
Demand-Driven Clustering in Relational Domains
for Predicting Adverse Drug Events

Jesse Davis jesse.davis@cs.kuleuven.be

KU Leuven, Celestijnenlaan 200a, Heverlee 3001, Belgium

Vı́tor Santos Costa vsc@dcc.fc.up.pt

CRACS INESC-TEC and FCUP Universidade do Porto, Rua do Campo Alegre, 4169-007 PORTO, Portugal

Peggy Peissig, Michael Caldwell {peissig.peggy,caldwell.michael}@marshfieldclinic.org

Marshfield Clinic, 1000 N Oak Ave, Marshfield, WI 54449 USA

Elizabeth Berg, David Page {berg,page}@biostat.wisc.edu

University of Wisconsin - Madison, 1300 University Avenue, Madison, WI 53706 USA

Abstract

Learning from electronic medical records
(EMR) is challenging due to their relational
nature and the uncertain dependence be-
tween a patient’s past and future health sta-
tus. Statistical relational learning is a natu-
ral fit for analyzing EMRs but is less adept at
handling their inherent latent structure, such
as connections between related medications
or diseases. One way to capture the latent
structure is via a relational clustering of ob-
jects. We propose a novel approach that, in-
stead of pre-clustering the objects, performs
a demand-driven clustering during learning.
We evaluate our algorithm on three real-
world tasks where the goal is to use EMRs
to predict whether a patient will have an ad-
verse reaction to a medication. We find that
our approach is more accurate than perform-
ing no clustering, pre-clustering, and using
expert-constructed medical heterarchies.

1. Introduction

Statistical relational learning (SRL) (Getoor & Taskar,
2007) focuses on developing learning and reasoning for-
malisms that combine the benefits of relational repre-
sentations, such as relational databases or first-order
logic, with those of probabilistic, graphical models for

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

handling uncertainty. SRL is especially applicable to
domains where it is important to incorporate infor-
mation from multiple different relations in a learned
model and explicitly model uncertainty. One emerg-
ing application that meets both criteria is analyzing
electronic medical records (EMR). An EMR is a re-
lational database that stores a patient’s clinical his-
tory: disease diagnoses, procedures, prescriptions, lab
results, etc. Using EMRs it is possible to build models
to address important medical problems such as pre-
dicting which patients are most at risk for having an
adverse response to a certain drug. However, EMRs
pose challenges due to their relational schemas (i.e.,
the database contains separate relational tables for di-
agnoses, prescriptions, labs, etc.), longitudinal nature
(e.g., time of diagnosis may be important), and be-
cause different patients may have dramatically differ-
ent numbers of entries in any given table, such as diag-
noses or vitals. Furthermore, it is important to model
the uncertain, non-deterministic relationships between
patients’ clinical histories and current and future pre-
dictions about their health status.

Latent structure poses a substantial challenge for using
machine learning to analyze EMR data. A patient’s
clinical history records information about specific pre-
scribed medications (e.g., name, dosage, duration) or
specific disease diagnoses. It does not explicitly men-
tion important connections between different medica-
tions or diagnoses, such as which other medications
could be prescribed to treat an illness. This informa-
tion may be necessary to build accurate models. Med-
ical resources provide some relevant information. For
example, the ICD9 diagnoses codes are a tree struc-

Demand-Driven Clustering in Relational Domains for Predicting ADEs

tured hierarchy over a vocabulary of more than 14,000
concepts. Yet, it is impossible for a single, pre-defined
hierarchy to capture all the medically-relevant group-
ings of diseases or medications for a particular predic-
tion task. For example, suppose we are using machine
learning to detect if certain antibiotics carry a risk of
liver damage, which is a known effect. For any one
of these antibiotics, the number of people taking it
may be small enough that the association is too weak
to meet an interestingness threshold, such as the sup-
port threshold in association rule mining. Yet if the
algorithm examines all antibiotics, or all antibiotics
grouped by their mechanism of action, most drugs in
the class do not exhibit the association. Detecting the
assocation with the adverse event requires discovering
the right grouping of antibiotics, and that grouping is
unlikely to appear in existing heterarchies.

Addressing this problem requires automatically de-
tecting which diseases or medicines are informative
for a specific prediction task and grouping them to-
gether. While most state-of-the-art SRL systems are
unable to effectively cope with the challenge of latent
structure, a few approaches address this problem via
a relational clustering of objects and/or relations in a
domain (Kemp et al., 2006; Kok & Domingos, 2007;
2008; Sutskever et al., 2010). Intuitively, objects are
clustered together if they occur in similar contexts
(i.e., participate in the same relations). Some of these
approaches aim at discovering relevant structure in
the data as opposed to addressing a specific predic-
tion task. Furthermore, a top-down, divisive search is
computationally infeasible for complex domains such
as EMRs which contain large numbers of objects (e.g.,
diseases, drugs) (Kemp et al., 2006; Kok & Domingos,
2007). SNE (Kok & Domingos, 2008) is a scalable
pre-clustering approach that searches for latent rela-
tionships among all objects in a domain. Thus it may
miss subtle interactions relevant to the task at hand.

This paper proposes LUCID (Latent Underlying
Concept Invention on-Demand), a novel approach that
automatically discovers clusters of objects in a rela-
tional domain and makes use of the invented clusters
in the final learned model. Rather than ignoring the
target task and simply pre-clustering objects, LUCID
dynamically clusters objects, possibly hierarchically, in
a demand-driven fashion. If it identifies a useful but
low coverage regularity in the data, LUCID tries to
strengthen it by selecting an object in the regularity
and grouping it together with other objects and/or ex-
isting groups to expand its coverage. It evaluates if the
proposed grouping strengthens the regularity and re-
sults in a more accurate learned model. LUCID allows
each object to participate in multiple different group-

ings, as an object may appear in multiple contexts. For
example, a drug could be in different groupings related
to its mechanism, indications, contraindications, etc.

We motivate and evaluate our proposed approach on
the specific task of predicting adverse drug reactions
(ADRs) from EMR data. ADRs are the fourth-leading
cause of death in the United States and represent a ma-
jor risk to health, quality-of-life and the economy. The
pain reliever VioxxTMalone was earning US$2.5 billion
per year before it was found to double the risk of heart
attack and was pulled from the market while other
similar drugs remain on the market. Additionally, ac-
curate predictive models for ADRs are actionable. If a
model is found to be accurate in a prospective trial, it
could be used to avoid giving a drug to those at high-
est risk of an ADR. Using three real-world ADR tasks,
we demonstrate that the proposed approach produces
a more accurate model than using pre-defined medical
hierarchies and several other machine learning based
approaches. Furthermore, our algorithm uncovered la-
tent structure that a doctor with expertise in our tasks
deemed to be interesting and relevant.

2. Background

LUCID dynamically constructs clusters that capture
latent relationships between different objects in a do-
main. It does so in the context of the SRL algorithm
VISTA (Davis et al., 2007), which combines automated
feature construction and model learning into a sin-
gle process. VISTA uses first-order definite clauses,
which can capture relational information, to define (bi-
nary) features. These features then become nodes in
a Bayesian network.

2.1. Datalog

VISTA defines features using the non-recursive Dat-
alog subset of first-order logic.1 The alphabet con-
sists of three types of symbols: constants, variables,
and predicates. Constants (e.g., the drug name
Propranolol), which start with an upper case let-
ter, denote specific objects in the domain. Variable
symbols (e.g., disease), denoted by lower case letters,
range over objects in the domain. Predicate symbols
P/n, where n refers to the arity of the predicate and
n ≥ 0, represent relations among objects. An atom
is P (t1, . . . , tn) where each ti is a constant or vari-
able. A literal is an atom or its negation. A clause
is a disjunction over a finite set of literals. A definite
clause is a clause that contains exactly one positive

1This subset of first-order logic with a closed-world as-
sumption is equivalent to relational algebra/calculus.

Demand-Driven Clustering in Relational Domains for Predicting ADEs

literal. Definite clauses are often written as an impli-
cation B =⇒ H, where B is a conjunction of literals
called the body and H is a single literal called the
head. All variables in a definite clause are assumed to
be universally quantified.

2.2. VISTA

VISTA uses definite clauses to define features for the
statistical model. Each definite clause becomes a bi-
nary feature in the underlying statistical model. The
feature receives a value of one for an example if the
data about the example satisfies (i.e., proves) the
clause and it receives a value of zero otherwise.

VISTA starts by learning a model M over an empty
feature set FS. This corresponds to a model that
predicts the prior probability of the target predicate.
Then it repeatedly searches for new features for a
fixed number of iterations. In each iteration, VISTA
first selects a random seed example and then performs
a general-to-specific, breadth-first search through the
space of candidate clauses. To guide the search pro-
cess, it constructs the bottom clause by finding all
facts that are relevant to the seed example (Muggleton,
1995). VISTA constructs a rule containing just the
target attribute, such as ADR(pid), on the right-hand
side of the implication. This means that the feature
matches all examples. It creates candidate features
by adding literals that appear in the bottom clause to
the left-hand side of the rule, which makes the feature
more specific (i.e., it matches fewer examples). Re-
stricting the candidate literals to those that appear in
the bottom clause helps limit the search space while
guaranteeing that each generated refinement matches
at least one example.

VISTA converts each candidate clause into a feature,
f , and evaluates f by learning a new model (e.g., the
structure of a Bayesian network) that incorporates f .
In principle, any structure learner could be used, but
VISTA typically uses a tree-augmented Naive Bayes
model (Friedman et al., 1997). VISTA evaluates each
f by comparing the generalization ability of the cur-
rent model FS versus a model learned over a feature
set extended with f . VISTA does this by calculating
the area under the precision-recall curve (AUC-PR)
on a tuning set. AUC-PR is used because relational
domains typically have many more negative examples
than positive examples, and the AUC-PR ignores the
potentially large number of true negative examples.2

In each iteration, VISTA adds the feature f
′

to FS

2In principle, VISTA can use any evaluation metric to
evaluate the quality of the model including (conditional)
likelihood, accuracy, ROC analysis, etc.

that results in the largest improvement in the score of
the model. In order to be included in the model, f

′

must improve the score by a certain percentage-based
threshold. This helps control overfitting by pruning
relatively weak features that only improve the model
score slightly. If no feature improves the model’s score,
then it simply proceeds to the next iteration.

3. LUCID

At a high-level, the key innovation of LUCID occurs
when constructing feature definitions. Here, the al-
gorithm has the ability to invent hierarchical clusters
that pertain to a subset of the objects (i.e., constants)
in the domain. Intuitively, constants that appear in
the same grouping share some latent relationship. Dis-
covering and exploiting the latent structure in the fea-
ture definitions provides several benefits. First, it al-
lows for more compact feature definitions. Second, by
aggregating across groups of objects, it helps identify
important features that may not otherwise be deemed
relevant by the learning algorithm.

To illustrate the intuition behind LUCID, we use
a running example about ADRs to the medication
WarfarinTM, which is a blood thinner commonly pre-
scribed to patients at risk of having a stroke. However,
Warfarin is known to increase the risk of internal bleed-
ing for some patients. Consider the following feature
definition:

Drug(pid, date1, Terconazole)∧
Weight(pid, date1, w) ∧ w < 120⇒ ADR(pid) (1)

This rule applies only to those patients who satisfy
all the conditions on the left hand side of rule. Con-
ditioning on whether a patient has been prescribed
Terconazole limits the applicability of this rule. Ter-
conazole is an enzyme inducer, which is a type of
medication known to elevate a patient’s sensitivity
to Warfarin. However, many other drugs in the en-
zyme inducer class (e.g., Rifampicin and Ketocona-
zolegive) are frequently prescribed instead of Tercona-
zole, which makes this feature overly specific. A po-
tentially stronger feature would replace Terconazole
with an invented concept such as enzyme inducer or
Warfarin elevator.

Yet, these concepts are not explicitly encoded in clin-
ical data. By grouping together related objects, LU-
CID captures latent structure and is able to learn more
general features. For example, we could generalize the
previous rule as follows:

Cluster1(did) ∧ Drug(pid, date1, did)∧
Weight(pid, date1, w) ∧ w < 120⇒ ADR(pid) (2)

Demand-Driven Clustering in Relational Domains for Predicting ADEs

The definition for Cluster1, shown in Cluster defi-
nition 3 below, represents latent structure among a
group of medicines. Rule (2) is more general than
Rule (1), as it is true of any patient that has taken any
of the medications assigned to Cluster1. Rule (1) is
more restrictive because it is only true of patients that
have taken Terconazole.

The three key elements of LUCID introduced in the
next subsections are: (i) how to represent latent struc-
ture, (ii) how to learn the latent structure, and (iii)
how the overall algorithm functions.

3.1. Representing Latent Structure

LUCID’s goal is to capture hierarchical latent struc-
ture about specific objects in the domain. Conceptu-
ally, clusterings represent the latent structure. LUCID
introduces one unary predicate, such as Cluster1/1,
for each cluster it invents. The predicate is true of
any object that is assigned to the cluster it represents.
Once the definition has been learned, it can appear
in learned rules such as Rule (2). LUCID can assign
objects to clusters in two ways.

First, LUCID can assign individual objects to a clus-
ter. This captures that specific constants are inter-
changeable in some cases. For example, Terconazole,
Rifampicin and Ketoconazole are all enzyme inducers,
and a doctor could reasonably prescribe any of them.
Thus LUCID could invent a new cluster, generically
called Cluster1, as follows:

Cluster1(Terconazole)

Cluster1(Rifampicin) (3)

Cluster1(Ketoconazole)

These statements simply assign these drugs to
Cluster1. There is no limit on the number of objects
that can be assigned to each invented cluster.

Second, LUCID can reuse previously discovered con-
cepts to represent more high-level, hierarchical struc-
ture. It can do so in the following manner:

Cluster2(Propranolol)

Cluster2(Alpranolol) (4)

Cluster1(x)⇒ Cluster2(x)

Just as before, the first two statements assign spe-
cific drugs to Cluster2. The key step is the third
statement, where all the constants that have been
assigned to Cluster1 are assigned to Cluster2 as
well. Once a proposed grouping has been used in
a feature that has been included in the model, it is
available for future reuse during the learning proce-
dure. Reusing previously discovered concepts allows

the algorithm to automatically explore tradeoffs be-
tween fine-grained grouping (e.g., enzyme inducers)
and more high-level groupings (e.g., Warfarin eleva-
tors) that may be present in the data. Furthermore, it
allows the algorithm to build progressively more com-
plex concepts over time.

3.2. Learning Latent Structure

The key step in the algorithm is discovering the latent
structure. Given a feature definition (e.g., Rule (1))
and a constant to replace with a cluster (e.g., Ter-
conazole), latent structure is learned according to a
two-step process. The first step rewrites a feature def-
inition so that it applies to a set of objects, that is
an invented cluster, instead of a single, specific object.
The second step decides which objects to assign to the
newly invented cluster.

Feature Redefinition LUCID rewrites the feature
definition by replacing the reference to the specific con-
stant with a variable and conjoining an invented latent
structure predicate to the end of the rule, as shown in
Algorithm 1. For example, Rule (1) would be trans-
formed into Rule (2), where Rule (2) has the variable
did instead of the constant Terconazole, and the fea-
ture definition has been extended with the invented
predicate Cluster1(did).

Algorithm 1 RewriteRule(Feature f , Object Const,
Feature Set FS, Data D))

Let B be the body of f
Let H be the head of f
/*Replace Const with newVar in B*/
Substitute(B, Const, newVar)
B

′
= Ci(newVar) ∧B

LearnCluster(B
′

=⇒ H, Const, FS,D)
return: B

′
=⇒ H

Assigning Objects to the Cluster In order to
learn a definition for the invented latent predicate,
such as Cluster1 in Rule (2), LUCID needs to decide
which objects to include in the cluster. LUCID em-
ploys a bottom-up, data-driven approach for assigning
objects to the cluster. The cluster initially contains
a single constant and LUCID greedily adds additional
constants of the same type to it.

LUCID creates the initial cluster by assigning the
replaced constant to it. In the running ex-
ample, this corresponds to following statement:
Cluster1(Terconazole). Next, it tries to identify a
set of candidate constants of the same type that could
be added to the cluster. Ideally, the candidate set

Demand-Driven Clustering in Relational Domains for Predicting ADEs

Algorithm 2 LearnCluster(Feature f , Object Const,
Feature Set FS, Data D)

Ci = {Const}
Cand =ConstNearMiss(f) ∪{Cj | cluster Cj , j < i}
/*Score the extended feature set*/
score =AUCPR(FS ∪ f,D)
repeat

for all Candidates e ∈ Cand do
Ci = Ci ∪ {e}
/*Score expanded cluster definition*/
score =AUCPR(FS ∪ f,D)
if newScore > score then
Cand = Cand \ e
score = newScore

end if
end for

until No addition to Ci improves score

would include each object of the same type as well as
every previously invented cluster about the type. This
is often computationally infeasible due to the large
number of objects. For example, when predicting ad-
verse reactions, the data contains information about
thousands of drugs and diseases. The central challenge
is to identify a small but promising set of candidates to
include in a grouping. LUCID restricts its candidate
set to objects from “near miss” examples. To illustrate
this idea, consider the following two rules:

Weight(pid, date1, w) ∧ w < 120⇒ ADR(pid) (5)

Drug(pid, date1, Terconazole) ∧
Weight(pid, date1, w) ∧ w < 120⇒ ADR(pid) (6)

The second rule, by adding the condition
Drug(pid, date1, Terconazole), applies to fewer
patients. Some patients may match Rule (5), but not
the more specific Rule (6) because they took a similar,
but not identical medication. In a sense, Rule (5)
provides a context where a drug like Terconazole may
be prescribed. Thus, focusing on the medications
prescribed to the set of patients that match Rule (5)
but not Rule (6) can potentially identify which
medications can be prescribed in place of Terconazole.
Only considering objects from “near miss” examples
has two desirable properties. First, it only adds
objects to a cluster that improve a rule’s positive
minus negative coverage score, meaning the addition
is guaranteed to increase recall without harming
precision, at least on the training set. Second, all
objects with this property are considered, giving the
heuristic a completeness property. The candidate set
thus includes (i) all previously invented clusters about
the same type, and (ii) all constants that appear in

examples covered by a rules’ immediate predecessor
(i.e., Rule (5)) but not the rule itself (i.e., Rule (6)).

Given the candidate set, LUCID tries to extend the
definition of the cluster under construction. It adds
each candidate, in turn, to the cluster. The benefit
of the modified cluster is measured by seeing if the
score of the retrained model, which includes the fea-
ture that makes use of the extended cluster definition,
improves. LUCID greedily selects the single constant
that results in the largest improvement in the model’s
score. This procedure iterates until no addition im-
proves the model’s performance or the set of candidate
constants is empty. The end result is a cluster defini-
tion as illustrated by either Cluster definition (3) or
Cluster definition (4).

3.3. Overall Algorithmic Structure

Algorithm 3.3 provides an overview of LUCID. It uses
the same procedure as VISTA to construct an initial
set of candidate features. Next, LUCID considers aug-
menting each feature definition with an extra, invented
predicate by calling the procedure outlined in Subsec-
tion 3.2. This is the key difference with VISTA as this
results in a larger and much more expressive set of can-
didate features. However, due to the large number of
candidate features, it is prohibitively expensive to con-
sider inventing and incorporating a learned cluster into
each feature definition. Therefore, LUCID restricts it-
self to inventing a latent concepts only for features that
meet the following two conditions:

Condition 1: The rule under consideration im-
proves the score of the model. This provides ini-
tial evidence that the rule is useful, but the algo-
rithm may be able to improve its quality by model-
ing latent structure. Discarding rules that initially
exhibit no improvement dramatically improves the
algorithm’s efficiency.

Condition 2: The rule must contain a constant of a
type that the user identified as a candidate for hav-
ing latent structure. This helps reduce the search
space as not all types of constants will exhibit la-
tent structure.

For each candidate feature that meets these two crite-
ria, LUCID attempts to discover latent structure. It
invokes the procedure outlined in Subsection 3.2 and
adds the feature it constructs, which contains an in-
vented latent predicate, to the set of candidate fea-
tures. From the expanded candidate feature set, LU-
CID picks the highest scoring feature fbest and adds it
to the feature set. If fbest contains an invented cluster,

Demand-Driven Clustering in Relational Domains for Predicting ADEs

then that cluster is made available for reuse in subse-
quent iterations. If no feature improves the model’s
score, then LUCID goes to the next iteration. The
procedure terminates after running for a fixed number
of iterations.

Algorithm 3 LUCID(Data D, Maximum Iteration
m)

FS = {∅}
repeat

/*Generate Candidate Features*/
Cand = GenCandidates()
for all (f ∈ Cand) do

if (f meets Cond1 AND Cond2) then
/*Select object to replace with cluster*/
Const ∈ f
f

′
= RewriteRule(f, Const, FS,D)

Cand = Cand ∪ f
′

end if
end for
/*Finds highest scoring rule*/
fbest =FindHighScoreRule(Cand)
FS = FS ∪ fbest

until Reaching iteration m
return: FS

4. Empirical Evaluation

In this section, we evaluate our proposed approach on
three real-world data sets. In all tasks, we are given
patients that take a certain medication and the goal
is to model the patients that have a related ADR. We
compare the following algorithms.

VISTA This is the basic VISTA algorithm (Davis
et al., 2007). It does not have the ability to learn
clusters that capture latent structure.

Expert+VISTA In this setting, we augmented each
data set with hand-crafted hierarchies for both di-
agnoses and medications. For diagnoses, we used all
the levels of the ICD9 hierarchy. For medications,
we use a hierarchy developed by our medical col-
laborators. We then run VISTA on the augmented
data set. Thus, instead of being limited to the spe-
cific disease diagnoses or medications recorded for a
patient, EXPERT+VISTA can learn rules that ex-
ploit information about diseases or medications that
appear higher up in the expert defined hierarchies.

SNE+VISTA This approach uses the SNE sys-
tem (Kok & Domingos, 2008) as a pre-clustering
step to identify latent structure. SNE is an unsu-
pervised algorithm for automatically clustering to-

Table 1. Data Set Characteristics.

Selective
Cox-2 Warfarin ACEi

Pos. examples 160 144 102
Neg. examples 2,134 1,440 1,020
Unique drugs 2,590 2,316 2,044
Unique diagnoses 7,912 8,389 7,286
Drug facts 3,518,467 603,503 335,065
Diagnoses facts 3,653,487 691,591 436,934

gether objects that are related to each other. First,
SNE analyzes the training data and produces a clus-
tering of the objects in the domain. To exploit
SNE’s clusters in VISTA, we create one unary pred-
icate for each clustering that is true of every object
assigned to that cluster. Second, VISTA is run on
the data set which has been augmented with SNE’s
learned clustering. Thus the learned rules can in-
corporate the clusters discovered by SNE.

LUCID This is the approach proposed in this paper.

Expert+LUCID This gives the proposed approach
access to the expert defined hierarchies.

We first describe the data sets we use. Then we present
and discuss our experimental results.

4.1. Task Descriptions

Our data comes from a large multispecialty clinic that
has been using electronic medical records since 1985
and has electronic data back to the early 1960’s. We
have received institutional review board approval to
undertake these studies. For all tasks, we have access
to information about observations (e.g., vital signs,
family history, etc.), lab test results, disease diagnoses
and medications. We only use patient data up to one
week before that patient’s first prescription of the drug
under consideration. This ensures that we are build-
ing predictive models only from data generated before
a patient is prescribed that drug.

Characteristics of each task can be found in Table 1.
We now briefly describe each task. Selective Cox-
2 inhibitors (e.g., VioxxTM) are a class of pain relief
drugs that were found to increase a patients risk of
having a a myocardial infarction (MI) (i.e., a heart
attack). Angiotensin-converting enzyme inhibitors
(ACEi) are a class of drugs commonly prescribed to
treat high blood-pressure and congestive heart failure.
It is known that in some people, ACEi may result in
angioedema (a swelling beneath the skin). Warfarin
is a commonly prescribed blood-thinner that is known

Demand-Driven Clustering in Relational Domains for Predicting ADEs

to increase the risk of internal bleeding for some in-
dividuals. On each task the goal is to distinguish be-
tween patients who take the medicine and have an ad-
verse event (i.e., positive examples) and those who do
not (i.e., the negative examples).

4.2. Methodology and Results

We performed stratified, ten-fold cross-validation for
each task. For SNE, we used the default parameter
settings. We sub-divided the training data and used
five folds for training the model structure and param-
eters and four folds for tuning. We require that a can-
didate feature result in at least a 2% improvement to
the AUC-PR in order to be considered for acceptance.
We set all parameters to be identical for all approaches.
The only difference between VISTA and LUCID based
approaches is that LUCID can introduce latent struc-
ture. Without this ability, the algorithms would con-
struct and evaluate identical candidate feature sets.

Table 2 reports the average AUC-PRs for each of the
tasks. LUCID alone outperforms all the non-LUCID
approaches on all three tasks. In two of the three, the
addition of the ICD9 codes further improves LUCID’s
performance, while in the other one it degrades LU-
CID’s performance. On the Selective Cox-2 and War-
farin domains, LUCID results in relatively large im-
provements in AUC-PR, of 12% and 41%, respectively
when compared to VISTA. On these two domains, LU-
CID improves the AUC-PR by 25% and 23% com-
pared to SNE+VISTA. LUCID offers improvements
of between 2% and 14% compared to using the ex-
pert provided heterarchies. These improvements come
with little run-time cost. Across all three tasks, the
average run time per fold was approximately 1 hour
for VISTA, 8 hours for SNE+VISTA, 1.7 hours for
VISTA+Expert, 1.1 hours for LUCID and 1.6 hours
for LUCID+Expert. SNE+VISTA is slow because
running SNE took between 1 and 16 hours per fold.

There is clearly a benefit to incorporating the latent
information about the relationships between medicines
and between diseases. In particular, it is beneficial to
include the data-driven latent structure and the ex-
pert provided heterarchies. Interestingly, the learned
structure is always more valuable than the expert
heterarchies in terms of building an accurate model.
This indicates that these resources either lack the rel-
evant groupings of terms or their groupings are not at
the right granularity for these prediction tasks. Ex-
pert+VISTA achieves the best non-LUCID based re-
sult on two of three tasks. Combining LUCID with
the expert knowledge is not always useful. The most
likely explanation is that this approach has the largest

Table 2. Average AUC-PR for each approach. The best
results for each task is shown in bold.

Selective
Cox-2 Warfarin ACEi

Expert+LUCID 0.438 0.187 0.302
LUCID 0.424 0.203 0.300
Expert+VISTA 0.416 0.177 0.272
SNE+VISTA 0.339 0.165 0.298
VISTA 0.377 0.143 0.286

search space and it falls into a local optimum. The
utility of pre-clustering prior to learning, represented
by SNE+VISTA, is less clear. This approach improves
on the baseline on two tasks, but it only does better
than the hand-crafted heterarchy on one task. A visual
inspection of SNE’s learned clustering show that it dis-
covers reasonable concepts from a medical perspective.
However, it tends to discover more high-level concepts
that are perhaps less useful to the prediction task at
hand. In constrast, LUCID’s discovery is more task
directed and it can also leverage partial feature defi-
nitions to detect correlations among objects that arise
in the context of a specific rule.

4.3. Learned Groupings

Another important evaluation measure is whether LU-
CID invents interesting and relevant concepts. We pre-
sented several invented clusters to a medical doctor
with expertise in circulatory diseases. We focus our
discussion on structures from the Selective Cox-2 do-
main. The expert noted a cluster containing the drugs
diltiazem, a calcium-channel blocker, and clopidogrel
(PlavixTM), an antiplatelet agent. These two cardiac
drugs are frequently used in acute coronary syndrome,
especially after angioplasty. In terms of diseases, the
expert highlighted a cluster describing cardiac catheter
and coronary angioplasty, which are consistent with
acute coronary syndrome and means that a patient is
at a high risk of having a MI. Another cluster of in-
terest involved cholecystectomy, a procedure that re-
moves the gall blader, as in females the diagnosis of
MI is often confused with gall bladder pain. Finally,
the expert remarked on a cluster containing hearing
loss as a finding that deserves further investigation.

5. Related Work

SRL lies at the intersection of relational learning and
graphical model learning. Thus methods for discov-
ering latent structure build on predicate invention in
relational learning (e.g., (Muggleton & Buntine, 1988))
and latent variable discovery in propositional graphi-

Demand-Driven Clustering in Relational Domains for Predicting ADEs

cal models (e.g., (Elidan et al., 2000)). Our approach
is closely related to Dietterich and Michalski’s (1983)
relational learning work on internal disjunction. This
operation replaces a constant with a disjunction of sev-
eral constants. We go beyond this work by allowing re-
use of an internal disjunction and most importantly, by
explicitly modeling and reasoning about uncertainty in
the data and the invented predicates.

Our work is not the first to combine ideas from la-
tent variable discovery and predicate invention to per-
form cluster-based concept discovery in uncertain, re-
lational domains (Kemp et al., 2006; Kok & Domin-
gos, 2007; 2008; Sutskever et al., 2010; Xu et al., 2006;
Popescul & Ungar, 2004). Popescul and Ungar (2004)
use a pre-processing step that learns clusterings and
then treats cluster membership as an invented feature
during learning. In contrast, LUCID uses the learning
process to guide cluster construction and it also allows
reuse of clusters as part of new clusters. Sutskever et
al. (2010) focus only on binary relations, whereas our
domains have higher arity relations. Empirically, the
SNE system (Kok & Domingos, 2008), which we com-
pare to, outperformed the IRM (Kemp et al., 2006)
and MRC (Kok & Domingos, 2007) on a domain of
similar complexity and size to those we considered.

6. Future Work and Conclusions

We presented LUCID, a novel algorithm that discovers
latent structure through a dynamic, demand-driven
procedure. During learning, it can invent clusters
about objects in the domain and include them in the
learned model. We evaluated LUCID by learning mod-
els from electronic medical record (EMR) data to pre-
dict which patients are most at risk to suffer a given
adverse drug reaction (ADR). On all three tasks we in-
vestigated, LUCID resulted in improved performance
compared to a standard SRL baseline, a pre-clustering
based latent structure discovery algorithm, and using
expert-constructed medical heterarchies. Additionally,
it produced meaningful latent structure. Important
directions for further research include applications to
other ADRs, other tasks in learning from EMRs, and
other types of relational databases.

Acknowledgements

We thank Daniel Lowd, Maurice Bruynooghe and
the reviewers for their helpful feedback. JD is par-
tially supported by the Research Fund K.U.Leuven
(CREA/11/015 and OT/11/051), EU FP7 Marie
Curie Career Integration Grant (#294068) and
FWO-Vlaanderen (G.0356.12). VSC is funded

by ERDF through Programme COMPETE and
by the Portuguese Government through FCT
Foundation for Science and Technology projects
LEAP (PTDC/EIA-CCO/112158/2009) and ADE
(PTDC/EIA-EIA/121686/2010). MC, PP, EB and
DP gratefully acknowledge the support of NIGMS
grant R01GM097618-01.

References

Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., and
Costa, V. Santos. Change of representation for statis-
tical relational learning. In Proc. of the 20th Interna-
tional Joint Conference on Artificial Intelligence, pp.
2719–2726, 2007.

Dietterich, T. G. and Michalski, R. S. A comparative re-
view of selected methods for learning from examples. In
Machine Learning: An Artificial Intelligence Approach,
pp. 41–81. TIOGA Publishing Co., 1983.

Elidan, G., Lotner, N., Friedman, N., and Koller, D. Dis-
covering hidden variables: A structure-based approach.
In Neural Information Processing Systems 13, pp. 479–
485, 2000.

Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian
networks classifiers. Machine Learning, 29:131–163,
1997.

Getoor, L. and Taskar, B. (eds.). An Introduction to Sta-
tistical Relational Learning. MIT Press, 2007.

Kemp, C., Tenenbaum, J., Griffiths, T., Yamada, T., and
Ueda, N. Learning systems of concepts with an infinite
relational model. In Proc. of the 21st National Confer-
ence on Artificial Intelligence, 2006.

Kok, S. and Domingos, P. Statistical predicate invention.
In Proc. of the 24th International Conference on Ma-
chine Learning, pp. 433–440, 2007.

Kok, S. and Domingos, P. Extracting semantic networks
from text via relational clustering. In Proc. of the Eu-
ropean Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 624–639, 2008.

Muggleton, S. Inverse entailment and Progol. New Gener-
ation Computing, 13:245–286, 1995.

Muggleton, S. and Buntine, W. Machine invention of first-
order predicates by inverting resolution. In Proc. of the
5th International Conference on Machine Learning, pp.
339–352, 1988.

Popescul, A. and Ungar, L. Cluster-based concept inven-
tion for statistical relational learning. In Proc. of the
10th ACM International Conference on Knowledge Dis-
covery and Data Mining, pp. 665–670, 2004.

Sutskever, I., Salakhutdinov, R., and Tenenbaum, J. Mod-
elling relational data using Bayesian clustered tensor fac-
torization. In Neural Information Processing Systems 23,
2010.

Xu, Z., Tresp, V., Yu, K., and Kriegel, H-P. Infinite hidden
relational models. In Proc. of the 22nd Conference on
Uncertainty in Artificial Intelligence, 2006.

