ◦ f = g′ ◦ f and we compose on the
right with g:

g = 1A ◦ g = (g ◦ f) ◦ g = (g′ ◦ f) ◦ g = g′ ◦ (f ◦ g) = g′ ◦ 1B = g′.

Therefore g is unique. ¤
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I.7.3 Direct Product.
Hint(3/5): Use Introduction
Theorem-5.2, and verify the
resulting map is a homomor-
phism.

In the category G of groups, show that the group G1 × G2 together with the
homomorphisms π1 : G1×G2 → G1 and π2 : G1×G2 → G2 (as in the Example
preceding Definition-I.2.2) is a product for {G1, G2}.
Proof: Given that G is a concrete category, we may treat every homomorphism
as a function between sets.

Let {Gi | i ∈ I} be a family of groups. Given any group T together with a
family of homomorphisms {ϕi : T → Gi | i ∈ I}, define ϕ : T → ∏

i∈I Gi as the
unique map guaranteed by Introduction Theorem-5.2 in the category of sets.

We know πi is a well-defined map of sets and need to confirm it is included
in the morphism of G . Take f, g ∈ ∏

i∈I Gi, so that f, g : I → ⋃
i∈I Gi and

f(i), g(i) ∈ Gi. Recall products in
∏

i∈i Gi are defined pointwise so that fg :
I → ⋃

i∈I Gi is defined as fg(i) = f(i)g(i) ∈ Gi. Now πi(fg) = fg(i) =
f(i)g(i) = πi(f)πi(g); therefore each projection map is a homomorphism.

Finally, we know from Introduction Theorem-5.2 that πiϕ = ϕi for all i ∈ I,
and is the unique map to do this. If we can show ϕ is a homomorphism – so in
the category G – then the direct product is a product in the category of groups.

At this point recall the proof of Introduction Theorem-5.2 which defines
ϕ(x) = fx where fx(i) = ϕi(x). Thus in fact ϕ(xy) = fxy where

fxy(i) = ϕi(xy) = ϕi(x)ϕi(y) = fx(i)fy(i),

and so ϕ(xy) = fxy = fxfy = ϕ(x)ϕ(y). Thus ϕ is a homomorphism.
Thus

∏
i∈I Gi is a product in the category of groups. ¤

I.7.4 Group Coproduct.
Hint(3/5): Use the Needle-
in-the-Haystack heuristic.
The universal map will
have to take the form
(a, b) 7→ ψ1(a)ψ2(b) for any
two maps ψi : Ai → T ,
i = 1, 2.

In the category A of abelian groups, show that the group A1 × A2 together
with the homomorphisms ι1 : A1 → A1 × A2 and ι2 : A2 → A1 × A2 (as in the
Example preceding Definition-I.2.2) is a coproduct for {A1, A2}.
Proof: Define the map ι1 : A1 → A1 × A2 as a 7→ (a, 0) and similarly for
ι2(b) = (0, b). ι1(a + b) = (a + b, 0) = (a, 0) + (b, 0) = ι1(a) + ι1(b), therefore
with out loss of generality the injections are homomorphisms.

Given any abelian group T and any two morphisms ψ1 : A1 → T and
ψ2 : A2 → T , suppose ψ : A1 × A2 → T is a map where ψιi = ψi. Then
given a ∈ A1 and b ∈ A2, we know ψ1(a) = ψι(a) = ψ(a, 0) and likewise
ψ2(b) = ψ(0, b). Thus

ψ(a, b) = ψ((a, 0) + (0, b)) = ψ(a, 0) + ψ(0, b) = ψ1(a) + ψ2(b).

Therefore the form of the map is unique.
Thus define the map ψ : A1 × A2 → T as (a, b) 7→ ψ1(a)ψ2(b). If ψ is a

homomorphism then we have shown this to be a coproduct in the category of
abelian groups.

Since ψi are well-defined and into T , the definition of ψ is well-defined. Now
given (a, b), (c, d) ∈ A1 ×A2 we notice

ψ((a, b) + (c, d)) = ψ(a + c, b + d) = ψ1(a + c) + ψ2(b + d)
= ψ1(a) + ψ1(c) + ψ2(b) + ψ2(d) = ψ1(a) + ψ2(b) + ψ1(c) + ψ2(d)
= ψ(a, b) + ψ(c, d).

Therefore ψ is a homomorphism and so included in the category of abelian
groups.

Therefore A1 × A2 is a coproduct in the category of abelian groups for the
elements A1, A2. ¤



78 Groups

I.7.5 Set Coproduct.
Hint(1/5): Use the Needle-
in-the-Haystack heuristic. Every family {Ai | i ∈ I} in the category of sets has a coproduct. [Hint: consider

◦⋃
i∈IAi = {(a, i) ∈ (

⋃
i∈I Ai)× I | a ∈ Ai} with Ai →

◦⋃
i∈I given by a 7→ (a, i).

◦⋃
i∈IAi is called the disjoint union of the sets Ai.]

Proof: Let {Ai | i ∈ I} be a family of sets. Both unions and products are well-
defined therefore the disjoint union of sets is a well-define set:

⋃
i∈I Ai × {i}.

Now define ιi : Ai →
◦⋃

i∈IAi as a 7→ (a, i). The image of ι is contained in
the disjoint union and each element of the domain has a unique image so the
function is well-defined.

Now let T be a set and {ψi : Ai → T | i ∈ I} a family of functions. Suppose

ψ :
◦⋃

i∈IAi → T satisfies the properties of a coproduct. Then ψιi = ψi for
all i ∈ I, and ψ is the unique map that does this. Notice therefore ψi(a) =

ψ(ιi(a)) = ψ(a, i). Therefore define ψ :
◦⋃

i∈IAi → T as (a, i) 7→ ψi(a). Since

(a, i) ∈
◦⋃

i∈IAi implies a ∈ Ai, it follows ψi(a) is well-defined, and therefore ψ
is well-defined and so it is a function.

Therefore the disjoint union defines a coproduct in the category of sets. ¤

I.7.6 Products of Pointed Sets.
Hint(3/5): Build a
(co)product that uses the
(co)product of regular sets.
Remember while many con-
structions may exist, they
must all be equivalent, which
in S∗ means the sets are
equipollent. Make sure to
include the special cases when
the family of objects is empty;
notice ∅ cannot be made into
a pointed set, but ({∅},∅) is
a zero (initial and terminal)
object.

(a) Show that the category S∗ of pointed sets (see Exercise-I.7) products al-
ways exist; describe them.

(b) Show that in S∗ every family of objects has a coproduct (often called a
“wedge product”); describe this coproduct.

Proof: Let {(Ai, ai) | i ∈ I} be a family of pointed sets and (T, t) some pointed
set.

Empirically we see ({a}, a) is a pointed set. Furthermore any function
f : T → {a} is a function if and only if f(t) = a for each t ∈ T . Therefore
(f, t, a) is the unique morphism from (T, t) to ({a}, a) and so ({a}, a) is termi-
nal. Suppose (f, a, t) : ({a}, a) → (T, t) is a morphism; then f(a) = t and so in
fact f is unique. Therefore ({a}, a) is initial as well, and thus it is in fact a zero
object. Therefore when I = ∅ define the product and coproduct as ({∅},∅).
Now suppose I 6= ∅.

Suppose {(ϕi, t, ai) : (T, t) → (Ai, ai) | i ∈ I} is a family of mappings in
the category of pointed sets. Consider the existence of a product in S∗. This
requires

∏
i∈I(Ai, ai) be a pointed set, (P, p), together with the property that

there exists a (ϕ, t, p) : (T, t) → (P, p) such that (πi, p, ai)(ϕ, t, p) = (ϕi, t, ai),
for all i ∈ I. However using the rules of composition we see: (πϕ, t, ai) =
(ϕi, t, ai) which implies πϕ = ϕi in the category of sets. This property is unique,
up to equivalence, in the category of sets; therefore, it will also be unique up
to equivalence, in the category of pointed sets and furthermore we now see
P =

∏
i∈I Ai.

Therefore define
∏

i∈I(Ai, ai) = (
∏

i∈I Ai, p), with p : I → ⋃
i∈I Ai defined

as p(i) = ai as a well-defined function contained in this set product, since each
p(i) = ai is in Ai, for all i ∈ I. Therefore (

∏
i∈I Ai, p) is a pointed set and

so contained in our category. As anticipated, πi :
∏

i∈I Ai → Ai sends p to
p(i) = ai; thus (πi, p, ai) : (

∏
i∈I Ai, p) → (Ai, ai), defined as πi, is a well-

defined morphism (canonical projection) of pointed sets.
By design

∏
i∈I Ai is a product in the category of sets; therefore, there

exists a ϕ : T → ∏
i∈I Ai such that πiϕ = ϕi, for all i ∈ I. So define (ϕ, t, p) :
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(T, t) → (
∏

i∈I Ai, p) as x 7→ ϕ(x). To prove (ϕ, t, p) is a well-defined point set
morphism, recall the definition of the set product: ϕ(x) = fx : I → ⋃

i∈I Ai,
where fx(i) = ϕi(x). Thus in our context, ϕ(t) = ft and ft(i) = ϕi(t) = ai.
However this is our definition of p so in fact ϕ(t) = ft = p. Therefore (ϕ, t, p) is
a well-defined pointed set morphism.

Finally (πi, p, ai)(ϕ, t, p) = (πiϕ, t, ai) = (ϕi, t, ai) so the category of pointed
sets has a product.

For the coproduct presume {(ψi, ai, t) : (Ai) → (T, t) | i ∈ I} is a family
of pointed set morphisms. Once again the existence of a coproduct demands
that

∐
i∈I(Ai, ai) be a pointed set (C, c). As such it must have the property

(ψi, ai, t) = (ψ, c, t)(ιi, ai, c) = (ψιi, ai, t), for some ψ and all i ∈ I. This
matches the requirement for the unique (up to equivalence) coproduct of sets,
and therefore imposes its structure.

Since I 6= ∅ we may pick an element 0 ∈ I. Define
∐

i∈I(Ai, ai) =

(
◦⋃

i∈IAi, a0). All that is required is to show (ψ, a0, t) is a well-defined pointed
set morphism. This requires we show ψ(a0) = t, which is simple since t =
ψi(ai) = ψιi(ai) = ψ(a0). Therefore we have a coproduct in the category of
pointed sets. ¤

I.7.7 Free Inclusion.
Hint(3/5): Use the fact that
freeness must work for all ob-
jects A and associated map-
pings f : X → A. So if an
f can be made that shows i is
injective on some pair of ele-
ments, together with all func-
tions, i must be injective on
the entire set X.

Let F be a free object on a set X (i : X → F ) in a concrete category C . If C
contains an object whose underlying set has at least two elements in it, then i
is an injective map of sets.
Proof: By assumption C is a concrete category; therefore each object has an
underlying set. Let σ be the forgetful functor associated with the category, and
rewrite i : X → σF .

If X = ∅ then i is unique since the empty-set is initial. Vacuously i : ∅→ F
is injective. Similarly if X = {x}, given any i : X → F , x 6= y does not exist so
in fact i is still injective. Now consider only X º 2.

Assuming the hypothesis, let A be an object in C with σA º 2. Assuming
the Axiom of Choice we may well-order X by J so that X = {xj | j ∈ J}. Since
both X and σA have cardinalities greater than or equal to 2, we may choose
arbitrary subsets {j, k} ⊂ J and {a, b} where xj 6= yk, and a 6= b. Furthermore
we may now define a map fj,k : X → σA by

fj,k(xm) =
{

a m = j
b m 6= j

.

Recalling F is free, there must now exist a unique map ϕj,k : F → A, in C ,
such that

−−−−−−−−−−−→

i

−−−−−−−−−−−→

fj,k

−−−−−−−−−−−−−−−−→

ϕ′j,k

X

σF σA

commutes; thus ϕ′i|{xj , xk} = fj,k|{j, k}. Clearly fj,k|{j, k} is injective since
fj,k(xj) = a 6= b = fj,k(xk); thus i|{xj , xk} is injective (refer to property (10) in
Introduction, Section 3.)

However the choice of j and k was completely arbitrary. If we take all
j, k ∈ J such that j 6= k, the associated fj,k is always well-defined and in-
duces a ϕj,k; yet the i does not vary for any j, k. Thus i|{xj , xk} is injective
for any distinct pair of elements xj , xk ∈ X, which are all elements. Therefore
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x 6= y in X, implies i(x) 6= i(y), so i is injective. ¤

I.7.8 Free Basis.
Hint(4/5): Use the freeness
of F to show F → G ↪→ F is
1F .

Suppose X is a set and F is a free object on X (with i : X → F ) in the category
of groups (the existence of F is proved in Section I.9). Prove that i(X) is a set
of generators for the group F . [Hint: If G is the subgroup of F generated by
i(X), then there is a homomorphism ϕ : F → G such that ϕi = i. Show that
F → G ↪→ F is the identity map.]
Proof: Let G = 〈i(X)〉 and define i′ : X → G by i′(x) = i(x). Since i(X) ⊆ F ,
G ≤ F so we may define the canonical inclusion homomorphism µ : G ↪→ F
as g 7→ g. Clearly µ(gh) = gh = µ(g)µ(h); so µ is in our category of groups.
Additionally, µ(i′(x)) = µ(i(x)) = i(x), so µi′ = i. Since F is furthermore
assumed to be free there exists a unique homomorphism ϕ : F → G such that
the following diagram commutes:

−−−−−−−−−−−→

i

−−−−−−−−−−−→

i′

−−−−−−−−−−−−−−−−−→→←−−−−−−−−−−−−−−−−−↩

µ

ϕ

X

F G

Notice the identity map 1F satisfies the property 1F i = i and so by the
uniqueness guaranteed by the free property of F , it is the unique map that
does so. However notice µϕi = µi′ = i; thus µϕ = 1F .

Since µϕ = 1F it follows µ is surjective; thus G = F . ¤
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I.8.1 Non-Product Groups.
Hint(1/5): Notice products
of abelian groups are abelian.
However products of cyclic
groups are cyclic only if all
groups are finite and their or-
der are all relatively prime.

S3 is not the direct product of any family of its proper subgroups. The same is
true of Zn

p (p prime, n ≥ 1) and Z.

Example: Suppose A and B are abelian groups. Then given (a, b), (c, d) ∈
A × B, it follows (a, b)(c, d) = (ac, bd) = (ca, db) = (c, d)(a, b); thus A × B is
abelian.

Now the proper subgroups of S3 are of order 2 or 3 by the Theorem of
Lagrange. Being of prime order they are all cyclic and furthermore abelian.
Therefore their products must be abelian. S3 is not abelian, since (12)(13) =
(132) 6= (123) = (13)(12); therefore, S3 is not direct product of any of its proper
subgroups.

Every proper subgroup of Zn
p is of the form 〈pk〉, where k = 1, . . . , n− 1, by

Theorem-I.3.5. Now consider any product of these subgroups 〈pi〉 × 〈pj〉.
Notice G = Zi1

p × · · · × Zin
p contains the subgroups 〈(pi−1, 0, . . . , 0)〉 and

〈(0, . . . , 0, pj−1)〉 which are both of order p. Thus G cannot be cyclic, since
every Zn

p cyclic group contains a unique subgroup of order p (refer to Exercise-
I.3). Therefore Zn

p is not the internal direct product of any of its proper sub-
groups.

The group of integers is again cyclic. However any product of subgroups
(even infinite products) contains as a subgroup mZ × nZ for some m,n > 1.
Such a subgroup is not cyclic since i(x, 0) = j(0, y) for any i, j, x, y ∈ Z,
i, j, x, y 6= 0. Therefore Z is not the internal direct product of some of its proper
subgroups. ¤

I.8.2 Product Decomposition.
Hint(1/5): Use abelian
groups. Notice this says
decomposition into products
is not unique.

Give and example of groups Hi, Ki such that H1 ×H2
∼= K1 ×K2 and no Hi

is isomorphic to any Ki.
Example: Compare the groups Z2 × Z6 and (Z2 × Z2) × Z3. The element
(1, 1) ∈ Z2 × Z3 generates all of the group, therefore Z6

∼= Z2 × Z3. Therefore
the map defined on the generators: (1, 0) 7→ ((1, 0), 0) and (0, 1) 7→ ((0, 1), 1) is
an isomorphism; that is: Z2 × Z6

∼= (Z2 × Z2) × Z3. However the components
Z2, Z6, Z2 × Z2, and Z3 are not pairwise isomorphic, as they all have different
finite orders. ¤
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I.8.3 Split Extension.
Hint(3/5):

Let G be an (additive) abelian group with subgroups H and K. Show that G ∼=
H⊕K if and only if there are homomorphisms

−−−−−−−→→←−−−−−−−↩

π1

ι1

−−−−−−−→→←−−−−−−−↩

π2

ι2

H G K such
that π1ι1 = 1H , π2ι2 = 1K , π1ι2 = 0 and π2ι1 = 0, where 0 is the map sending
every element onto the zero (identity) element, and ι1π1(x) + ι2π2(x) = x for
all x ∈ G.

Proof: (⇒) Suppose G ∼= H ⊕ K. Since this is a finite product, the external
direct product is the same object as external weak product; 17 therefore πi and
ιi are defined by Theorem-I.8.1 and Theorem-I.8.5 – which applies since we
consider only abelian groups – and H ⊕K is both a product and a coproduct.

Every element g ∈ G is of the form g = (h, k), and for all h ∈ H, we have
h = (h, 0). Now π1ι1(h) = π1(h, 0) = h; so in fact π1ι1 = 1H and π2ι2 = 1K .
Moreover π1ι2(k) = π1(0, k) = (0, 0) so π1ι2 = 0 and π2ι1 = 0. Finally

ι1π1(h, k) + ι2π2(h, k) = ι1(h) + ι2(k) = (h, 0) + (0, k) = (h, k).

(⇐) Assume

−−−−−−−→→←−−−−−−−↩

π1

ι1

−−−−−−−→→←−−−−−−−↩

π2

ι2

H G K and π1ι1 = 1H , π2ι2 = 1K ,
π1ι2 = 0 and π2ι1 = 0, where 0 is the map sending every element onto the
zero (identity) element, and ι1π1(x) + ι2π2(x) = x for all x ∈ G.

First note π1ι1 = 1H is bijective which implies ι1 is injective and π1 surjec-
tive. Thus H is embedded in G; that is: H ′ = ι(H) ≤ G, and given any h′ ∈ H ′,
there exists a unique h ∈ H such that ι(h) = h′ and since π1ι1(h) = h it follows
π1(h′) = h. Therefore H ∼= H ′ by the invertible homomorphisms π1 and ι1.
Likewise K ∼= K ′ ≤ G.

Now every g ∈ G is of the from ι1π1(g)+ι2π2(g) = g implies g = ι1(h)+ι2(k)
for some h ∈ H, k ∈ K, particularly h = π1(g) and k = π2(g). Therefore G has
the normal form h′+k′, and so G = H ′+K ′. Therefore define f : G → H⊕K by
h′ + k′ 7→ (h, k). Clearly this map is bijective. Furthermore since G is abelian,
(h′+k′)+(h′′+k′′) = (h′+h′′)+(k′+k′′) and (h′+h′′, k′+k′′) = (h′, k′)+(h′′, k′′);
so f is a homomorphism. Therefore G ∼= H ⊕K. ¤

I.8.4 Weak Product.
Hint(2/5): Consider non-
abelian groups. Give an example to show that the weak direct product is not a coproduct in

the category of all groups. [Hint: it suffices to consider the case of two factors
G×H.]

Example: Consider S3 ×w Z4. Given S4, we may construct a map f : S3 → S4

by replacing 1 with 4, so that

(123) 7→ (234); (132) 7→ (243); (12) 7→ (24); (13) 7→ (34); (23) 7→ (23).

Likewise g : Z4 → S4 by mapping the generator 1 7→ (1234).
If S3 ×w Z4 is in deed a coproduct, then there exists a unique map F :

S3 ×w Z4 → S4 such that FιS3 = f and FιZ4 = g. Moreover we now observe
the definition of F : F (x, e) = f(x), F (e, y) = g(y), and since F is presumed to
be a homomorphism it follows F (x, y) = F (x, e)F (e, y) = f(x)g(y).

Now consider F (((12), 1)((123), 1)), and evaluate the function in two ways:
first with the homomorphism property, next straight forward – the evaluations

17Later it is shown that all products and coproducts are equivalent in the category of abelian
groups.
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should agree.

F ((12), 1)((123), 1)) = F ((12), 1)F ((123), 1) = f(12)g(1)f(123)g(1)
= (24)(1234)(234)(1234) = (12);

F (((12), 1)((123), 1)) = F ((23)(123), 1 + 1) = F ((23), 2) = f(23)g(2)
= (23)(13)(24) = (1243).

Since (12) 6= (1243) it is clear F is not in fact a homomorphism. Therefore
S3 ×w Z4 is not a coproduct; the weak direct product is not a coproduct in the
category of all groups. ¤

I.8.5 Cyclic Products.
Hint(1/5): Consider the
results of Exercise-I.3 and
Exercise-I.3.

Let G and H be finite cyclic groups. Then G × H is cyclic if and only if
(|G|, |H|) = 1.
Proof: Let |G| = m and |H| = n and assume G = 〈a〉, H = 〈b〉.

(⇒) Suppose G×H is cyclic. If (m,n) = k then it follows am/k and bn/k are
elements of G and H respectively, and both have order k. Thus 〈(am/k, 0)〉 and
〈(0, bn/k)〉 are two distinct subgroups of order k. By Exercise-I.3, every finite
cyclic group must have a unique subgroup for every order dividing its own; thus
this situation is impossible unless am/k = 0 = bn/k – that is only when k = 1.
Therefore (m,n) = 1.

(⇐) Suppose (m,n) = 1. Using Exercise-I.3 notice G × H is an abelian
group with elements a and b of order m and n respectively; thus G × H must
contain an element of order [m,n]. Since mn = (m,n)[m,n] = [m,n], it follows
G×H is cyclic by the Pigeon-Hole Principle – recall |G×H| = |G|× |H| = mn.
¤

I.8.6 p-order Element Groups.
Hint(2/5): Use the proper-
ties of an internal direct prod-
uct.

Every finitely generated abelian group G 6= 〈e〉 in which every element (except
e) has order p (p prime) is isomorphic to Zp ⊕ Zp ⊕ · · · ⊕ Zp (n summands) for
some n ≥ 1. [Hint: Let A = {a1, . . . , an} be the set of generators such that no
proper subset of A generates G. Show that 〈ai〉 ∼= Zp and G = 〈a1〉 × 〈a2〉 ×
· · · × 〈an〉.]
Proof: Let A be a subset of G such that G = 〈A〉 but 〈A−{a}〉 6= G for any a ∈
A. Since G 6= 0, A 6= ∅. Since G is assumed to be finitely generated, |A| = n
for some n ∈ Z+. Therefore enumerate the elements of A: A = {a1, . . . , an}.

If any element a ∈ A is equal to e, then G = 〈A − {a}〉, therefore by our
assumptions on A, e /∈ A. Thus assuming the hypothesis on G, every element
of A has order p. This means Ni = 〈ai〉 ∼= Zp for all i = 1, . . . , n, by Theorem-
I.3.2.

First note since G is abelian all subgroups are normal; in particular Ni E G
for all i = 1, . . . , n. Since A generates G, and A ⊆ ⋃n

i=1,i6=k Ni, it follows
G = 〈⋃n

i=1,i 6=k Ni〉.
Since each |Nk| = p it follows by the Theorem of Lagrange the subgroup

Nk ∩H of Nk must have order 1 or p; thus it equals 0 or Nk – for any H ≤ G.
Therefore Nk ∩ 〈

⋃n
i=1,i6=k Ni〉 = 0 or Nk. If it is Nk then A− {ai} generates ai,

which violates our assumptions. Therefore Nk ∩ 〈
⋃n

i=1,i6=k Ni〉 = 0.
Thus by Theorem-I.8.6 we know G =

∏n
i=1 Ni. Since each Ni

∼= Zp we
further may state G ∼= Zp ⊕ · · · ⊕ Zp with n summands. ¤
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I.8.7 .
Hint(4/5):

Let H,K, N be a nontrivial normal subgroups of a group G and suppose G =
H × K. Prove that N is in the center of G or N intersects one of H, K non-
trivially. Give examples to show that both possibilities can actually occur when
G is non-abelian.
Example: D2 = 〈a〉× 〈b〉 ∼= Z2⊕Z2

18 has a normal subgroup 〈ab〉 which does
not intersect either product. However since the group is abelian every thing is
contained in the center.

In D6 the center is no longer the entire group but simply 〈a3〉 (see Exercise-
I.6). 〈a3〉, 〈a2, b〉ED6 and nontrivial. 〈a3〉∩〈a2, b〉 = 0 and finally 〈〈a3〉∪〈a2, b〉〉 =
〈a2, a3, b〉 = D6. Therefore D6 = 〈a3〉 × 〈a2, b〉 ∼= Z2 ×D3. 19

The list of nontrivial normal subgroups of D6 is (Exercise-I.6):

〈a3〉, 〈a2〉, 〈a〉, 〈a2, b〉, 〈a2, ab〉.
Clearly the first non-trivially intersects 〈a3〉 – and it is contained in the center (it
is the center); the next four non-trivially intersect 〈a2, b〉 – they all contain 〈a2〉.
¤
Proof: Suppose H ∩N = K ∩N = 1. Take a commutator from each: let h ∈ H,Thanks to David Hill.
k ∈ K and n ∈ N ; then [h, n] ∈ N as N is normal, and also [h, n] ∈ H as H
is normal, so [h, n] = 1 as their intersection is trivial. The same goes for [k, n].
Therefore N is central to all elements of H and to all elements of K, so since
HK = G it follows N is central to all elements in G, so N ≤ Z(G). ¤

I.8.8 Internal Product.
Hint(1/5): Use the result of
Exercise-I.8. Corollary-I.8.7 is false if one of the Ni is not normal.

Example: In S3 the subgroups 〈(123)〉 and 〈(12)〉 have the properties 〈(123)〉 ∩
〈(12)〉 = 0, and

〈(123)〉〈(12)〉 = {ε, (123), (132), (12), (13), (23)} = S3.

However in Exercise-I.8 we saw S3 is not the internal direct product of any
of its subgroups. Therefore S3 6= 〈(123)〉 × 〈(12)〉. As has previously been
shown, 〈(12)〉 is not normal in S3; thus this does not violate Corollary-I.8.7 but
illustrates its limitation. ¤

I.8.9 Product Quotients.
Hint(1/5): Use the projec-
tion maps together with the
First Isomorphism Theorem.

If a group G is the (internal) direct product of its subgroups H, K, then H ∼=
G/K and G/H ∼= K.
Proof: Let G = H ×K. The group H ×K comes equipped with the canonical
projection maps πH : H × K → H and πK : H × K → K, without loss of
generality we will treat only one.

By definition πK(h, k) = k; thus πk(x, y) = e if and only if y = e – that is to
say Ker πK = H × 0 = H.20 Furthermore πK is surjective since πK(0×K) =
K. From the First Isomorphism Theorem we know K ∼= H × K/Ker πK =
G/H.

Analogously H ∼= G/K. ¤

18D2 is the symmetries of a rectangle.
19D6 is the symmetries of a hexagon, which contains two disjoint regular triangles whose

symmetries are D3 – hence D6 is structurally equivalent to a product of D3.
20Recall this is an internal direct product so H × 0 = H0 = H.
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I.8.10 Weak Product.
Hint(3/5): Use Theorem-
I.8.4 and I.8.9.If {Gi | i ∈ I} is a family of groups, then

∏w
i∈I Gi is the internal weak direct

product its subgroups {ιi(Gi) | i ∈ I}.
Proof: By Theorem-I.8.4 part iii, we already know ιi(Gi) is normal in

∏w
i∈I Gi

for all i ∈ I.
By construction every element in

∏w
i∈I Gi is of the from f : I → ⋃

i∈I Gi,
f(i) = ei for all but finitely many i ∈ I – denumerate them as i1, . . . in. Thus we
can decompose each nontrivial f as follows:

f = ιi1(f(i1)) + · · ·+ ιin
(f(in)).

This decomposition is unique because it must agree with f for each i. Clearly
each ιij

(f(ij)) ∈ ιij
(Gj), thus

∏w
i∈I Gi is the internal direct product of {ιi(Gi) | i ∈

I} by Theorem-I.8.9. ¤

I.8.11 Counterexamples.

For i = 1, 2 let Hi E Gi and give example to show that each of the following
statements may be false: (a) G1

∼= G2 and H1
∼= H2 ⇒ G1/H1

∼= G2/H2. (b)
G1

∼= G2 and G1/H1
∼= G2/H2 ⇒ H1

∼= H2. (c) H1
∼= H2 and G1/H1

∼= G2/H2

⇒ G1
∼= G2. Hint(3/5): C

onsider Z, D4, and Z4 together with Z2 ⊕ Z2. Example:

(a) Z ∼= Z and 2Z ∼= Z ∼= 3Z but certainly Z/2Z is not isomorphic to Z/3Z as
they do not even have the same order.

(b) D4
∼= D4 and D4/〈a〉 ∼= Z2

∼= D4/〈a2, b〉 but 〈a〉 is cyclic and 〈a2, b〉 is not,
so they are not isomorphic (see Exercise-I.6).

(c) 〈2〉E Z4 and 〈(1, 0)〉E Z2 ⊕ Z2. Notice 〈2〉 ∼= Z2
∼= 〈(1, 0)〉, and Z4/〈2〉 ∼=

Z2
∼= Z2 ⊕ Z2/〈(1, 0)〉; however, Z4 is cylic while Z2 ⊕ Z2 is not, so they

are not isomorphic.

¤
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I.9 Free Groups, Free Products, Generators &
Realtions

1 Elements of Free Groups . . . . . . . . . . . . . . . . . . 86
2 Cyclic Free Group . . . . . . . . . . . . . . . . . . . . . . 86
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Q16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

I.9.1 Elements of Free Groups.
Hint(2/5): Use the freeness
to construct a homomorphism
F → Z where every generator
of F maps to 1; then reach a
contradiction with a nontrivial
element of finite order.

Every nonidentity element in a free group F has infinite order.

Proof: Let F be free on a set X (by the map ι : X → F ).
If X = ∅ then there is a unique homomorphism from F to any other group

G; therefore, F is an initial object.21 However the group 0 is a zero object –
that is both initial and terminal – and therefore all initial groups are isomorphic
to 0.22 Notice the group 0 has no nontrivial elements so it vacuously satisfies
the proposition.

Now let X 6= ∅. Suppose there exists an element a ∈ F of finite order
n > 1 – so as to be nontrivial. Define the map f : X → Z by x 7→ 1. Then
since F is free there exists a unique homomorphism ϕ : F → Z such that
ϕι = f . We saw in Exercise-I.7, that ι(X) is a set of generators for F ; therefore,
a = ι(xi1)

ni1 · · · ι(xij )
nij and using the homomorphism property of ϕ:

ϕ(a) = ϕ(ι(xi1)
ni1 · · · ι(xij )

nij ) = ϕι(xi1)
ni1 · · ·ϕι(xij )

nij

= (ni1)f(xi1) + · · ·+ (nij )f(xij ) =
j∑

k=1

nik
= m.

This means the element m ∈ Z has a finite order dividing that of a ∈ F . The
only element of finite order in Z is 0; therefore, m = 0. This means a ∈ Ker ϕ.
PENDING: figure me out. Of course, this cannot be sense 1 has infinite order
in Z; therefore, no such element, a, may exist in F . ¤

I.9.2 Cyclic Free Group.
Hint(1/5): Use Exercise-I.9.

Show that the free group on the set {a} is an infinite cyclic group, and hence
isomorphic to Z.

Proof: Since the set X = {a} is nonempty, F (X) is not the trivial group; in
fact F contains the nontrivial element a. By Exercise-I.9, a has infinite order;
therefore, 〈a〉 ∼= Z by Theorem-I.3.2. Furthermore by Exercise-I.7, if F is free
on X, as is here assumed, then X generates F . Therefore F = 〈a〉 ∼= Z. ¤

21? is initial in the category of sets so there exists a unique map ?→ G forcing the freeness
to imply there exists a unique homomorphism F → G.

22Given a category with a zero object O and an initial object I, there is a unique morphism
into I form any object T by way of O: T → O → I, where each of these morphisms are unique
by the definition of O; thus, I also terminal, and therefore a zero object, and so equivalent to
O – Theorem-I.7.10.
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I.9.3 .
Hint(2/5): Use the freeness
to construct a homomorphism
whose kernel is N .

Let F be a free group and let N be the subgroup generated by the set {xn | x ∈
F, n a fixed integer }. Show that N E F .
Proof: Let F be free on X by a map ι : X → F .

Define the map f : X → Zn by x 7→ 1. Using the free property of F ,
there exists a unique homomorphism ϕ : F → Zn with the property ϕι = f .
By Exercise-I.7, ι(X) generates F so we see every generator of F is mapped
to 1. Since every element in Zn has order n or less, then for every x ∈ F ,
ϕ(xn) = ϕ(x)n = 0 = ϕ(e), so xn ∈ Ker ϕ. Thus N ≤ Ker ϕ. PENDING: This
isn’t the map, kernel is too big. ¤

I.9.4 Q16.
Hint(3/5):

The group defined by generators a, b and relations a8 = b2a4 = ab−1ab = e has
order at most 16. 23

Proof:
¤

23This group is isomorphic to the general quaternion group of order 16.
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Chapter II

The Structure of Groups

II.1 Free Abelian Groups

1 mA groups. . . . . . . . . . . . . . . . . . . . . . . . . . 89
2 Linear Indepedence . . . . . . . . . . . . . . . . . . . . . 89
3 Commutators . . . . . . . . . . . . . . . . . . . . . . . . 91
9 Free-Abelian Groups and Torsion . . . . . . . . . . . . . 91
10 Non-free, Torsion-free Groups . . . . . . . . . . . . . . . 92

II.1.1 mA groups..
Hint(2/5): Reference
Exercise-I.1 and use the
Fundamental Homomorphism
Theorem.

(a) If A is an abelian group and m ∈ Z, then mA = {ma | a ∈ A} is a subgroup
of A.

(b) If A ∼= ∑
i∈I Gi, then mA ∼= ∑

i∈I mGi and A/mA ∼= ∑
i∈I Ai/mAi.1

Proof: Given a, b ∈ A, ma,mb are in mA and by Exercise-I.1 we know ma +
mb = m(a + b), and since a + b ∈ A we see ma + mb ∈ mA making it closed
to sums. Next 0 ∈ A and m0 = 0 so 0 ∈ mA. Finally, −ma = m(−a) and
since −a ∈ A, it follows −ma ∈ mA; notice ma + −ma = ma + m(−a) =
m(a − a) = m0 = 0; thus mA is closed to inverses, the last requirement to
make it a subgroup.

Suppose G ∼= ∑
i∈I Gi, that is, that G is the internal direct sum of Gi’s,

associate Ni ≤ G with Gi. Each Gi is isomorphic to the subgroup Ni of G, so
they too must be abelian. Therefore mGi is a subgroup of each Gi and since
all are abelian each is normal and so Gi/mGi are defined. Furthermore, form
Theorem-I.8.9 we see every element in G is a unique sum of ni1 + · · · + nik

where ij ∈ I and each is distinct. Therefore elements of mG are of the form :

m(ni1 + · · ·+ nik
) = mni1 + · · ·+ mnik

,

and clearly each mnij ∈ mNij ; thus, mG is all finite sums of elements from
mNi, and so we now know mG ∼= ∑

i∈I mGi. Now we have

G/mG =
∑

i∈I

Ni/
∑

i∈I

mNi
∼=

∑

i∈I

Gi/
∑

i∈I

mGi,

so by Corollary-I.8.9, it follows G/mG ∼= ∑
i∈I Gi/mGi. ¤

1Since the spaces are abelian, normality is automatic.
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II.1.2 Linear Indepedence.
Hint(3/5): In part (d) notice
{2, 3} generates Z. A subset X of an abelian group F is said to be linearly independent if n1x1 +

· · · + nkxk = 0 always implies ni = 0 for all i (where ni ∈ Z and x1, . . . , xk are
distinct elements of X).

(a) X is linearly independent if and only if every nonzero element of the sub-
group 〈X〉 may be written uniquely in the form n1x1 + · · · + nkxk (ni ∈ Z,
ni 6= 0, x1, . . . , xk distinct elements of X).

(b) If F is free-abelian of finite rank n, it is not true that every linearly indepen-
dent subset of n elements is a basis. [Hint: consider F = Z.]

(c) If F is free-abelian, it is not true that every linearly independent subset of
F may be extended to a basis of F .

(d) If F is free-abelian, it is not true that every generating set of F contains a
basis of F . However, if F is also finitely generated by n elements, F has
rank m ≤ n.

(a) Proof: Since F is abelian we know 〈X〉 is as well. Using this we first
enumerate the elements of X by a set I. Thus every element of 〈X〉 is
of the from

∑
i∈I nixi because we may use the commutativity to group all

elements xi together – recall also the sum must be finite so this is valid.
Given

∑
i∈I nixi =

∑
i∈I mixi it follows:

∑

i∈I

nixi −
∑

i∈I

mixi = 0;
∑

i∈I

nixi +
∑

i∈I

−mixi = 0;

∑

i∈I

nixi −mixi = 0;
∑

i∈I

(ni −mi)xi = 0.

(⇒) Now if X is linearly independent we are able to conclude ni −mi = 0
for all i ∈ I, which we reduce to say ni = mi; therefore, every element is a
unique linearly combination of elements of X.

(⇐) If every element of 〈X〉 is the unique linearly combination of elements
from X, then to begin with we know ni = mi for each i ∈ I. Since
0 =

∑
i∈I 0xi it follows any linear combination

∑
i∈I nixi = 0 forces ni = 0

for all i ∈ I; therefore, X is linearly independent. ¤

(b) Example: Consider Z. The subset {2} is linearly independent sense
m2 = 0 requires m = 0. By Theorem-II.1.1 we can claim Z has rank 1
– consider the basis {1}. Therefore our subset satisfies the hypothesis.
Yet 〈2〉 = 2Z and does not include 1 – in part because 1 is not even – so
2Z 6= Z; therefore, {2} is not a basis of Z. ¤

(c) Example: Staying with the example of part (b), if we extend {2} to a set
X that we wish to be a basis, there is no way to add any elements without
changing the rank of Z; however, this violates Theorem-II.1.2.

As a further example, the set {(2, 0)} is linearly independent in Z ⊕ Z
since m(2, 0) = (0, 0) only when 2m = 0, that is when m = 0. We know
Z ⊕ Z can be generated by the basis {(1, 0), (0, 1)}, so it has rank 2. By
Theorem-II.1.2, in Z ⊕ Z every basis will have rank 2. So we need to add
one element to our set to hopefully construct a basis; so consider now
X = {(2, 0), (x, y)}. If y = 0 then 〈X〉 does not contain (0, 1), so in the
contrapositive y 6= 0. Now suppose (1, 0) = m(2, 0) + n(x, y) which implies
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1 = 2m + nx and 0 = ny. But as we know, y 6= 0 so n = 0 and this re-
quires 1 = 2m which cannot be; therefore, X cannot generate Z ⊕ Z and
so {(2, 0)} cannot be extended to a basis. ¤

(d) Example: Finally notice for every integer n, n = n1 = n(2 + −3) = n2 +
(−n)3 so in fact the set {2, 3} generates Z. However we saw in part (b) that
because 1 6= 2m (and likewise 1 6= 3m) the set {2} (and so also {3}) was
not a basis of Z. Therefore this generating set does not contain a basis of
Z.

Suppose every element of F can be expressed in the form
∑n

i=1 nixi for
a fixed set X = {x1, . . . , xn}. If X is linearly independent then we have
satisfied the requirements for a basis and we say F has rank n. If not, then
it must be the case that

∑n
i=1 nixi = 0 where at least one ni 6= 0 (recall

we already assumed X generates F so there is no problem assuming X
generates 0 at some point).

Suppose F has a rank m > n, so that it has a basis Y = {y1, . . . , ym}. The
trick now is to replace each yi with its corresponding linear combination of
X. So for every element we have a linear combination of linear combina-
tions:

m∑

i=1

miyi =
m∑

i=1

mi

n∑

j=1

njxj =
m∑

i=1

n∑

j=1

(minj)xj =
∑

j=1

kjxj .

Therefore
∑m

i=1 miyi = 0 does not require each mi = 0 as there is some
kj =

∑m
i=1 minj 6= 0 where

∑n
j=1 kjxj = 0; therefore, Y is not linearly

independent. Thus we conclude any basis of F has rank less than or equal
to n. ¤

II.1.3 Commutators.
Hint(2/5): Notice these rela-
tors yield the relations ab = ba
for all generators a and b in X.

Let X = {ai | i ∈ I} be a set. Then the free-abelian group on X is (isomorphic
to) the group defined by the generators X and the relations (in multiplicative
notation) {aiaja

−1
i a−1

j = e | i, j ∈ I}.2
Proof: Let F be the free group on X, through the map ι : X → F , as out-
lined in Theorem-I.9.1, and let A be the free-abelian group on X as defined
for Theorem-II.1.1, with the map α : X → A from part (iv). Therefore by the
freeness of F we have a unique homomorphism ϕ : F → A such that ϕι = α.
Furthermore, X is a set of generators of both F and A so the map ϕ is surjec-
tive.

We know A is abelian and also generated by X, so for every i, j ∈ I,
α(ai)α(aj) = α(aj)α(ai) which equates to α(ai)α(aj)α(ai)−1α(aj)−1 = e, so

ϕ(e) = e = α(ai)α(aj)α(ai)−1α(aj)−1

= ϕι(ai)ϕι(aj)ϕι(ai)−1ϕι(aj)−1

= ϕ(ι(ai)ι(aj)ι(ai)−1ι(aj)−1).

So we see each commutator ι(ai)ι(aj)ι(ai)−1ι(aj)−1 is in the kernel of ϕ.
Now suppose [F, F ] = 〈ι(ai)ι(aj)ι(ai)−1ι(aj)−1 | i, j ∈ I〉. PENDING: fin-

ish. ¤

2These relators are called the commutators of a group.
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II.1.4 Free-Abelian Groups and Torsion.

Let G be a finitely generated abelian group in which no non-trivial element has
finite order.3 Then G is a free-abelian group.Hint(2/5): Use Theorem-

II.1.6 Proof:
¤

II.1.5 Non-free, Torsion-free Groups.

(a) Show that the additive group of rationals Q is not finitely generated.

(b) Show Q is not a free nor free-abelian group. 4

(c) Conclude that Exercise-II.1 fails if “finitely generated” is removed.
Hint(3/5): In part (a) notice
a finite set of rationals always
leaves 1/(b1 · · · bn + 1) out of
the generating set. For (b) no-
tice no two fractions are lin-
early independent.

Example: Take a any finite set {a1/b1, . . . , an/bn} of rationals. The space they
generate is equivalent to

A =
{

k1
a1

b1
+ · · ·+ kn

an

bn
: ki ∈ Z

}

as Q is abelian. However,

k1
a1

b1
+ · · ·+ kn

an

bn
=

k1a1b2 · · · bn + · · ·+ knanb1 · · · bn−1

b1 · · · bn
;

whence, A never contains 1
b1...bn+1 but Q does. So we must conclude that no

finite subset of Q generates Q; so Q is not finitely generated.

To show Q is not a free group consider a homomorphism f of Q to S3.
Recall f(n · q) = f(q)n for all q ∈ Q and n ∈ Z. Notice f(q)6 = ε as every
element in S3 has order dividing 6. Thus f(6q) = ε for all q ∈ Q. But certainly
every q = 6p, for some p ∈ Q; hence, f(q) = f(6p) = ε so f is trivial.

Now consider the abelian case. Take any two rational numbers a/b, c/d.
Notice that

cb
a

b
+ (−ad)

c

d
= ca− ac = 0,

so a/b and c/d are linearly dependent over Z, so there can be no basis for Q.
Therefore by Theorem-1.1 Q cannot be a free-abelian group. ¤

3Such a group is called torsion-free.
4Later this can be adapted to say: Given an integral domain I and its field of fractions

Q(I), Q(I) is a free I-module if and only if I = Q(I). The proof follows from replacing Z with
I and Q with Q(I).
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III.1.1 Quaternion Group Ring vs. Division Ring.

Show the algebra of quaternions(Hamiltonions) H determined by:

1̂ =
(

1 0
0 1

)
, î =

(
i 0
0 −i

)
, ĵ =

(
0 1
−1 0

)
, and k̂ =

(
0 i
i 0

)

over the reals is not isomorphic to RQ8. Refer to Appendix-?? for a detailed
treatment of group algebras and Theorem-?? for the general proof employed
here.
Proof: Take the element i ∈ Q8. Using the geometric series notice

(1̂− î)(1̂ + î + −̂1 + −̂i) = 1̂ + î + −̂1 + −̂i

−î− −̂1− −̂i− 1̂ = 0.

Yet clearly 1̂− î 6= 0 and neither does 1̂ + î + −̂1 + −̂i so they are in fact zero-
divisors in RQ8. Thus RQ8 is not a field and so cannot be isomorphic to H. ¤

However the mapping f : RQ8 → H by f(−̂1) = 1 – so that f(−̂i) =
i, f(−̂j) = j and f(−̂k) = k – determines a surjective linear homomorphism
that also preserves products; that is: H is a factor ring of RQ8.

101



102 Rings

III.2 Ideals

1 The Little Radical Ideal . . . . . . . . . . . . . . . . . . . 102
2 Radical Ideal . . . . . . . . . . . . . . . . . . . . . . . . . 102
4 The Annihilator Ideal . . . . . . . . . . . . . . . . . . . . 103
5 The “Idealizer” . . . . . . . . . . . . . . . . . . . . . . . . 103
7 Division Rings have no Left Ideals . . . . . . . . . . . . . 103
11 Nilpotent Factor Ring . . . . . . . . . . . . . . . . . . . . 104
13 Homomorphic Image of Ideals . . . . . . . . . . . . . . . 104
15 Prime Ideal in Zero-Divisors . . . . . . . . . . . . . . . . 104
19 Maximal Ideals in Non-Unital Rings . . . . . . . . . . . . 105
21 Prime/Maximal Ideals in Z/mZ . . . . . . . . . . . . . . . 105
25 Prime Decomposition of Integer Rings . . . . . . . . . . 105
26 Limitation of Chinese Remainder Theorem . . . . . . . . 105

III.2.1 The Little Radical Ideal.

The set of all nilpotent elements in a commuative ring forms an ideal.
Proof: Given R is a commutative ring, let S ⊆ R such that S consists of all
nilpotent elements of R. Clearly 01 = 0 so 0 ∈ S so S is non-empty. Given
a, b ∈ S, by the definition of S, am = 0 and bn = 0 for some positive integers m
and n. Given ab = ba the binomial theorem applies:

(a + b)mn = amn +
mn−1∑

k=1

(
mn

k

)
akbmn−k + bmn.

If m = n = 1 then a = 0 and b = 0 so a + b = 0. Without loss of generality
suppose m > 1. Whenever k < m, nk < mn so (n− 1)k < mn− k. With k > 1,
(n − 1)k ≥ n and when k = 1, mn − k ≥ n, so in general n ≤ mn − k. So
bmn−k = bnbmn−k−n = 0bmn−k−n = 0 and whenever k ≥ m, ak = amak−m =
0ak−m = 0. Cancelling appropriately the binomial expansion reduces to:

(a + b)mn = (am)n +
m−1∑

k=1

ak0 +
mn−1∑

k=m

0bmn−k + (bn)m = 0 + 0 + 0 + 0 = 0

leaving S closed to sums.
Again using the commutative multiplication observe 0 = 0·0 = (am)n(bn)m =

(ab)mn so ab ∈ S. To close S to negatives notice, when n is even (−a)n =
(an) = 0, and when n is odd (−a)n = −(an) = 0, leaving −a ∈ S. Therefore S
is a subring of R.

Finally given any x, y ∈ R, R is commutative so (xay)n = xnanyn =
xn0yn = 0 so xay ∈ S, proving S is an ideal of R. ¤

III.2.2 Radical Ideal.

Let I be and ideal in a commutative ring R and let Rad I = {r ∈ R | rn ∈ I} for
some n. Rad I E R.
Proof: Since I is an ideal of R take f : R → R/I to be the canonical homomor-
phism. If (r + I)n = rn + I = I then rn ∈ I so r ∈ Rad I, and for all r ∈ Rad I,
f(r)n = rn + I = I. Therefore Rad I is simply the pre-image of the nilpotent
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elements of R/I. Exercise III.2.1 ensures the nilpotent elements of a ring form
an ideal. Applying Theorem III.2.13 it follows the pre-image of an ideal is an
ideal, therefore Rad I is and ideal of R. ¤

III.2.3 The Annihilator Ideal.

If I is and ideal of R, then A(I) = {r ∈ R | rI = 0} is an ideal in R.
Proof: Note that αr : I → I defined as αr(x) = rx is a group endomorphism
of R since r(x + y) = rx + ry. Additionally αr is well-defined for all r in R
because I is an ideal and thus rx ∈ I. Also note that the endomorphisms of
R form a ring with pointwise addition and composition as multiplication. Now
define the map f : R → End(I) by r 7→ αr. A unique image element exists for
each domain element so f is well-defined. Also f(r + s) = αr+s but evaluating
αr+s(x) = (r + s)x = rx + sx = αr(x) + αs(x) so αr+s = αr + αs and so
f(r + s) = f(r) + f(s). Finally f(rs) = αrs and once again αrs(x) = (rs)x =
r(sx) = αr(αs(x)) leaving αrs = αrαs so f(rs) = f(r)f(s).

Since f is now seen as a ring homomorphism its kernel is an ideal of R. Fur-
thermore f(r) = 0 = α0 only when rx = 0 for all x ∈ R. Therefore r ∈ Kerφ
only if it is also in A(I). Lastly given r ∈ A(I) it follows αr(x) = rx = 0 so
r ∈ Ker f sandwhiching A(I) between Ker f thus A(I) = Ker f E R. ¤

III.2.4 The “Idealizer”.

Let I E R and define [R : I] = {r ∈ R | Rr ≤ I}. Prove I E [R : I] E R.
Proof: First note given i ∈ I it follows ri ∈ I for all r in R so in deed I is
contained in [R : I]. With r, s taken from [R : I] it is assumed xr and xs are
contained in I for all x ∈ R. Therefore x(r−s) = xr−xs is contained in I since
I is a subgroup of R, acknowledging that r − s ∈ [R : I].

Next with a ∈ R notice Rr ≤ I and thus a(Rr) ≤ aI ≤ I and (Rr)a ≤ Ia ≤ I
so a[R : I] ≤ [R : I] and [R : I]a ≤ [R : I]. Thus [R : I] E R. ¤

III.2.5 Division Rings have no Left Ideals.

A ring with identity (1 6= 0) is a division ring if and only if it has no proper left
(right) ideals. Furthermore If S is a ring with no proper left (right) ideals, then
either S2 = 0 or S is a division ring.
Proof: Consider R, a unital ring. When R is a division ring and I a left (right)
ideal of R, I must absorb product. But for all r ∈ I, if r 6= 0 then there exists
a left inververse r′ (correspondingly ′r for a right inverse) such that r′r = 1.
Therefore when I is nonzero it is the entire ring. So R has no proper left(right)
ideals.

Consider R to be a unital ring with no left (right) proper ideals. Given any
nonzero element a in R, which must exists since 1 6= 0, then Ra is a left ideal
(correspondingly aR is a right ideal). Left (right) ideals may not be proper so
Ra (aR) is 0 or R. The unity of R allows a ∈ Ra (a ∈ aR) where a 6= 0 so
Ra = R (aR = R). Thus 1 ∈ Ra (1 ∈ aR) so there exists an a′ (correspondingly
′a) such that 1 = a′a, so a is left (right) invertible.

Having shown Ra = R for all nonzero a in R take a and b to be non-zero
elements in R and suppose they are zero-divisors so that ab = 0. Thus it would
follow that 0 = R0 = Rab = (Ra)b = Rb = R but 1 6= 0, forcing R 6= 0 so a and b
are not zero-divisors. Therefore R−{0} is closed under multiplication and so it
is a semigroup with left identity and left inverses so it has a multipliative group
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structure. Therefore R is a division ring.

Let R be any ring with no proper left (right) ideals. Let T = {a ∈ R |Ra = 0}.
Given that 0a = 0, T is nonempty and furthermore given s, t ∈ T and r ∈ R,
(s + t)a = sa + ta = 0− 0 = 0 so r + s ∈ T , and finally (rs)a = r(sa) = r0 = 0
so rs ∈ T . Therefore T is a left (right) ideal of R and so it must be 0 or R. If
T = R then R2 = 0. Suppose instead T = 0.

Since T 6= 0 there exists a d ∈ R such that d 6= 0 and cd 6= 0 for some c
in R. Now define the map f : R → Rd as f(r) = rd. This map is R-linear so
the kernel is a left submodule of R, and thus a left ideal of R. Therefore Ker f
is 0 or R: if it is R then cd = 0 which is a contradiction, so it is 0, that is to
say Rd = R. Therefore there exists an e ∈ R such that ed = d. [PENDING:
show left cancellation. From cancellation note rd = red implies r = re and next
use the following argument to show e is two-sided so that the first part may be
used. This part provided by David Oury:] Suppose there exists two left identi-
ties e and e′; then 0 = a − a = ea − e′a = (e − e′)a and using left cancelation
0 = e− e′ thus e = e. ¤

III.2.6 Nilpotent Factor Ring.

If N is the ideal of all nilpotent element of R as demonstrated in Exercise-III.2,
then R/N is a ring with no nonzero nilpotent elments.

Proof: Given a nilpotent element x + N in R/N , N = (x + N)m = xm + N
by definition. However this implies xm ∈ N and since N is the set of all nilpo-
tent elements it follows xm is nilpotent. That is there exists an n such that
0 = (xm)n = xmn. However this implies x is nilpotent so x ∈ N thus x+N = N
so all nilpotent elements are trivial. ¤

III.2.7 Homomorphic Image of Ideals.

Let f : R → S be a homomorphism of rings, I and ideal of R, and J an ideal of
S.

(a) f−1(J) is an ideal in R that contains the kernel of f .

(b) If f is an epimorphism then f(I) is an ideal in S. If f is not surjective,
f(I) need not be an ideal in S.

Proof:

(a) Let a, b be elements of R. Clearly f(a)Jf(b) ⊆ J since J is an ideal of
S. Thus af−1(J)b ⊆ f−1(J) so f−1(J) is an ideal in R. Since 0 ∈ J it
follows Ker f = f−1(0) ≤ f−1(J).

(b) Suppose f is an epimorphism. Then given an ideal I ∈ R, and a, b ∈ R,
f(aIb) = f(a)f(I)f(b) ⊆ f(I) and therefore f(I) E f(R) = S. As a
counterexample for when f is not an epimorphism take the mapping:
f : Z → R where f(x) = x. Clearly 2Z E Z because m(2i)n = 2(imn) is
always even. However 2Z is not an ideal of R as seen for example with
π: π2 = 2π which is not an integer thus not included in 2Z.

¤
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III.2.8 Prime Ideal in Zero-Divisors.

In a commutative unital ring R, the set Z = {a ∈ R | ab = 0, for some b ∈ R, b 6=
0} contains a prime ideal.
Proof: Define S = R − Z. Every element of S is not a zero-divisor nor is it
zero. Therefore the product of elements a, b ∈ S is not equal to zero. Suppose
ab where a zero divisor, that is that ab is in Z not S. Then there exists a c ∈ R,
c 6= 0 such that (ab)c = 0. Therefore a(bc) = 0 and using the commutativity
b(ac) = 0 forcing either a or b to be zero-divisors. This is a contradiction of the
definition of S so it follows ab is not a zero-divisor. Therefore S is multiplacative.

Applying Theorem VIII, 2.2 it follows there exists a prime ideal in R−S = Z.
¤

III.2.9 Maximal Ideals in Non-Unital Rings.

The ring of even integers contains a maximal ideal whose factor ring is not a
field.
Proof: Notice in general 2Z/(2m)Z ∼= Z/mZ. Thus to choose and m where
2mZ is maximal requires only that (2,m) = 1. And since furthermore we want
the factor ring to not be a ring choose such and m that is a composite num-
ber so the factor ring will have zero-divisors; m = 15 works: 2Z/30Z ∼= Z/15Z
which is not a field since 3 · 5 = 0. ¤

III.2.10 Prime/Maximal Ideals in Z/mZ.

Determine all prime and maximal ideals of Z/mZ.
Proof: By Theorem-III.2.19 we know every maximal ideal in these commuta-
tive unital rings is a prime ideal. Therefore it sufficies to find all prime ideals.
The factor ring of a prime ideal must have no zero-divisors. If a factor ring is to
have no zero-divisors and yet be a cyclic unitary commutative ring isomorphic
to some kZ, then k must be prime. Thus the general prime ideals are of the
form pZ/mZ. Notice that in fact all these prime ideals are also maximal be-
cause they have prime index, meaning their factor rings are Z/pZ. ¤

III.2.11 Prime Decomposition of Integer Rings.

If m is an integer with (unique) prime decomposition pk1
1 · · · pkt

t , with each pi

distinct, then Z/mZ ∼= Z/pk1
1 Z× · · · × Z/pkt

t Z.

Proof: Clearly pki
i Z is an ideal of Z for all i. Also Z2 + pki

i Z = Z + pki
i Z = Z

and given i 6= j, (pki
i , p

kj

j ) = 1 implies pki
i Z + p

kj

j Z = Z so the map described
by Corollary-III.2.27 is an isomorphism; that is:

Z/(pk1
1 Z ∩ · · · ∩ pkt

t Z) ∼= Z/pk1
1 Z× · · · × Z/pkt

t Z.

However (pk1
1 Z ∩ · · · ∩ pkt

t Z) = (pk1
1 · · · pkt

t )Z = mZ so in fact:

Z/mZ ∼= Z/pk1
1 Z× · · · × Z/pkt

t Z.

¤
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III.2.12 Limitation of Chinese Remainder Theorem.

The map f : Z/6Z ∩ 4Z → Z/6Z × Z/4Z as described in Corollary-III.2.27 is
not surjective.
Proof: Note that [6, 4] = 12 thus 6Z ∩ 4Z → Z/6Z = 12Z. But clearly then
the order of the domain is 12 while the order of the image remains 24, thus no
surjection exists between the sets, let alone one that is a ring homomorphism
such as f . Therefore f is not surjective. ¤
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III.3.1 Maximal and Prime Principal Ideals.

A nonzero ideal in a principal ideal domain is maximal if and only if it is prime.
Proof: Theorem 3.4 part iv demonstrates an element p in a principal ideal
domain D is prime if and only if p is irreducible in D. By part i of the same
theorem p is prime if and only if (p) is a prime ideal, and part ii states p is irre-
ducible if and only if (p) is maximal in P . Therefore (p) is prime if and only if (p)
is irreducible in P . Since P is a principal ideal domain, for every ideal I there
exists an element x such that (x) = I. Thus in a principal ideal domain every
ideal is prime if and only if it is irreducible. ¤

III.3.2 Irreducible Non-Prime Elements.

Let R = {a + b
√

10 | a, b ∈ Z} be a subring of R.

(a) The map N : R → Z defined by N(x) = xx (if x = a + b
√

10 then
x = a − b

√
10) has the properties N(xy) = N(x)N(y) and N(x) = 0 if

and only if x = 0.

(b) u is a unit in R if and only if N(u) = ±1.

(c) 2,3, 4 +
√

10, and 4−√10 are irreducible in R.

(d) 2,3, 4 +
√

10, and 4−√10 are not prime in R.

Therefore there are irreducible elements that are not prime.
Proof:

(a) Since a and b are integers it follows a2 − 10b2 is also an integer. Given
x = a + b

√
10 an element in R it follows b ∈ Z and so −b ∈ Z thus

x = a − b
√

10 is in R. Multiplication in R is defined by multiplication in
the reals therefore xx is well-defined and in fact xx = a2 − 10b2 ∈ Z.
Therefore N is well-defined.

Let x = a + b
√

10 and y = c + d
√

10 be arbitrary elements of R.

N(xy) = N((ac + 10bd) + (ad + bc)
√

10) = (ac + 10bd)2 − 10(ad + bc)2

= a2c2 + 100b2d2 − 10a2d2 − 10b2c2 = (a2 − 10b2)(c2 − 10d2)
= N(x)N(y).

When x = 0 it is clear N(x) = 0. Given N(x) = 0 it follows a2 − 10b2 = 0
therefore a2 = 10b2 and so |a| = |b|√10, so either a is not an integer or b
is not, unless both are zero. Therefore x = 0.

(b) Suppose uv = 1 for two elements u, v in R. Applying the norm function
it is clear N(u)N(v) = N(uv) = N(1) = 1. Since N maps only into
the integers and only 1 and −1 have multiplicative inverses in Z it follows
N(u) = ±1.
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(c) Suppose 2 = uv for two non-units u and v in R. Then N(u)N(v) =
N(2) = 4 and with u and v being non-units it is forced that N(u) = ±2.
Let u = a + b

√
10 and consider the equation a2 − 10b2 = N(u) = ±2.

Since the equation is true in the integers it must be true in its factor rings
therefore a2−10b2 ≡ 2 (mod 5). However no element exists in Z/5Z such
that a2 = 2 (proved by testing all five elemtns.) So no u exists in R with
the property N(u) = ±2 concluding by contradiction that 2 is irreducible
in R.

Again suppose 3 = uv with u and v again non-unit elements. Picking up
the pace suppose a2 − 10b2 = N(u) = ±3. Then a2 − 10b2 ≡ 3 (mod 5)
but once again a2 6= 3 mod 5 for any elements a. Therefore 3 is irreducible
in R.

Finally N(4 ±√10) = 16 − 10 = 6. Suppose 4 ±√10 = uv for non-units
u and v. Then clearly N(u)N(v) = 6 and thus N(u) = ±2 or ±3 however
from the above argument it is clear no such element exists therefore 4±√

10 is irreducible.

(d) Notice 2 · 3 = 6 = (4 +
√

10)(4 −√10). If 2 is prime then since 2 divides
6 it should follow 2 divides 4 +

√
10 or 4−√10 which it cannot since both

are irreducible and 2 is not a unit. Therefore 2 is not prime. The same
argument implies 3 and 4±√10 are not prime either.

¤
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IV.1.1 Z/nZ Modules.
Hint(1/5): Verify the axioms
directly.If A is abelian where for some integer n > 0, na = 0 for all a ∈ A then A is a

unitary Z/nZ-module where k ≡ k (mod n) implies ka = ka.

Proof: Clearly A remains an abelian group thus only the scalar properties need
be verified for the ring action of Z/nZ. Suppose m ∈ Z/nZ then by definition
m ≡ m (mod n) and thus ma = ma ∈ A for all elements a of A, so that A is
closed to scalar multiplication by Z/nZ.

Let a, b be elements of A and k, m elements of Z/nZ. It follows m(a +
b) = m(a + b) by definition thus m(a + b) = ma + mb = ma + mb. Likewise
(k+m)a = k + ma = (k+m)a = ka+ma = ka+ma therefore scalars distribute
over A and A distributes over scalars.

Finally k(ma) = k(ma) = k(ma) = (km)a = kma = (km)a. Notice n+1 ≡ 1
(mod n) and therefore 1a = (n + 1)a = (n+1)a = na+a = 0+a = a. Therefore
A is a unitary Z/nZ module. ¤

113
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IV.1.2 Monic/Epic Morphisms of Modules.
Hint(2/5): The forward di-
rections of the implications
follow in all concrete cate-
gories and their proofs are
best treated without algebraic
methods.

A homomorphism f : A → B of modules is:

• Injective if and only if it is a monomorphism (left/forward cancelable,) that
is: fg = fh implies g = h.

• Surjective if and only if it is an epimorphism (right/rear cancelable,) that
is: gf = hf forces g = h.

• Bijective if and only if it is an isomorphism. Together this means every
map that is both a monomorphism and an epimorphism is an isomor-
phism.

Show where the presumption of modules is used in the proof for epimorphisms.

Proof:

• Let g and h be mappings such that the following diagram commutes:

−−−−−−−→−−−−−−−→

g

h

↪−−−−−−−→

f

D A B.

Thus the diagram requires f(g(x)) = f(h(x)) for all x ∈ D. When f is
injective clearly g(x) = h(x) for all x ∈ D leaving g = h. Therefore in any
concrete category an injective morphism is a monomorphism.

Now suppose f is a monomophism and take D = Ker f with g : x 7→ x
and h : x 7→ 0. Each map follows canonical definition so they are ac-
cepted as well-defined. Since f has the left cancelation property for all
morphisms any requirements on its structure infered from these two mor-
phisms must apply to f always. Notice f(g(x)) = 0 and f(h(x)) = f(0) =
0 for all x ∈ Ker f thus fg = fh. By assumption (f a monomorphism) it
follows g = h. Thus Ker f = g(Ker f) = h(Ker f) = 0 so f is injective.

Notice this property assumes only the group structure of modules.

• Let g and h be mappings such that the following diagram commutes:

−−−−−−−→→

f

−−−−−−−→−−−−−−−→

g

h

A B D,

so that gf = hf . Suppose f is surjective so that given y ∈ B there
exists x ∈ A such that f(x) = y. With no use of modules it follows
g(y) = g(f(x)) = h(f(x)) = h(y) so g = h. So once again any surjection
in a concrete category is an epimorphism.

Towards the converse however the properties of modules will be used.
Take f to be an epimorphism and let D = B/Im f . In modules Im f can
function as a kernel, as all submodules can (refer to Theorem 1.6 and
Definition 1.3), so D is a well-defined module. Now take g : x 7→ x+Im f
and h : x 7→ Im f . Both maps are canonical maps so they are easily
seen as well-defined.

To conclude g(f(x)) = f(x) + Im f = Im f = h(f(x)) thus gf = hf and
by the assumption that f is an epimorphism it follows g = h. Therefore
y + Im f = g(y) = h(y) = Im f for all y ∈ B. Therefore B ≤ Im f and
clearly Im f ≤ B so B = Im f forcing f to be surjective.

• An isomorphism is a bijective homomorphism of modules. Additionally a
map is bijective if and only if it is both injective and surjective and thus if
and only if it is a monomorphism and epimorphism of modules.

¤
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IV.1.3 R/I-Modules.

Let I be a left ideal of a ring R and A an R-module. Hint(2/5): Take care not to
assume S is in IS, or that S
is a submodule of A itself. Di-
rect verification is required.

(a) If S is a nonempty subset of A, then

IS =

{
n∑

i=1

riai | n ∈ Z+, ri ∈ I, ai ∈ S

}

is a submodule of A. Note that if S = {a}, then IS = Ia = {ra : r ∈ I}.
(b) If I is a two-sided ideal, then A/IA is an R/I-module with the action of R/I

given by (r + I)(a + IA) = ra + IA.

Proof: Since S is non-empty there exists and a ∈ S and as such 0 = 0a ∈ IS,
so IS is non-empty. Now take any r =

∑n
i=1 riai, s =

∑m
j=1 sjaj ∈ IS. Without

loss of generality we may take n = m and i = j by setting ri = 0 or sj = 0
whenever there is no term in some position. Thus we have:

r + s =
n∑

i=1

riai +
n∑

i=1

siai =
n∑

i=1

(ri + si)ai

and as I is a left ideal it is closed the sums ri + si allowing us to conclude
r + s ∈ IS.

Finally, given any t ∈ R, as I is a left-ideal, tI ⊆ I and so: tr = t
∑n

i=1 riai =∑n
i=1(tri)ai which lies again in IS. Hence IS is a submodule of A.

Suppose that I is a two-sided ideal of R. Then R/I is a well-defined quotient
ring and from our previous work IA is a submodule of A allowing us to take the
quoteint A/IA certainly as abelian groups. Moreover we need to verify that
A/IA is an R/I-module when equiped with the proper action.

Take a + IA, b + IA and r + I, s + I ∈ R/I.

(r + I)((a + IA) + (b + IA)) = (r + I)((a + b) + IA) = r(a + b) + IA

= (ra + rb) + IA = (ra + IA) + (rb + IA);
((r + I) + (s + I))(a + IA) = ((r + s) + I)(a + IA) = (r + s)a + IA

= (ra + sa) + IA = (ra + IA) + (rs + IA);
(r + I)((s + I)(a + IA)) = (r + I)(sa + IA) = r(sa) + IA = (rs)a + IA

= (rs + I)(a + IA).

Furthermore, if R is a unital ring, and A a unital R-module, then

(1 + I)(a + IA) = (1a) + IA = a + IA

so A/IA is a unital R/I-module. ¤

IV.1.4 Unitary Cyclic Modules.

Let R be a unital ring. Every unitary cyclic R-module is isomorphic to an R-
module of the form R/J for some left ideal J in R. Hint(1/5): As such a mod-

ule by definition is of the form
Ra, construct an R-linear map
onto R → Ra.

Proof: Every unitary cyclic R-module is of the form Ra for some a in the module
by its definition. Define f : R → Ra by f(r) = ra. f is well-defined since Ra is
an R-module and thus has well-defined scalar multiplication. Take r, s from R;
f(r + s) = (r + s)a = ra+ sa = f(r)+ f(s), and f(rs) = (rs)a = r(sa) = rf(s).
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Therefore f is a linear mapping so R/Ker f ∼= Ra as modules. Clearly Ker f
is a normal subgroup of R. Notice also given r ∈ R and s ∈ Ker f it follows
f(rs) = rf(s) = r0 = 0 thus rs ∈ Ker f so Ker f is a left ideal of R. ¤

IV.1.5 Schur’s Lemma.

A non-zero unitary R-module A is simple if its only submodules are 0 and A.Hint(2/5): For the first part
proceed by contradiction. In
the second consider what are
the possible kernels of any en-
domorphism.

(a) Every simple module is cyclic.

(b) If A is simple each endomorphism is either the zero map or an automor-
phism. [Schur’s Lemma.]

Refer to Exercise-IV.1.
Proof:

• Suppose A is not cyclic so that is has a set X which generates A. A is
non-zero so X is non-empty. Choose a from X and not Ra is clearly a
submodule of A since A is a unitary module. Also Ra 6= A or otherwise
A would be cyclic. Since A is assumed simple it follows therefore Ra = 0
for all generators a ∈ X. Therefore X generates no more than 0 and thus
A is zero which is a contradiction. Therefore A is cyclic.

• Take A to be simple and let f : A → A be an arbitrary endomorphism
of A. Clearly f(A) is a submodule of A and so f(A) = 0 or f(A) =
A. If f(A) = 0 then f is the zero map so the hypothesis is verified.
Suppose then that f is not the zero map and thus f(A) = A. Thus f is
an epimorphism. But also note that the kernel of f is also a submodule
of A and therefore Ker f = 0 or A. Thus Im f ∼= A/0 ∼= A or Im f ∼=
A/A ∼= 0. The last case was assumed to be false thus Im f ∼= A/0 and
so Ker f = 0 so f is also a monomorphism. In the category of modules a
mapping that is monic and epic is an isomorphism, refer to Exercise-IV.1.

¤

IV.1.6 Finitely Generated Modules.

A finitely generated R-module need not be finitely generated as an abelian
group. Refer to Exercise-II.1.Hint(3/5): Consider the ra-

tional numbers as a left reg-
ular module (module over it-
self).

Example: As Q is a ring we consider it as a module over itself, denoted as QQ.
This left regular module is unital as Q contains a 1 which clearly is respected in
the left regular action. Thus QQ = Q · 1 so it is a cyclic module and thus finitely
generated. However Q is not finitely generated as a Z-modules, that is as an
abelian group. ¤

IV.1.7 Hom and Endomorphisms.

Take A and B to be R-modules and the set HomR(A,B) the collection of all
R-linear maps from A to B.Hint(1/5): Take advantage

of Exercise-I.1 in part (a). The
rest requires axiomatic verifi-
cation.

(a) HomR(A,B) is an abelian group with f + g given on a ∈ A by (f + g)(a) =
f(a) + g(a) ∈ B. The identity element is the zero map.

(b) HomR(A,A) is a ring with identity, where multiplication is composition of
functions. HomR(A,A) is called the endomorphism ring of A.
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(c) A is a unital left HomR(A,A)-module with fa defined as fa = f(a) where
a ∈ A, and f ∈ HomR(A, A).

Proof: From Exercise-I.1 we know M(A,B), the set of all maps from A to
B is an abelian group under pointwise addition since B is an abelian group.
Thus we need only show HomR(A,B) is a subgroup. Given two R-linear maps
f, g ∈ HomR(A,B) and s, t ∈ A r ∈ R, it follows:

(f−g)(rs+t) = f(rs+t)−g(rs+t) = rf(s)+f(t)−rg(s)−g(t) = r(f−g)(s)+(f−g)(t).

Thus f−g is R-linear so HomR(A,B) is closed to sums and inverse. Moreover,
the trivial map x 7→ 0 is in HomR(A, B) so HomR(A,B) is non-empty and so it
is a subgroup of M(A,B), and thus an abelian group.

Now consider multiplication: take f, g ∈ HomR(A,A). As f, g : A → A, their
composition is always defined on either the right or left. Moreover,

(f◦g)(rs+t) = f(g(rs+t)) = f(rg(s)+g(t)) = rf(g(s))+f(g(t)) = r(f◦g)(s)+(f◦g)(t),

proving multiplication is well-defined as f ◦ g is R-linear. Since composition of
functions is associative, so is our multiplication. In general the multiplication
is non-commutative; however, we do have an identity, simply the identity map
which is trivially R-linear and unital.

Finally, define f · s = f(s). The following results follow:

f · (s + t) = f(s + t) = f(s) + f(t) = f · s + f · t;
(f + g) · s = (f + g)(s) = f(s) + g(s) = f · s + g · s;
(f ◦ g) · s = (f ◦ g)(s) = f(g(s)) = f · (g · s);

1A · s = 1A(s) = s.

Thus, A is a unital HomR(A,A)-module. ¤

IV.1.8 Module Products and Sums.

Let {fi : Vi → Wi | i ∈ I} be a family of R-linear maps between R-modules Vi

and Wi. Define
f =

∏

i∈I

fi :
∏

i∈I

Vi →
∏

i∈I

Wi

so that f({ai : i ∈ I}) = {fi(ai) : i ∈ I}. Hint(3/5): Observe a princi-
ple advantage of modules is
that every submodule is al-
ready a normal subgroup and
so the quotients are all well-
defined. Make use of this and
the first isomorphism theorem
for modules. Make sure not
to assume the pre-image of⊕

i∈I Wi is
⊕

i∈I Vi for the fi-
nal part.

Prove f is a homomorphism of groups where:

f

(⊕

i∈I

Vi

)
≤

⊕

i∈I

Wi,Ker f =
∏

i∈I

Ker fi, and Im f =
∏

i∈I

Im fi.

Conclude that f is monic if and only if each fi is monic, and f is epic if and
only if each fi is epic.1

Suppose {Yi : i ∈ I} is a family of submodules, Yi ≤ Gi for each i ∈ I.
Show:

• ∏
i∈I Yi is a submodule of

∏
i∈I Vi and

∏

i∈I

Vi/
∏

i∈I

Yi
∼=

∏

i∈I

Vi/Yi.

1Notice the first conclussion allows us to say f can be restricted to a map of direct sums.
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• ⊕
i∈I Yi is a submodule of

⊕
i∈I Vi with

⊕

i∈I

Vi/
⊕

i∈I

Yi
∼=

⊕

i∈I

Vi/Yi.

Proof: To begin with the map f is well-defined as it is simply the set-thoeretic
map induced by the universal property for cartesian products of sets (Introduc-
tion, Theorem-5.2.) We must no verify f is R-linear.

Take r ∈ R, and {ai : i ∈ I}, {bi : i ∈ I} in
∏

i∈I Vi.

f(r{ai : i ∈ I}+ {bi : i ∈ I}) = f({rai + bi : i ∈ I})
= {fi(rai + bi) : i ∈ I}
= {rfi(ai) + fi(bi) : i ∈ I}
= r{fi(ai) : i ∈ I}+ {fi(bi) : i ∈ I}
= rf({ai : i ∈ I}) + f({bi : i ∈ I}).

Thus f is R-linear.
Given any {ci : i ∈ I} ∈ ⊕

i∈I Vi, it follows all most all ci’s are trivial. Let
I ′ = {i ∈ I : ci 6= 0}, which accordingly must be finite. As f is R-linear, 0
must go to 0, so {fi(ai) : i ∈ I ′} is the largest subfamily of f({ai : i ∈ I})
which can have non-zero entries. As I ′ is finite, this set is also finite, and so
the image of {ai : i ∈ I} is contained in

⊕
i∈I Wi.

Given f({ai : i ∈ I}) = {0 : i ∈ I} it follows from the definition that
fi(ai) = 0 for each i ∈ I, and visa-versa. Thus if and only if ai ∈ Ker fi for
each i ∈ I. Hence Ker f =

∏
i∈I Ker fi. Once again,

{bi : i ∈ I} = f({ai : i ∈ I}) = {fi(ai) : i ∈ I}
so bi = fi(ai) for each i ∈ I. Hence, Im f ≤ ∏

i∈I Im fi. Moreover, for each
{bi : i ∈ I} ∈ ∏

i∈I Im fi, we have the existance of some ai ∈ Vi for each fi

such that f(ai) = bi and so indeed f({ai : i ∈ I}) = {bi : i ∈ I} proving
Im f ≥ ∏

i∈I Im fi, and so in fact they are equal.
Also notice if f is restricted to

⊕
i∈I Vi, then

Ker f |L
i∈I Vi

= Ker f ∩
⊕

i∈I

Vi =
∏

i∈I

Ker fi ∩
⊕

i∈I

Vi =
⊕

i∈I

Ker fi.

It is clear that Im f |L
i∈I Vi

≤ ⊕
i∈I Im fi; however, it is incorrect to as-

sume the entire pre-image of
⊕

i∈I Im fi lies in
⊕

i∈I Vi. So instead, take
any {bi : i ∈ I} in

⊕
i∈I Im fi. As this sequence has finite carrier, say

{bi : i ∈ I ′} is the set of all non-zero elements (finiteness guaranteed), then
there exist ai ∈ Vi for each i ∈ I ′ such that fi(ai) = bi as each fi is surjective
on its image. Thus the elements {ai : i ∈ I ′} ∪ {0 : i ∈ I\I ′} is an element
in

⊕
i∈I Vi whose image is {bi : i ∈ I}. Hence Im f |L

i∈I Vi
=

⊕
i∈I Im fi.

Modules are abelian groups so all submodules are normal so their quotients
are well-defined. They also come equiped with a natural projection map πi :
Si → Si/Ti and the rest goes by the our recent work.

−−−→

f

↪−−−−−→

ιi

−−−−−−−−→

ι′iπi

↪−−−−→

ι′i

−−−−−→

πi

∏

i∈I

Si

∏

i∈I

Si/Ti

Si Si/Ti
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where f =
∏

i∈I ι′iπi is now the induced map from above. 2 The map f is
clearly surjective from our work above – each πi is surjective; moreover its
kernel is precisely

∏
i∈I Ti, so by the first isomorphism theorem:

∏

i∈I

Si/
∏

i∈I

Ti
∼=

∏

i∈I

Si/Ti.

With direct sums the work is the same. 3 ¤

IV.1.9 Idempotent and Splitting Maps.

If f : A → A is a module homomorphism such that ff = f then A = Ker f ⊕
Im f .
Proof: Consider the canonical exact sequence determined by f :

−−−−−→ ↪−−−−−→ −−−−−−→→←−−−−−−↩

f

f

−−−−−−→

0 Ker f A Im f 0.

Taking any element y ∈ Im f it follows y = f(x) for some x ∈ A. Now
f(y) = f(f(x)) = f(x) = y since ff = f . Therefore ff |Im f = 1Im f which
satisfies the Split Exactness Theorem, so A = Ker f ⊕ Im f . ¤

IV.1.10 Split Decomposition.

If f : A → B and g : B → A are module homomorphisms such that gf = 1A

then B = Im f ⊕Ker g.
Proof: Given gf = 1A certainly x = g(f(x)) for all x ∈ A it follows there exists
a y ∈ B, namely f(x) = y, such that x = g(y) so g is surjective, or epimorphic.
Taking the canonical exact sequence for epimorphisms:

−−−−−−→ ↪−−−−−→ −−−−−−−→→←−−−−−−−↩

g

f

−−−−−−−→

0 Ker g B A 0

it follows the sequence is split exact so B = Ker g ⊕A.
Likewise taking x, y ∈ A it follows f(x) = f(y) implies x = g(f(x)) =

g(f(y)) = y thus f is injective and so it is a monomorphism. Therefore A ∼=
A/0 ∼= Im f so the following sequence is exact:

−−−−−−→ ↪−−−−−→ −−−−−−−→→←−−−−−−−↩

g

f

←−−−−→

f

−−−−−−→

0 Ker g B A Im f 0

or simply

−−−−−−→ ↪−−−−−→ −−−−−−→→←−−−−−↩

fg

ff−1

−−−−−−→

0 Ker g B Im f 0

Apllying the split extension theorem it follows B = Ker g ⊕ Im f . ¤

2Fomally, ιi : si 7→ χsi where χsi (i) = si and χsi (j) = 0 when j 6= i. Likewise,

ι′i : si + Ti 7→ χsi +
Y

i∈I

Ti.

3It is also possible to note here the the direct sum is a coproduct in the category of modules
(unlike the category of groups, refer to Exercise-I.8.) Thus f can be derived from the universal
mapping property; certainly the uniqueness guarantees these two maps coincide.
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IV.1.11 5-Lemma.

Suppose the following diagram commutes in an Algebraic Category.4

−−−−−−→

α1

−−−−−−→

α2

−−−−−−→

α3

−−−−−−→

α4−−−−−−−→

f1

−−−−−−−→

f2

−−−−−−−→

f3

−−−−−−−→

f4

−−−−−−−→

f5

−−−−−−→

β1

−−−−−−→

β1

−−−−−−→

β1

−−−−−−→

β1

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

(i) Show if f1 is monic and f2, f4 epic, then f3 is epic.

(ii) Show if f5 is epic and f2, f4 monic, then f3 is monic.

(iii) Show if f1 is monic, f5 epic, and f2, f4 isomorphic then f3 is isomorphic.

In particular notice if A1
∼= B1

∼= A5
∼= B5

∼= 0, then we obtain the short
5-lemma without the need of the functions f1 and f5.

(i) Proof: Let 1 be the identity of B3 and choose a3 ∈ A3 so that a3 ∈ f−1
3 (1).

If we map a3 to a4 via α3, and then to a point b4 ∈ B4 through f4, it follows

1 = β3f3(a3) = f4α3(a3) = b4

so b4 = 1. Since f4 is injective, this requies the kernel be trivial, so 1 =
a4 = α3(a3). Now by the exactness of the row sequences, a3 must be in
the image of α2 as it is in the kernel of α3. So let a2 ∈ A2 with α2(a2) =
a3. We may send a2 to B2 through f2 to a point b2. Since the diagram
commutes it follows

1 = f3α2(a2) = β2f2(a2) = β2(b2).

Therefore b2 ∈ Ker β2 and so by the exactness of the sequence b2 ∈
Im β1. Choose b1 ∈ B1 so that β1(b1) = b2. With the assumption that f1

is epic, we have know there exists a a1 ∈ A1 such that f1(a1) = b1. Now
we know the diagram commutes so it follows if take a′2 = α1(a1) that

f2(a2) = b2 = β1f1(a1) = f2α1(a1).

With this we now take the added assumption that f2 is injective allows
us to assert since f2(a2) = b = f2(a′2) certianly a2 = a′2. All this allows
us to observe that a1 maps to a2, so by the exactness of the sequence
a2 ∈ Ker α2, and then we notice this means 1 = α2(a2) = a3. Therefore
f3 has a trivial kernel so it is injective as well. ¤

(ii) Proof: Let b3 ∈ B3. We can send b3 to b4 ∈ B4 by β3. Here f4 is
epimorphic so we pull back a value a4 ∈ A4 such that f4(a4) = b4. To be
able to pull back along α3 we must know that a4 is in the kernel of α5. But
this follows from sending b4 along β4 to 1 (recall b4 ∈ Im β3 = Ker β4).
Since f5 is a monomorphism its kernel is trivial so by the commutativity
we have 1 = f5α4(a4) so α4(a4) = 1. This allows us to pull back to an
element a3 ∈ A3 so that α3(a3) = a4 by the exactness of the sequence.
This element projects to another b′3 ∈ B3 via f3.

4 An Algebraic Category will be concrete, with a zero object, morphisms with the ho-
momorphism property, and in which a bijective morphism is an isomorphism – this is all
equivalent to having the Fundamental Homomorphism Theorem
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Now we apply the trickery: consider b′3b
−1
3 ∈ B3. Certainly β3(b′3b

−1
3 ) =

β(b′3)(β(b3))−1. Coupled with

β3(b3) = b4 = f4α3(a3) = β3f3(a3) = β3(b′3) = b4

so β3(b′3b
−1
3 ) = 1. Now by the exactness we have an element b2 ∈ B2

where β2(b2) = b′3b
−1
3 . Using the surjectivity of f3 yields an a2 ∈ A2 where

f2(a2) = b2. Send a2 to an element a′3 ∈ A3 via α2. Now consider a′−1
3 a3 ∈

A3. Certainly the commutativity insures:

f3(a′
−1
3 a−1

3 ) = (f3α2(a2))−1f3(a3) = b3b
′−1
3 b′3 = b3.

Now we have an element that maps to b3 via f3 so f3 is surjective. ¤

(iii) Proof: Follows from (i) and (ii) and the fact that in a Category of algebraic
objects all bijective morphisms are isomorphisms. ¤

IV.1.12 Unitary Separation.

• If R has an identity and A is an R-module then there exists submodules
B and C such that B is unitary, RC = 0, and A = B ⊕ C.

• Let A1 be another R-module with A1 = B1 ⊕ C1 with B1 unitary and
RC1 = 0. If f : A → A1 then f(B) ≤ B1 and f(C) ≤ C1.

• If f is an epimorphism(or isomorphism) then so is f |B : B → B1 and
f |C : C → C1.

See Exercise-?? for the extention of these properties to arbitrary modules.
Proof:

• Let B = {1a | a ∈ A} and C = {a ∈ A | 1a = 0}. Thus C is clearly the
kernel of the linear map f : A → B defined by a 7→ 1a. Also f is seen
as surjective since it matches the definition of B. Therefore the following
sequence is exact:

−−−−−−−→ ↪−−−−−−−→ −−−−−−−→→←−−−−−−−↩

f

g

−−−−−−−→

0 C A B 0.

Adding the inclusion map g : B → A it follows f(g(b)) = 1b. If B is
unitary then clearly fg = 1B and so the sequence is split exact leaving
A = B ⊕ C.

Take an element a ∈ A and consider a − 1a. f(a − 1a) = 1(a − 1a) =
1a− 1(1a) = 1a− (11)a = 1a− 1a = 0 therefore a− 1a ∈ C for all a ∈ A.
Therefore 0 = f(a − 1a) = f(a) − 1f(a) so f(a) = 1f(a). Since f is
surjective this forces b = 1b for all b ∈ B so B is unitary.

Finally note ra = (r1)a = r(1a) = r0 = 0 for all a ∈ C and r ∈ R so
RC = 0.

• Now take f : A → A1 as described. Notice for any element (b1, c1) from
B1 ⊕ C1 it follows 1(b1, c1) = (1b1, 1c1) = (b1, 0) so it is unitary if and only
if c1 = 0. Thus since B is unitary it follows for all b ∈ B, f(b) = f(1b) =
1f(b) thus f(B) ≤ B1 since B1 contains all unitary elements.

In similar fashion 1(b1, c1) = (0, 0) if and only if b1 = 0 so given c ∈ C,
0 = f(0) = f(1c) = 1f(c) so the image under C lands in C1 as required.
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• Using the same f suppose the map is an epimorphism, or even an iso-
morphism. This sets up the following commutative diagram:

−−−−−−−→ −−−−−→→←−−−−−↩

πC

ιC

−−−−−→→←−−−−−↩

πB

ιB

−−−−−−−→

−−−−−−−→

f |C

−−−−−−−→→

f

−−−−−−−→

f |B

−−−−−−−→ −−−−→→←−−−−↩

πC

ιC

−−−−→→←−−−−↩

πB

ιB

−−−−−−−→

0 C B ⊕ C B 0

0 C1 B1 ⊕ C1 B1 0.

It was shown f(B) ≤ B1 and f(C) ≤ C1 so the restricted maps are well-
defined. Start with an element b ∈ B1. Chasing b through ιB embeds it
as (b, 0) in B1 ⊕ C1. Since f is an epimorphism it is surjective thus there
exists an element (b, c) ∈ B⊕C such that (b, 0) = f(b, c). Now project this
element to B by πB returning b such that to comply with the commutative
right square f |BπB(b, c) = πBf(b, c) = b. Therefore f |B is surjective so it
is an epimorphism.

Following suit begin with an element c ∈ C1. Send c through ιC to the ele-
ment (0, c). Retract the element through the epimorphism f to an element
(b, c) in B ⊕ C and project this element to C by way of πC . Since the left
square also commutes it follows once again f |CπC(b, c) = πCf(b, c) = c
so f |C is also an epimorphism.

The analog for isomorphism is clear since in such a case (b, c) is equiva-
lent to f(b, c) = (b, c).

¤
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IV.2.1 Quotient Modules.

Let R be a principal ideal domain and A a unitary R-module. Given any prime
element of R – equivalently an irreducible – define pA = {pa | a ∈ A} and
A[p] = {a ∈ A | pa = 0}.

• R/(p) is a field.

• pA and A[p] are submodules of A.

• A/pA is a vector space over R/(p) with (r + (p))(a + pA) = ra + pA.

Refer to Exercise-??3.
Proof:

• Since p is prime and equivalently irreducible given that R is a principal
ideal domain, it follows (p) is a maximal ideal – follows from Theorem
III.3.4. Thus R/(p) is a field by Theorem III.2.20.

• Define the mapping f : A → A by f(x) = px. Since A is an R-module
the map is a well-defined left translation and thus is R-linear – f(x+ y) =
p(x + y) = px + py = f(x) + f(y), f(rx) = p(rx) = (pr)x = (rp)x =
r(p(x)) = rf(x). Clearly the image of f is pA and the kernel is A[p] thus
both are submodules of A.

• Notice (p)A as defined in Exercise-??3 is simply RpA = {rpa = p(ra) =
pa′ | a ∈ A, r ∈ R} = pA. Thus A/pA is an R/(p) module with the action
as defined.

• Let r ≡ r′ (mod p). Then (r + (p))a− (r′ + (p))a = ra− r′a = (r− r′)a =
pa = 0; thus (r + (p))a = (r′ + (p))a so scalar products are well-defined.
A[p] retains its abelian group structure so all that remains to be verified is
that scalars behave correctly.

Given r, s ∈ R and a, b ∈ A[p], (r + (p))(a + b) = r(a + b) = ra + rb =
(r+(p))a+(r+(p))b and ((r+(p))+(s+(p)))a = ((r+s)+(p))a = (r+s)a =
ra + sa = (r + (p))a + (s + (p))a so both distribution laws hold. Finally
(r + (p))((s + (p))a) = r(sa) = (rs)a = (rs + (p))a = ((r + (p))(s + (p)))a
so A[p] is an R/(p) module.

¤

IV.2.2 Non-trivial Automorphisms of Groups.

Every group of order greater than 2 (or simply not isomorphic to 0 or Z/2) has
a non-trivial automoprhism. Refer to Exercise-II.4.11.
Proof: From Exercise-II.4.11 it is known any group with an element of order
greater than 2 has a non-trivial automorphism. Now suppose G is a group in
which every element is an involution – i.e.: an element of order 2. If G = 0 only



124 Modules

one automorphism exists, the identity, and likewise with G ∼= Z/2, so let G have
order greater than 2.

Given a, b ∈ G it follows (ab)2 = e = a2b2. Using cancellation abab = aabb
implies ba = ab so G is abelian and in so being is a canonical Z-module – now
express G additively. Making use of Exercise-IV.2 note that Z is a prinicipal
ideal domain and 2 is a prime in Z. Thus G/2G is a Z/2Zmodule. But moreover
2G = {2a | a ∈ G} = 0 since every element of G is of order 2. Therefore in fact
G is a Z/2Z module.

From here note Z/2Z is a field and thus G is a vector space over Z/2Z and
applying Theorem-IV.2.4 it follows G is a free Z/2Z-module. Therefore there
exists a basis for G. Since |G| > 2 – and G has no element of order 3 – G
has at least 4 elements, and thus a subgroup H isomorphic to Z/2Z ⊕ Z/2Z,
which has a basis isomorphic to {(1, 0), (0, 1)}. By the basis extension theorem
it follows we can pick a basis for G that contains the basis for H and thus this
basis X contains at least two elements e1 and e2.

To create the non-trivial automorphism now we create a basis exchange by
mapping e1 7→ e2 and e2 7→ e1. This map is linear, since it is simply a per-
mutation, and it is non-trivial because e1 6= e2. Therefore G has a non-trivial
automorphism. ¤
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IV.4 Hom and Duality
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IV.6 Modules over a Prinicpal Ideal Domain
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Chapter V

Fields and Galois Theory

V.1 Field Extensions

1 Extension Degrees . . . . . . . . . . . . . . . . . . . . . 131
2 Transcendental Dimension . . . . . . . . . . . . . . . . . 131

V.1.1 Extension Degrees.
Hint(1/5): Use Theorem-
V.1.2 – the analog of La-
grange’s Theorem.

(a) [F : K] = 1 if and only if F = K.

(b) If [F : K] is prime, then there are no intermediate fields between F and K.

(c) If u ∈ F has degree n over K, then n divides [F : K].

(a) Proof: If [F : K] = 1 then F is a one dimensional vector space over K
and thus the span of 1 ∈ F yields K1 = F . But as 1 ∈ K as well, it follows
K = F .

Presuming F = K, there is no question that F is a one dimensional vector
space over K – pick for instance the basis {1}; therefore, [F : K] = 1. ¤

(b) Proof: Let L be a field such that F ≥ L ≥ K. By Theorem-V.1.2 (for
practical purposses, the Theorem of Lagrange) it follows

[F : K] = [F : L][L : K]

So by Euclid’s Lemma p|[F : L] or p|[L : K], and thus either [L : K] = 1
or repsectively [F : L] = 1 in which case from part (a) it follows L = K or
L = F . ¤

(c) Proof: As u has degree n over K we mean [K(u) : K] = n. Since
{u},K ⊆ F , it follows K(u) ≤ F , so now

[F : K] = [F : K(u)][K(u) : K] = [F : K(u)]n.

Hence, n divides [F : K]. ¤
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V.1.2 Transcendental Dimension.
Hint(1/5): Transcendental
extensions are equivalent to
the quotient field of all poly-
nomials – Theorem-V.1.5.

Give an example of a finitely generated field extension which is not finite di-
mensional. [Hint: think transcendental.]
Example: Consider Q(π)/Q. As π is transcendental over Q it is not a root
of any polynomial over Q. Thus the degree of the extension is infinite. In
particular, as Q(π) ∼= Q(x) we may borrow a basis of Q(x)/Q:

{1, x, x2, . . . }
which becomes

{1, π, π2, . . . , }
in Q(π)/Q. ¤
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V.3 Splitting Fields, Algebraic Closure and Nor-
mality
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V.5 Finite Fields
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V.7 Cyclic Extensions
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V.9 Radical Extensions



Chapter VI

The Structure of Fields
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Linear Algebra
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Chapter VIII

Commutative Rings and
Modules
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The Structure of Rings
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Chapter X

Categories

X.1 Functors and Natural Transformations

1 Example Functors . . . . . . . . . . . . . . . . . . . . . . 149
2 Functor Image . . . . . . . . . . . . . . . . . . . . . . . . 151

X.1.1 Example Functors.

Construct functors as follows: Hint(1/5): Make sure to de-
fine the functor on morphisms
as well and to check that both
parts are well-defined.

(a) A covariant functor G → S that assigns to each group the set of all its
subgroups.

(b) A covariant functor R → R that assigns to each ring R the polynomial ring
R[x].

(c) A functor, covariant in both variables M×M → M such that

(A,B) 7→ A⊕B.

(d) A covariant functor G → G that assigns to each group G its commutator
subgroup G′ (Definition-II.7.7).

Example:

(a) Define Sub : G → S as suggested:

Sub(G) = {K ≤ G},

and together with this define the assignment of homomorphisms as restric-
tion, so that:

Sub(f : G → H) : Sub(G) → Sub(H)

by K 7→ f(K) for every K ≤ G. As the subgroups of a group are fixed
the assignment of objects is well-defined. Moreover, the image of a group,
under a group homomorphism, is again a group, so f(K) ∈ Sub(H) and
so the assignment of morphisms is also well-defined. Now we verify the
functorial qualities of Sub.

149
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Take any K ≤ G and notice Sub(1G : G → G)(K) = 1G(K) = K so
Sub(1G) = 1Sub(G) as required. Also consider any two morphisms f : G →
H and g : H → K. If we take any L ≤ G we see

Sub(g ◦ f)(L) = g ◦ f(L) = g(f(L)) = g(Sub(f)(L)) = (Sub(g) ◦Sub(f))(L)

as expected and required. Therefore Sub is a covariant functor.

(b) Declare Poly : R → R to be Poly(R) = R[x] for each object and for
morphisms define:

Poly(f : R → S) : R[x] → S[x] :
∑

i

aix
i 7→

∑

i

f(ai)xi.

As any ring can be used for coefficients of polynomials the object assign-
ment is benign and likewise replacing coefficients in a polynomial results in
further polynomials so morphisms are assigned adequitely.

Begin with any p(x) =
∑

i aix
i ∈ R[x] for some ring R and apply Poly(1R :

R → R)(p(x)) which equals

∑

i

1R(ai)xi =
∑

i

aix
i = p(x)

proving that Poly(1R) = 1R[x]. Provided with maps f : R → S and g : S →
T we quickly notice

Poly(g ◦ f)(p(x)) =
∑

i

g(f(ai))xi = Poly(g)

(∑

i

f(ai)xi

)

= (Poly(g) ◦ Poly(f))(p(x)).

Hence Poly is covariant functor.

(c) Take any family of (left) R-modules {Ai : i ∈ I} for a fixed index set I, and
define ⊕({Ai : i ∈ I}) =

⊕
i∈I Ai. Also given the morphisms fi : Ai → Bi

we let ⊕

i∈I

fi :
⊕

i∈I

Ai →
⊕

i∈I

Bi

be given by the universal mapping property for coproducts (fi =
(⊕

i∈I fi

)◦
ιi.) Since the universal mapping property returns a unique map we are
assured this assignment is well-defined. Also clearly any product over I of
modules is again a module. Now we need only verify the functor axioms.

Take any collection of maps fi : Ai → Bi and gi : Bi → Ci indexed of
course by I. Take let g =

⊕
i∈I gi and f =

⊕
i∈I fi. Now observe

(g ◦ f) ◦ ιi = g ◦ ιi ◦ f ◦ ιi = gi ◦ fi

but recall the universal mapping property asserts that this situation has a
unique solution; thus, g ◦ f =

⊕
i∈I gi ◦ fi. Finally,

(⊕

i∈I

1Ai

)
ιi(ai) = ai = 1Ai(ai)

for any ai ∈ Ai; so once again by the uniqueness of the universal mapping
property together with the observation that the identity on

⊕
i∈I Ai also

solves this relation, we see identities are mapped to identities, so the direct
sum is a functor.
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(d) Finally, take Com : G → G to be defined on objects as Com(G) = G′ and
on homomorphisms as restriction:

Com(f : G → H) = f |G′ : G′ → H ′.

The assignment for objects is clearly well-defined. Now take any generator
aba−1b−1 ∈ G′. It follows f(aba−1b−1) = f(a)f(b)f(a)−1f(b)−1 ∈ H ′ so
restriction is indeed well-defined as it is so on generators.

Clearly restricting the identity map to any subgroup produces an identity
map so consider now the composition of homomorphisms: Take f : G → H
and g : H → K. Recall the image of f |G′ lies within H ′ so indeed:

Com(g ◦ f) = (g ◦ f)|G′ = g ◦ f |G′ = g|H′ ◦ f |G′ = Com(g) ◦ Com(f).

Thus Com is a covariant functor.

¤

X.1.2 Functor Image.
Hint(4/5): Do part (b) first
to discover which properties
follow without the assumption
of injectivity, and which may
fail if the assumption is not
given.

(a) If T : C → D is a covariant functor, let Im T consist of the objects {T (C) : C ∈
C} and the morphisms {T (f) : T (C) → T (C ′)|f : C → C ′ a morphism in
C}. Then show that Im T need not be a category.

(b) If the object function of T is injective, then show that Im T is category.

(a) Example: Consider the category of all groups G and the forgetful functor
T to the category of sets S. We may take Z/2 = 〈{0, 1},+〉 where 0 is the
identity, and also Z′/2 = 〈{0, 1},+〉 but here we let 1 be the identity. Now
we notice that T (Z/2) == {0, 1} = T (Z′/2) so T is not injective on objects.
Moreover we now may create a complication: take the homomorphism f :
Z/2 → {0} and g : Z′/2 → {1} also the trivial map. Now

(T (f) ◦ T (g))(0) =

PENDING: I just don’t know!! ¤

(b) Proof: Given that the object function of T is injective it follows T (A) = T (B)
requires A = B. Thus if T (f : A → C) = T (g : B → D) then we have
T (A) = T (B) and T (C) = T (D) so A = B and C = D. Thus as Hom(−,−)
classes are disjoint in C it follows Hom(T (−), T (−)) are disjoint in C′. The
remainder of the work follows without the assumption of injectivity.

Take two morphisms T (f) : T (A) → T (B), and T (g) : T (B) → T (C) in
the image of T for which f : A → B and g : B → C lie in C. Notice we
have a composition defined in C′ but we do not yet know if the image of T
is closed to this composition. Thus consider T (g) ◦ T (f) = T (g ◦ f) by the
assumption that T is a covariant functor. Therefore as g ◦ f is closed in C it
follows T (g) ◦ T (f) is closed in the image of T .

Next, given f : A → B, g : B → C and h : C → D in C we see:

T (h)◦(T (g)◦T (f)) = T (h)◦T (g◦f) = T (h◦(g◦f)) = T ((h◦g)◦f) = T (h◦g)◦T (f) = (T (h)◦T (g))◦T (f)

so in fact the image of T maintains the associative property. Also given that
T (1A) = 1T (A) it follows each element in the image has an identity map. ¤
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Appendix A

Heuristics

A.1 Needle in the Haystack

1

When asked to prove existance, it is not uncommon to see a proof that ma-
jically proclaims some object into existance that some how verifies the proper-
ties required. On the rare occasion that the object is said to exist uniquely, the
subsequent uniqueness proof can sometimes help explain the origins of the
majical element previously declared. Such cases usually follow the pattern of
the following proof.
Example: The category of groups contains a product.

Define
∏

i∈I Gi as the cartesian product of the groups Gi. Furthermore
define multiplication in

∏
i∈I Gi pointwise; it can be shown

∏
i∈I Gi is a group.

Next we verify πi is a homomorphism for each i ∈ I.
Now take T to be any group and {ϕi : T → Gi | i ∈ I} any family of

homomorphisms. Define ϕ : T → ∏
i∈I Gi as ϕ(g) = fg where fg : I → ∪i∈IGi

and fg(i) = ϕi(g) for all i ∈ I. Certainly πiϕ(g) = πi(fg) = ϕi(g) so πiϕ = ϕi

for all i ∈ I.
Suppose ψ : T → ∏

i∈I Gi is another map satisfying πiψ = ϕi for all i ∈ I.
Then πiϕ = πiψ for all i ∈ I.

[PENDING: find a good example] ¤

A.2 Principle of Refinement

Consider Exercise-I.2. Two questions are asked in the exercise: first is the set
{σ ∈ Sn | σ(n) = n} a subgroup of Sn, and next is it isomorphic to Sn−1?
Certain properties for subgroups will simplify the fisrt question and prove it is in
fact a subgroup, however these properties do not resolve the question of wheter
it is isomorphic to some other group. It is however to answer both questions
simultaneously through the use of the Principle of Refinement. Consider the
following theorem.

Theorem A.2.1 (Principle of Refinement) Let A and B be groupoids (i.e.: sets
with a binary operation). Given a mapping f : A → B such that f(ab) =
f(a)f(b) for all a, b ∈ A, define f(A) = {x ∈ B | x = f(a) for some a ∈ A}, it
follows if a1, . . . , am and b1, . . . bn are elements in A with the property that

a1 · · · am = b1 · · · bn,

1Thanks to F.R. Beyl for the title and constant emphasis of this heuristic.
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in the standard n-product, then the sequence of elements f(a1), . . . , f(am) and
f(b1), . . . , f(bn) are in f(A) and have the property

f(a1) · · · f(am) = f(b1) · · · f(bm),

again in the standard n-product.

Proof: Induction. ¤

While the definitions are seemingly trivial, and proved as such, the state-
ment made by this theorem is fundamental: mappings with the homomorphism
property preserve relations. The study of free groups makes it evident that
each group is determined by its relations and thus homorphisms play a large
role in understanding groups. Note we must be careful in how we percieve
a relation to be preserved. It is completely possible for a homomorphism to
preserve a relation by trivializing it; that is by making it equivalent to stating
something obvious such as x = x. The relation remains true but may no longer
be meaningful. The power of the principle lies in the following corollary.

Corollary A.2.2 All the following are true:

• if G is a semigroup then f(G) is also and furthermore f is a homomor-
phism;

• if G is a monoid then so is f(G);

• if G is a group then f(G) is a group.

• if G is an abelian group then f(G) is abelian.

Proof:

• If G is a semigroup then for all a, b, c ∈ G we know a(bc) = (ab)c. By
Theorem-A.2.1 it follows

f(a)(f(b)f(c)) = f(a)f(bc) = f(a(bc)) = f((ab)c) = f(ab)f(c) = (f(a)f(b))f(c).

So it is evident that the binary operation of A is associative with in the
closed subset f(G). Therefore f(G) is a semigroup.

• Suppose G is a monoid, then there exists an element e ∈ G which is
the identity in G with the property ae = a = ea for all a ∈ G. Applying
Theorem-A.2.1 it must be that

f(a)f(e) = f(a) = f(e)f(a).

Therefore f(e) is a two sided identity in f(G) and so it is the identity for
(the now termed) monoid f(G).

• Consider G as a group. Every element a ∈ G has an inverse a−1 and
a−1a = e = aa−1 holds in G so by Theorem-A.2.1 the image has the
relation:

f(a−1)f(a) = f(e) = f(a)f(a−1).

Therefore f(a−1) behaves as the inverse for f(a) and so it is the inverse
leaving f(G) closed to inverses and so it is a group.

• Supposing G is abelian it follows given a, b ∈ G, ab = ba and so once
again by the Principle of Refinement f(a)f(b) = f(b)f(a) in f(G), so
f(G) is abelian.
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¤

Now returning the the exercise, consider constructing a map f : Sn−1 → Sn

that has the homomorphism property, and such that its image f(Sn−1) is simply
the set {σ ∈ Sn | σ(n) = n}. Then by Corollary-A.2.2 it is automatic to state
f(Sn−1) is a group, and thus a subgroup. And in addition we have a candidate
for an isomorphism in hand. In this fashion we need not even know Sn is a
group but only use that it has a well-defined binary operation.

It is important to emphasize that the properties apply to f(G) and not to the
entire codomain. Exercise-I.2 illustrates a situation where a careless general-
ization will fail.

The morphism principle is in fact a general heuristic for categories.

Definition A.2.3 A category D is a refinement of a concrete category C if
given any object A in D and any morphism f ∈ HomC (A,−), then f(A) is
an object in D .

A refinement therefore introduces a restriction on the objects in a category
in such a way as to be complatible with all morphisms. Theorem-A.2.1 can be
stated as follows:

Definition A.2.4 A mapping R from a category C to the set {True, False} is
rule whenever R(C ), defined as the set of all objects in C that evaluate to true,
is a subcategory of C .

A relational rule is a rule on the category of groupoids defined as true when-
ever some relation

∏m
i=1 ai =

∏n
j=1 bj is true for all elements in an object A.

Theorem A.2.5 Every relational rule determines a refinement.

Refinement can of course take place in other categories.
Example: The category of connected spaces is a refinement of the category
of all topologies. This is evident because continuous functions on connnected
spaces have connected images. [PENDING: reference]

However the category of complete spaces is not a refinement of the cate-
gory of topologies. This can be seen because completeness is not a topolog-
ical invariant. For example consider the continuous function ex defined on the
complete domain R and mapping surjectively onto R+. R+ has the cauchy se-
quence (1/n)n∈Z+ which converges outside R+ to 0; thus R+ is not complete
and so eR is not in the subcategory, so the category is not a refinement. ¤
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Appendix B

Syntax and Usage

B.1 Lattices

A lattice is a partially ordered set, L, in which every pair of elements a, b ∈ L,
there exists a greatest lower bound a ⇓ b and a least upper bound a ⇑ b in L.
By definition a ⇓ b and a ⇑ b are unique and imply a ⇓ b = b ⇓ a as well as
a ⇑ b = b ⇑ a; likewise a ⇓ (b ⇓ c) = (a ⇓ b) ⇓ c and a ⇑ (b ⇑ c) = (a ⇑ b) ⇑ c.

A bottom element of a lattice L is an element 0 ∈ L such that given any
x ∈ L, 0 ⇓ x = 0. Analogously a top element is an element 1 ∈ L such that
1 ⇑ x = 1. Naturally these elements are unique since 0 = 0 ⇓ 0′ = 0′ and
1 = 1 ⇑ 1′ = 1′.

A partially ordered set P is complete if every nonempty subset, S, has both
a greatest lower bound ⇓ S and a least upper bound ⇑ S in P ; again both are
unique given S. Every complete set is a lattice. If a lattice is complete then
⇓ S =⇓a∈S a and ⇑ S =⇑a∈S a by definition. If a lattice is finite then it is
complete.

A lattice, L, is distributive if given a, b, c ∈ L, it follows:

a ⇓ (b ⇑ c) = (a ⇓ b) ⇑ (a ⇓ c),
a ⇑ (b ⇓ c) = (a ⇑ b) ⇓ (a ⇑ c).

Suppose L is a lattice with top element 1 and bottom element 0. A lattice,
L, is complemented if for every element a ∈ L, there exists an element ac ∈ L
such that a ⇓ ac = 0 and a ⇑ ac = 1.
Example:

• The set of all subsets of a set is a complete, complemented, distributive
lattice.

• The subgroups of a group form a complete lattice.

• The normal subgroups of a group form a complete distributive lattice.

• The subgroup lattices of Zp, Zpq, Zp ⊕ Zp, and S3, are examples of com-
plemented subgroup lattices; the groups Zm (m 6= pq), Dn and Sn with
n ≥ 4, are all noncomplemented lattices.

• Z2⊕Z2, and S3 are groups which have non-distributive subgroup lattices.

¤

An important observation with greatest lower bounds and least upper bounds
is that they are completely determined by the ordering of the elements in the lat-
tice. This means, although a definition is given for a least upper bound in some
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lattice, this definition is equivalent to any other definition that also matches the
ordering. Therefore for instance the join of subgroups {Hi | i ∈ I} can be de-
fined equivalently as: the intersection of all subgroups which contains all Hi,
the group generated by the union of each Hi, or the least subgroup which con-
tains all Hi. Each definition should be verified as a compatible definition, but
once known each from is interchangable.

A partially ordered set is traditionally depicted as a graph in which nodes
represent elements in the set and edges connect elements virtically so that the
lower element is less than the upper element in the ordering. Since partially
orderings are transitive, generally edges connect elements that are proceed
each other in the ordering and it is assumed any path from bottom to top relates
to any additional orderings.

The subgroup lattice of a group always has a top and bottom element,
namely 0 and G, where 0 is the set generated by the identity and G is the
entire group. Despite having top and bottom elements, maximal and minimal
subgroups of G are generally assumed to be proper subgroups.

Since normality is not transitive two distinct notations are adopted to illus-
trate normality in a subgroup lattice. In the case where H CK, wher H, K ≤ G,
but H is not normal in G (the so called local normal case), the lattice is de-
picted as in the left diagram. However if H is also normal in all of G then the
lattice is depicted as on the right.

−−−

−−−−C−−−−

−−−−−−−−−

G

H

K

0

−−−

−−−CC−−−

−−−CC−−−

G

H

K

0.

Therefore the normal subgroup lattice can be picked out from the full subgroup
lattice by deleting any edges that are not highlighted with CC. Although 0
is always normal in every subgroup, the notation is generally omited unless
context requires an explicit use of this added information.1

When given a specific example group, the length of the edges can be pro-
portioned to illustrate the relative orders of the subgroups. Generally this is
done by making the unit length equal to the greatest common divisor of all in-
dices in the subgroup lattice. 2 Subsequent edges scale by the ratio of their
index to that of this unit index. This is contrary to the typical edge length ideal
for sets which seeks to make edge lengths match the relative cardinalities of
the elements. When proportions are considered, the edges may be labeled
with the index and if any two subgroups are on the same vertical level then
they can be assumed as having the same order.3

Subgroup lattices may also occasionally include horizontal dashed line seg-
ments. These lines connect subgroups that are conjugate, and thus isomor-
phic. Some presentations may label these edges with a conjugating element,
although this rarely includes all possible conjugating elements.

1It is common to add this when identifing a normal sequence, such as a central sequence.
2From the first Sylow Theorem we see unless the group is a p-group, then the unit length

will thus be one, even though no edge in the graph will have length one.
3By the Theorem of Lagrange the order can be calculated by taking the product of all the

indicies from the subgroup 0 to the subgroup in question.
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Example:

−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−

−−−

· · · · · ·

−−−−−−

· · · · · · · · · · · ·

−−−−−−−−−

S3

〈(123)〉

〈(12)〉 〈(13)〉 〈(23)〉

0
−−−−−

−−−−−−−−−

−−−−−−−−−

−−−−−

Z6

〈2〉

〈3〉

0

¤
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Cyclic Elements, 49
Cyclic Free Group, 86
Cyclic Groups of Order 4, 42
Cyclic Images, 41
Cyclic Products, 83

Direct Product, 28, 76
Division Rings have no Left Ideals,

103

Element Orders, 48
Elements of Free Groups, 86
Equivalence, 76
Euler

ϕ, 54
Euler’s Theorem, 54

Example Functors, 149
Extension Degrees, 131

Fermat
little theorem, 54
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Finite Groups, 51
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Finitely Generated, 63
Finitely Generated Modules, 116
Fixed Cardinal Unions, 25
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Free Basis, 80
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Functions

groups of, 28
Functor Image, 151
Functors

commutator, 149
direct sum, 149
image, 151
injective, 151
polynomial, 149
subgroup, 149
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Generators of PruferGroup, 44
Group Coproduct, 77
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coproduct, 77
cosets, 53
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finite subgroups, 39
finitely generated, 63
free, 92
free-abelian groups, 92
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index 2, 60
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infinite cyclic, 52
intersect, 58
join, 44, 55, 58
lattice, 45
normal extension, 65
normal intersections, 60
normal lattice, 64
normality, 53, 61–63
order 2n, 58
order pq, 58
order 4, 55
subgroup conjugation, 62
subgroups, 38, 51, 53, 57, 66,

67
torsion, 52
torsion free, 92
torsion-free, 92

Groups of Functions, 28
Groups of Involutions, 33
Groups of order 2n, 57
Groups of Order 4, 55
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Principle of Refinement, 155–
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Homomorphic Image of Ideals, 104
Homomorphic Pre-image, 66
Homomorphisms, 36

element orders, 48
pre-image, 66
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Infinite Cyclic Groups, 52
Integer Quotients, 65
Integers

subgroups, 39
Internal Product, 84
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Even Groups, 33
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Matrix Form of Dn, 72
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als, 107
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105
Module Products and Sums, 117
Modules

Z/nZ-modules, 113
cyclic, 115
endomorphisms, 116
epimorphisms, 114
finitely generated, 116
fraction field module, 92
Hom, 116
monomorphisms, 114
products, 117
quotients, 115
R/I-Modules, 115
Schur’s Lemma, 116
simple, 116
sums, 117
Torsion modules, 113

Monic/Epic Morphisms of Modules,
113

Monoids
n-Product, 35
examples, 27
Homomorphisms, 36

More Sn Generators, 70

Nilpotent Factor Ring, 104
Non-free, Torsion-free Groups, 92
Non-group Objects, 27
Non-normal Subgroups, 53
Non-Product Groups, 81

Non-trivial Automorphisms of Groups,
123

Normal and Congruence, 60
Normal Cyclic Subgroups, 63
Normal Extension, 65
Normal Intersections, 60
Normal Subgroup Lattice, 64
Normality in Dn, 72
Normality in Q8, 62
Normality in Sn, 61
Normality is Not Transitive, 63

Order
completeness, 12
lattice, 11
lexicographic, 13
linear, 15
successors, 15
well-ordering, 13

Order of Sn, 29
Order of Elements, 47
Ordered Groups, 27
Orders in Abelian Groups, 47
Orders under Homomorphisms, 48

Permutation Conjugates, 69
Permutation Conjugation, 70
Permutations

An simple, 71
conjugates, 70
subgroups index 2, 70

permutations
A4, 71
conjugates, 69
generators, 69, 70
subgroups, 69

Pigeon-Hole Principle, 17
Pointed Sets, 76

products, 78
Prüfer Group

generator, 44
Presentations

Q8, 58
Prime Decomposition of Integer Rings,

105
Prime Ideal in Zero-Divisors, 104
Prime/Maximal Ideals in Z/mZ, 105
Product Decomposition, 81
Product Quotients, 84
Products

decomposition, 81
internal, 84
non-product groups, 81
of cyclics, 83
of quotients, 64
quotients, 84
split extension, 82
weak, 85
weak product, 82
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Products of Pointed Sets, 78
Projections, 15
PruferGroup, 32
PruferGroup Structure, 49
PruferQuotients, 68

Quaternion Group Ring vs. Divi-
sion Ring, 101

Quaternion Presentation, 58
Quaternions, 37
Quotient Modules, 123
Quotient Products, 64

Radical Ideal, 102
Rational Subgroups, 31
Rationals

a
b , p - b, 31
a
pi , 31
Prüfer Group, 32
roots of unity, 30

Relations
abelian, 32

relations
commutators, 91

Rings
endomorphism ring, 116
of Integers, 30

Schur’s Lemma, 116
Semi-Lexicographic Order, 14
Semigroups

n-Product, 35
examples, 27
Floops, 28
with cancellation, 34

Set Coproduct, 77
Sets

coproduct, 78
Simple

modules, 116
Split Decomposition, 119
Split Extension, 81
Subgroup Lattices, 45
Subgroups, 38
Subgroups and Homomorphisms, 40
Subgroups and the Complex, 57
Subgroups of Sn, 39
Successors, 15

The “Idealizer”, 103
The Annihilator Ideal, 103
The Little Radical Ideal, 102
Torsion Subgroup, 51
Transcendental Dimension, 131

Unions of Finite Sets, 25
Unique Subgroups Are Normal, 62
Unitary Cyclic Modules, 115
Unitary Separation, 121

Weak Product, 82, 84
Well-ordering, 13


