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Abstract. This paper presents a case study of a machine-aided knowledge discovery process
within the general area of drug design. Within drug design, the particular problem of phar-
macophore discovery is isolated, and the Inductive Logic Programming (ILP) system PROGOL is
applied to the problem of identifying potential pharmacophores for ACE inhibition. The case
study reported in this paper supports four general lessons for machine learning and knowledge
discovery, as well as more specific lessons for pharmacophore discovery, for Inductive Logic Pro-
gramming, and for ACE inhibition. The general lessons for machine learning and knowledge
discovery are as follows.

1. An initial rediscovery step is a useful tool when approaching a new application domain.

2. General machine learning heuristics may fail to match the details of an application domain, but
it may be possible to successfully apply a heuristic-based algorithm in spite of the mismatch.

3. A complete search for all plausible hypotheses can provide useful information to a user,
although experimentation may be required to choose between competing hypotheses.

4. A declarative knowledge representation facilitates the development and debugging of back-
ground knowledge in collaboration with a domain expert, as well as the communication of
final results.

Keywords: inductive logic programming, pharmacophore, structure-activity prediction

1. Introduction

This paper presents a case study of a machine-aided knowledge discovery process
within the general area of drug design. The case study focuses on three portions
of the knowledge discovery task. The first 1s identification of a part of a larger
task—in this case, drug design—for which machine learning might be useful. The
selected subtask is pharmacophore discovery, which is recognized by chemists as

Please address correspondence to this author.



242

an important problem in its own right. A pharmacophore is a 3-D substructure
of a molecule that is responsible for its medicinal activity. The second portion
of knowledge discovery that we address is the application of an existing machine
learning algorithm to this selected task. Third, this paper considers the interaction
between the users of the machine learning system and the domain expert, viewed
as a client.

Our usage of the term knowledge discovery assumes a slightly stronger definition
than the following (Fayyad et al., 1996).

Knowledge discovery in databases is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in
data.

In particular we assume that the knowledge involved is both declarative rather than
procedural as well as being necessarily comprehensible and insightful to a domain
expert. The latter condition is related to the view of the domain expert as a client
who provides requirements for knowledge representation, much like the notion of
requirement specification within software engineering. Within the present domain,
the requirements that the knowledge should be both declarative and comprehensi-
ble stem from the fact that the knowledge involved should provide 3-dimensional
structural insights to be used by a synthetic chemist involved in devising new drugs.
Such relational knowledge descriptions are known within the drug design litera-
ture as pharmacophores. Successful applications of a machine learning technique
to problems related to pharmacophore discovery have been discussed previously
(Jain et al., 1994a, Jain et al., 1994b). The domain expert (first author) in the
present study suggested a more explicit representation for pharmacophores (Sec-
tion 2.2).

This paper describes a series of experiments providing insights at four different
levels. First, regarding Angiotensin-Converting Enzyme (ACE) inhibition the ex-
periments confirm an earlier proposal, generate an alternative proposal, and suggest
that no other alternatives exist within the constraints provided by the domain ex-
pert. Second, the experiments suggest a general methodology for pharmacophore
discovery using Inductive Logic Programming (ILP). Third, the experiments indi-
cate that ILP can be used successfully to learn 3-dimensional concepts and to deal
naturally with the multiple instance problem (Dietterich et al., 1997) (see Section
2.3). Fourth, the experiments support four lessons regarding knowledge discovery
in general, which follow.

Rediscovery Step: An initial rediscovery step is useful when beginning work in
a new problem domain. It can help build the confidence of a domain expert and
can provide a thorough test of the encoding of domain or background knowledge.
A blindfold rediscovery step, in which the users of the machine learning system
do not know the correct answer in advance, provides a particularly realistic test.

Mismatch of ML Heuristics with Problem Domains: General purpose ma-
chine learning heuristics sometimes do not match particular problem domains.



243

In the experiments reported in the present paper, the minimum description-
length principle conflicts with a domain-specific preference for more complex
pharmacophores.

Complete Search and Automatic Experiment Proposal: Machine learning
systems often return a single hypothesis for a given set of data, even when
other plausible hypotheses are available. The present work illustrates the value
of instead performing a complete search for a set of plausible hypotheses. It
also highlights the need for automatic proposal of experiments to discriminate
between competing plausible hypotheses.

Declarative Knowledge Representation: Using a declarative knowledge rep-
resentation facilitates the development and debugging of background knowledge
in collaboration with a domain expert.

These lessons are discussed in detail in Section 4, together with concomitant rec-
ommendations for research into machine learning and knowledge discovery.

The paper is organized as follows. Section 2 describes in detail the problem of
pharmacophore discovery, as well as describing other work on this problem and
related problems. Section 3 describes the series of experiments regarding ACE
inhibition. Section 4 discusses the contributions of this paper, including general
lessons for research into knowledge discovery and particular lessons for inductive
logic programming, for pharmacophore discovery, and for the study of ACE inhibi-
tion.

2. Background: Domain description and prior work
2.1. Drug design process

Drug molecules work by binding (coming together in close association) to “target
sites” within the body. These sites commonly are protein molecules, either enzymes
or receptors. By interaction with these protein molecules drugs can modulate their
actions.

Typically, the process of drug design begins with the identification of an appropri-
ate target with which drugs could interact to modulate disease. Closely connected
with this process is the identification of a “lead” molecule or molecules. These
molecules may be identified in a number of ways, for example from large scale em-
pirical testing of available chemicals. They will have some activity, i.e., ability to
interact with the target, but may do so only weakly and may possess other unde-
sirable properties, for example metabolic instability. Chemists synthesize and test
related molecules, possibly generating improved leads, until ultimately a molecule
of the desired activity and properties is discovered. This molecule can then begin
the long process of development, including safety and efficacy testing in clinical
trials. If successful—and many are not—it finally will become a marketed product.

Computational techniques are used throughout this process, but rational drug de-
sign has concentrated on the section between the identification of the lead molecule
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Protein

Figure 1. A schematic representation of a drug/protein interaction, illustrating complementar-
ity of shape and three complementary property interactions, one hydrophobic (striped) and two

hydrogen bonds (dotted).

and the entry of a candidate into development. This section of the process focuses
on answering the question, “Why does the lead molecule possess the desired activ-
ity?” The general principles of drug activity are reasonably well understood, but
answering this question for any specific case can be very difficult.

A ligand! will bind with its target if it is complementary to it (see Figure 1).
This complementarity consists of two parts:

Complementarity of shape: This allows interaction between the drug and tar-
get over a large area. From a computational viewpoint, as we shall see below,
shape complementarity is complicated by the fact that most drug molecules are
flexible and thus can adopt a variety of shapes.

Complementarity of properties: The strength of the interaction is determined
by the ability to form a variety of weak interactions, primarily hydrophobic and
electrostatic interactions (hydrogen bonds and interaction between oppositely
charged groups). These interactions are individually weak, but their effects
can sum to a strong overall interaction if they are in sufficient number and
appropriately positioned.

Starting from a lead molecule, how does one develop candidate drugs? In some
cases, the detailed structure of the target binding site is known, and this knowledge
can be used directly to design improved molecules (Whittle and Blundell, 1994).
However, in the majority of cases, this information is unavailable and design must
rely on what can be inferred from the structures of the ligands themselves and their
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biological activities. The approach, therefore, is to try to elucidate this “structure-
activity relationship” (SAR) for the molecules. Analysis of the how the structural
differences of a set of ligands affects their activity can lead to the discovery of an
SAR. This information can be used to suggest new molecules to make, which should
have enhanced activity.

2.2.  Representation of the activity model

2.2.1. QSAR: Advantages and limitations Many methods have been used to rep-
resent the structure-activity relationships of molecules. The first to be developed—
the so-called “traditional” quantitative structure-activity relationship (QSAR) me-
thods—correlate properties calculated from the structures of the molecules with
their activities. These properties can describe aspects of the whole molecule, such
as the partition coefficient, the molecular volume, the number of rings, etc.; in
cases where the molecules share a common core, these properties can describe the
substructures at the positions of variation. Such models have been widely applied,
and there are many examples of successful QSAR analyses (Hansch and Leo, 1995).
While the correlations derived by such techniques can be used in the design of im-
proved compounds, doing so is not always straightforward. Parameters such as
electronic partial charges and connectivity index values are easy to calculate for a
given structure, but it is much harder to design a molecule that will possess these
values. Also, it is not always possible to relate the parameters to the principles
of drug-receptor interaction described above. In addition, because QSAR methods
operate on bulk molecular properties rather than explicit representations of the 3D
structures of molecules, they do not take into account some structural information
that can affect molecular activity. Nevertheless, one advantage of traditional QSAR
methods is that they avoid having to deal with the problem of molecular flexibility,
which we now describe.

Molecules can adopt different shapes (conformations) by torsional rotations about
bonds within the molecule. Molecules rapidly convert from one conformation to an-
other, so that no single conformation can be isolated and tested for a given activity
(e.g., ACE inhibition). Hence in general one does not know a priori which confor-
mation of a molecule is an active conformation. Each conformation is associated
with an energy level, which arises from interactions within the molecule and between
the molecule and its environment. Only low-energy conformations are accessible at
normal temperatures.

Any sample of a given compound contains molecules in a variety of different
conformations. The concentration of a given conformation in a sample is related
by an inverse exponential function to the energy of that conformation, so only
very low-energy conformations appear in significant concentration. Computational
techniques are available for calculating the energy of a given conformation, and
for searching the conformational space to identify the low-energy conformations
(Leach, 1991). Any one of these conformations could be the one which binds to
the target protein. The larger and more flexible the molecule is, the more low-
energy conformations it will have. One of the key problems for the approaches that
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have been adopted to analyze and predict biological activity is how to take this
flexibility into account. Traditional QSAR techniques ignore molecular flexibility
by describing only non-3D properties of molecules—properties that do not vary as
a molecule changes conformation.

2.2.2. 3D QSAR techniques 3D-QSAR methods work within a correlation frame-
work, but use an explicit representation of the molecule. The input is a series of
molecules with varying levels of activity. This method represents shape and electro-
static interactions more directly via a calculated interaction with a “probe” atom
or group at points on a three-dimensional grid which surrounds the molecules. Sta-
tistical methods are then used to identify those parts of the molecule which are
responsible for activity. The analysis can be displayed graphically to aid in the de-
sign of new molecules. The major disadvantage with this method is that, in order
to compare values at the calculated points between molecules, the conformation
of the molecules and a common coordinate frame, or alignment, must be chosen
in advance of the analysis. This is equivalent to deciding the manner in which
the molecules interact with the target. If the molecules contain a large common
structural element this alignment may be straightforward, but this is often not the
case.

The comPass algorithm (Jain et al., 1994a, Jain et al., 1994b) overcomes these
problems by using a more sophisticated representation of molecular shape, neural
network learning methods and adaptation of the alignments. The models produced
can be used to predict the activity of new molecules, and, again, visual represen-
tations of the results can aid compound design. However, the interpretation of
the neural network may not be easy. Furthermore, the human brain has difficulty
in imagining complex three-dimensional shapes, which makes it difficult to design
molecules that are very different structurally from the known examples.

2.2.3. Pharmacophores A very commonly used representation of biological ac-
tivity, and the one used in the present work, 1s the pharmacophore. This is an
abstraction of the molecular structure to the, usually, small number of key fea-
tures which contribute the majority of the activity, together with their geometric
arrangement represented by pairwise distances (see Figure 2). These features re-
late directly to the interactions (hydrophobic, electrostatic, etc.) described above.
In this view, the remainder of the molecule is useful only as scaffold, holding the
pharmacophore groups in the correct spatial positions. Many methods of pharma-
cophore identification have been described in the literature. In the active analogue
approach (Mayer et al., 1987), it is necessary to identify the equivalent pharma-
cophore groups in each molecule in advance. Conformations of each of a series
of active molecules are then sought which place these groups in a common spa-
tial arrangement. The need to identify the groups in advance limits the utility of
this approach. The more general DIsco method (Martin et al., 1993) uses a clique
detection algorithm (Brint and Willett, 1987) to search for common sets of inter-
feature distances within a group of active molecules. Tolerances on the distance
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Figure 2. The pharmacophore definition on the right describes the ligand-protein interaction on
the left. The pharmacophore identifies the key functional interactions (regions are coded as in
Figure 1), and it expresses the geometric relationships between the sites of these interactions as
distances d1, d2, and d3. For example, d1 might be 3.75 Angstroms, d2 might be 4.5 Angstroms,
and d3 might be 5.0 Angstroms.

matches enable the method to use discrete conformations and to model variation
allowed by the pharmacophore. Our experience has been that, although DISCO can
perform well in many cases, there are difficulties in cases where either the number of
compounds and/or the numbers of conformations for each compound is large. The
main problems have been large computation times and large numbers of returned
pharmacophores. This has stimulated our exploration of alternative pharmacophore
discovery methods.

An advantage of the pharmacophore representation is that it expresses biologi-
cal activity in a language that is familiar to chemists within the pharmaceutical
industry. These representations are also readily convertible into search queries of
compound databases. Posing such queries to a database of compounds is an effec-
tive means of identifying additional active molecules (Finn, 1996). Because of these
advantages, we have adopted a data input and output representation that is similar
to DISco. The input to the learning algorithm is a set of conformations for each
molecule in the set. These conformations can be generated by whatever method
is appropriate. The output is a pharmacophore expressed in terms of (1) certain
types of atoms or functional groups in the molecule that are necessary for bind-
ing, e.g., “hydrogen bond acceptor” or “hydrophobic group”, and (2) the distance
relationships between these atoms or groups.

Thus far we have motivated the pharmacophore discovery problem, and we have
described other approaches to this and related problems. The present paper de-
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scribes the first application of ILP to pharmacophore discovery. The following
subsection sets this work in the context of earlier related applications of ILP.

2.3.  Related work using ILP

Pharmacophore discovery can be viewed as a particular case of structure-activity
prediction, the goal of which is to learn to predict the activities of molecules based
on their structures. The earliest technique used for structure-activity prediction
was linear regression, first employed for this task by Hansch and colleagues in 1962
(Hansch et al., 1962). In recent years ILP has been used successfully for structure-
activity prediction, first with a “1-dimensional” feature-value representation similar
to that used with linear regression, and later with a “2-dimensional” chemical struc-
ture representation. The present work on pharmacophore discovery builds on these
earlier applications of ILP by moving to a more complex “3-dimensional” repre-
sentation of molecules. The remainder of this section sets the present work in the
context of the earlier applications of ILP to structure-activity prediction.

2.3.1. Learning with a 1D representation In ILP’s first successful application
to a structure-activity prediction problem (King et al., 1992), the GOLEM program
(Muggleton and Feng, 1990) was used to model the structure-activity relationships
of trimethoprim analogues binding to dihydrofolate reductase. The training data
consisted of 44 trimethoprim analogues and their observed inhibition of Escherichia
coli dihydrofolate reductase. Eleven additional compounds were used as unseen test
data. GOLEM obtained rules that were statistically more accurate on the training
data and on the test data than a previously published linear regression model. We
refer to the representation used in this work, as well as with linear regression, as
a “l-dimensional” representation because an example molecule is represented as
a vector of variables. The variables describe either whole molecule properties or
substituent groups on a common structural backbone. Such a representation was
possible for this problem because all of the molecules shared a common structure.
Figure 3 shows the shared structure, or template, for all the molecules, as well as
one particular instance of the template.

2.3.2.  Learning with a 2D representation In more recent work (King et al., 1996)
the 2D bond-and-atom molecular descriptions of 229 aromatic and heteroaromatic
nitro compounds (Debnath et al., 1991) were given to the ILP system PROGOL.
Such compounds frequently are mutagenic. It is of considerable interest to the
pharmaceutical industry to determine which molecular features result in compounds
having mutagenic activity. The problem of predicting mutagenicity is addressed by
another paper in the present special issue (Lee et al., 1998). The study was confined
to the problem of obtaining structural descriptions that discriminate drugs with
positive mutagenicity from those which have zero or negative mutagenicity. A set
of 8 optimally compact rules were automatically discovered by PROGOL. These rules
suggested 3 previously unknown features leading to mutagenicity. The molecules
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Figure 3. The family of analogues in the first ILP study. A) Template of 2,4-diamino-
5(substituted-benzyl)pyrimidines: R3, R4, and R5 are the three possible substitution positions.
B) Example compound: R3 — —Cl; R4 — —NHy; Rs — —CHs

used in this study could not have been represented easily by a 1D feature-vector
because they were a diverse set with no common structural backbone. Attempts
to force the 2D representation into a set of features resulted in the generation of
examples containing more than a million features each.

2.3.3. Challenges of a 3D Representation ILP has been applied successfully to
structure-activity prediction problems using 1D and 2D representations of molecules.
However, the 3D aspects of molecules (or their stereochemistry) are often crucial
in determining molecular activity. Therefore the feeling of some chemists is that
widespread successful application of ILP or any other machine learning technique
to structure-activity prediction requires a 3D representation. The present paper
reports the first attempt to use a 3D representation within ILP (a preliminary ver-
sion of this work was presented at the Seventh International Workshop on Inductive
Logic Programming (Muggleton et al., 1996)). The move to a 3D representation
within ILP brings two important challenges, which we now summarize.

The first challenge is in choosing how to represent 3D geometric concepts in first-
order logic. In summary, the approach taken in the present work is to represent
geometry via pairwise distances between points. Of course if a hypothesis requires
a precise floating point value for the distance between any two points, then few
if any examples will be labeled positive by that hypothesis. Therefore we allow a
degree of tolerance in the matching of distances. In the present work, the precise
degree of tolerance is suggested by the domain expert, although another option is
to let the learning algorithm itself vary the tolerance levels.
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The second challenge is the multiple instance problem, a general issue first raised
by Lathrop, Dietterich, and Lozano-Perez (Dietterich et al., 1997). They also were
motivated by the context of drug design (their neural network-based system com-
PASs was described earlier in this section), and the problem is probably easiest
to explain in this concrete context. As noted in the domain description earlier in
this section, a molecule can take on a variety of 3D conformations, and it is quite
possible that a molecule with a desired biological activity exhibits that activity in
only one of its conformations. But because molecules rapidly interconvert between
conformations, no single conformation can be isolated and tested. The set of con-
formations of a molecule corresponds to a set of examples, but we do not have
sufficient knowledge to label each individual example as active or inactive—we can
label only the set as a whole. Thus a hypothesis explaining activity should label a
set active just if it predicts that at least one example in the set is active. In general
terms, the multiple instance problem occurs when individual examples cannot be
labeled, but instead sets of examples are labeled, such that a set is labeled positive
if and only if at least one member of the set is positive.

Lathrop, Deitterich, and Lozano-Perez raise the multiple instance problem as a
general machine learning problem, although they do not cite any other real-world
domains where it arises. We can support their claim of its generality by citing at
least one additional domain. In recent work Saith et al. (Saith et al., 1997) used
(C4.5 to learn a decision tree for choosing embryos to return to a mother’s womb after
wn vitro fertilization. Under British law only three embryos can be implanted at one
time, although as many as eight may be available. To maximize the probability of
success, doctors wish to choose the most viable embryos—those most likely to lead
to a healthy pregnancy—and a decision tree for choosing embryos can be learned
from previous cases. But again examples are grouped into sets, this time into sets
of three. A set is labeled positive just if at least one of the embryos in the set
(without our ability to know which one) results in success—parents taking home a
baby—and negative otherwise.

The form of uncertainty embodied in the multiple instance problem did not arise
in earlier ILP applications using a 1D or 2D representation of molecules, because
only whole-molecule properties (e.g., molecular weight) and aspects of the bond-
and-atom molecular structure were represented. A 3D representation provides ad-
ditional information that can be central to molecular activity, yet this additional in-
formation is inherently disjunctive: a molecule can adopt any of several low-energy
conformations. The approach to the multiple instance problem that is taken in the
present work is different from approaches taken in either of the other aforemen-
tioned papers. In the work on COMPASS, an entirely new neural network algorithm
was developed. In the work on n vitro fertilization using decision-tree techniques,
examples within a set were averaged (using mean, median, or mode values of fea-
tures as deemed appropriate) to yield a single example instead. Tt turns out that
a relational representation allows the multiple instance problem to be addressed in
a surprisingly straightforward way, without the need to develop a new learning al-
gorithm tailored to the problem and without the loss of information that can come
from averaging over examples in a set. Section 4.2 describes the general approach,
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building on details given in Section 3.6 for the specific case of pharmacophore dis-
covery.

3. Experimentation

This section describes a sequence of four experiments using the ILP system PRO-
GoL (Muggleton, 1995) to discover a pharmacophore for ACE inhibition. ACE
(Angiotensin-Converting Enzyme) inhibitors are a widely-used form of medica-
tion for hypertension. PROGOL is used in such a way that it returns human-
comprehensible pharmacophore descriptions which also can be visualized. The
techniques used in these experiments appear to be of sufficient generality to ap-
ply to other problems of pharmacophore discovery. We begin this section with an
overview of PROGOL—providing only the level of detail needed to understand the
experiments—and an overview of the sequence of experiments.

3.1. PROGOL

Because PROGOL 1s an ILP system, it learns first-order definite clause theories,
or logic programs.?
negative examples of a target concept, as well as a background theory, all in Horn
clause form. An example is redundant if it is positive and is already provable from

PROGOL takes as input positive examples and (if available)

the background theory, and an example is contradictory if it is negative and is
provable from the background theory. PROGOL removes any redundant examples
and expects the user to remove contradictory examples. In addition to examples and
a background theory, PROGOL takes as input a description of the hypothesis space,
in the form of a specification of the kinds of clauses that are acceptable. In learning
a single clause, PROGOL performs a complete search of the hypothesis space, using
pruning similar to that used in Ax (Nilsson, 1980), to find a clause ¢ that maximizes
a compression function. The compression function is f(¢) = P(¢) — N(e) — L(c),
where P(c) is the number of positive examples that can be proven by the clause ¢
taken together with the background theory, N (¢) is the number of negative examples
that can be proven in the same way, and L(c) is the size (number of literals) of c.
In addition, the user may specify a maximum acceptable value of N(¢) (such as 0,
in a noise-free case), which PRoGOL will respect.

PROGOL takes a greedy set cover approach to learning multiple-clause theories.
Nevertheless, this issue is of little consequence for the present paper because we
adopt a one-clause representation of pharmacophores, described later in this section.
A multiple-clause theory for ACE inhibition therefore would represent a disjunction
of pharmacophores, such that a molecule is an ACE inhibitor just if it exhibits
at least one of the pharmacophores. A disjunction of pharmacophores suggests
multiple binding sites, such that binding to any of the sites produces the desired
biological activity. Such a multiple-clause theory is not desired for ACE inhibition
or for most pharmacophore discovery problems.

PROGOL’s search is a refinement graph search (Shapiro, 1983), the details of which
are beyond the scope of this paper. Nevertheless, two further aspects of PROGOL’s
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operation are important for this paper. Rather than providing a technical discussion
of these aspects (Muggleton, 1995), we provide a high-level description together
with a discussion of their significance for the problem of pharmacophore discovery.
In this discussion we consider single-clause learning only.

During learning, PROGOL focuses on a single positive example and constructs
a “bottom” clause containing everything, subject to language constraints, that is
true of that positive example according to the background theory. For theoretical
reasons (Muggleton, 1995), the bottom clause can be used to direct PROGOL’s search
without sacrificing completeness. For the problem of pharmacophore discovery, the
bottom clause effectively identifies all the potential pharmacophoric points in the
first active molecule, and also records the distance between each pair of these points.
The search then proceeds by beginning with the “empty” pharmacophore (0 points)
and constructing progressively more complex pharmacophores from the points and
distances in the bottom clause. The constructed pharmacophores are tested on
the remaining molecules. This approach of basing a search on a “bottom” clause
gives PROGOL significant efficiency advantages for the problem of pharmacophore
discovery, because it substantially prunes the search space before the search even
begins.

The second aspect of PROGOL that is significant for the problem of pharmacophore
discovery is its complete search. PROGOL 1s guaranteed to find all clauses that max-
imize the compression function. For the problem of pharmacophore identification,
this means PRoGOL will find all potential pharmacophores (given the hypothesis
language and background knowledge provided) that are consistent with the data.
Hence, not only does PROGOL provide a user with potential pharmacophores, but
it also tells the user that no other pharmacophore is possible within the constraints
given.

It was the decision of the domain expert (first author) at Pfizer to use ILP for
pharmacophore discovery since a pharmacophore is most easily described through
the use of 3D relations, which are easily represented using logic programs. We
expect that relational learning systems other than PROGOL could be applied suc-
cessfully in this domain as well. PROGOL was chosen in part simply because it was
developed by some of the present authors and therefore would be easier to modify
if necessary. Nevertheless, PROGOL’s complete search based on a bottom clause
turns out to be particularly well-suited to pharmacophore discovery; this match is
discussed in Sections 4.2 and 4.3.

3.2.  Qverview of the experiments

A pharmacophore was proposed for ACE inhibition eleven years ago by Mayer and
colleagues (Mayer et al., 1987). Earlier modeling studies had investigated the ACE
pharmacophore, but based on a small number of compounds (Hassell et al., 1982,
Andrews et al., 1985). The first experiment described in the present paper was a
blindfold test to see whether PROGOL could rediscover the pharmacophore proposed
by Mayer et al., given their particular assumptions (regarding the active 3D con-
formations and zinc-binding geometry, described in the next subsection). The test
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was a blindfold test in that the knowledge engineers were not told in advance the
proposed pharmacophore.

In most pharmacophore discovery applications, a particular active 3D conforma-
tion for each molecule cannot be assumed, but rather it can be assumed only that for
any active molecule at least one of its low-energy conformations (Section 2.1) is ac-
tive. The second experiment was designed to test whether PROGOL could discover a
new pharmacophore and/or re-discover the original proposed pharmacophore when
provided with multiple low-energy 3D conformations for each molecule. It was not
evident that PROGOL would, or even should, rediscover the original proposed phar-
macophore in such an experiment, because the conformations used by Mayer et al.
are not all energy-minimized, nor are their zinc-binding geometries ideal. In this
experiment PROGOL in fact was unable to identify any pharmacophore common
to all ACE inhibitors. Several possible explanations for this were considered. In
the end, the knowledge engineers found in their encoding of chemical background
knowledge an apparently incorrect assumption they had made. This assumption
appeared to be the reason for failure to find any pharmacophore. This type of
‘failed’ experiment usually is not reported in applications papers. We include the
description of this experiment, as well as the next experiment, because they are
instructive regarding the knowledge engineering issues that often arise in a real
machine learning application.

In the third experiment, PROGOL identified a single pharmacophore, distinct from
the original proposed pharmacophore. Nevertheless, this new pharmacophore was
deemed unreasonable by the domain expert. It is unreasonable because the points
in the pharmacophore are too close to each other and are likely to give rise to
“steric hindrance.” After careful consultation with the domain expert, it was dis-
covered that the assumption in Experiment 2 deemed incorrect by the knowledge
engineers actually was correct, but that another incorrect assumption was encoded
in the background theory. This incorrect assumption was responsible for PROGOL
proposing no reasonable potential pharmacophore.

In the final experiment, with the debugged background theory, PROGOL identi-
fied 28 potential pharmacophores, but many arose from only small perturbations
in the geometries of others. The set of 28 pharmacophores can be condensed into a
pair of distinct proposed pharmacophores for ACE inhibition. One of these phar-
macophores is the same (modulo a small geometric perturbation) as the pharma-
cophore found in the first experiment, thus confirming the proposal of Mayer et al.
(Mayer et al., 1987). The second is an interesting alternative that deserves further
attention. Furthermore, because PROGOL performs a complete search, this result
says that there are no further alternatives to these two pharmacophores, given the
constraints imposed.

3.3. Ezxperiment 1: A blindfold test

The first experiment was a blindfold test of PROGOL’s ability to learn a pharma-
cophore. The knowledge engineers were provided with data and relevant chemical
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information, but they were not told the proposed pharmacophore. This experiment
tested the following hypothesis.

Hypothesis 1: Given the conformations and zinc binding sites proposed by Mayer
and colleagues (Mayer et al., 1987), as well as definitions of hydrogen acceptors,
hydrogen donors, and hydrophobic groups, PROGOL will re-discover the phar-
macophore proposed by Mayer et al.

3.3.1. Data The data used in this experiment consisted of 28 compounds known
to exhibit the activity of ACE inhibition. This data set was precisely the one used
by Mayer et al. Compounds in the set vary in size from 24 atoms to 70 atoms. The
compounds were identified by the names m1, m2, ..., m28. Their activity as ACE
inhibitors was asserted to PROGOL via first-order atomic formulae, or Prolog-style
facts, of the form active(m1), active(m2), ..., active(m28). Note that no negative
examples were used, although negative examples can be incorporated easily if they
are available. The size of this data set is typical of data sets used by computational
chemists.

3.3.2. Background knowledge The background knowledge used in this experi-
ment can be divided into the following three types.

1. compound-specific knowledge
2. general chemical and geometric knowledge
3. constraints on legitimate pharmacophores

Compound-specific knowledge The compound-specific knowledge included the
atom and bond structure of each compound, as well as its 3-dimensional conforma-
tion. This information was represented by first-order atomic formulae, or Prolog-
style facts. A fact of the form

atm(ml,al,0,2,3.43,-3.12,0.05)

asserts that molecule m7 has an atom which we will call af that is an oxygen, is
sp2-hybridized (a detail that turns out to be of no consequence), that is at posi-
tion (3.43,—3.12,0.05) in three-dimensional space, for the given conformation and
orientation of the molecule. The 3D grid is in units of Angstroms. Other atom
types include ¢ for carbon, n for nitrogen, h for hydrogen, s for sulphur, and p for
phosphorus. A fact of the form

bond(mil,a2,a3,2)

asserts that molecule m1 has a bond between atoms a2 and a3, and that bond is a
double bond.

As noted in Section 2.1, molecules can arrange themselves in a number of 3D
conformations. In this experiment, for each molecule the background knowledge
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recorded only the conformation that Mayer and colleagues believed permits binding
(and thus exhibits the activity of ACE inhibition). For later experiments, the
assumption that the Mayer et al. conformation is the active one was removed, and
multiple low-energy conformations were used for each molecule.

General chemical and geometric knowledge Binding into a metalloproteinase
such as ACE often involves formation of a traditional (covalent) bond to a metal
ion. But more generally, binding almost always involves the formation of weaker
hydrogen bonds. Hydrogen bonds are simply the attraction between a hydrogen
atom with a slight positive charge and an atom such as oxygen or nitrogen with a
slight negative charge. A hydrogen atom bears a positive charge if it is covalently
bonded to a more electronegative atom, such as oxygen or nitrogen, that draws
the shared electron pair (constituting the covalent bond) away from the hydrogen
atom; this also has the effect of giving the other atom a partial negative charge.
For example, water has a higher boiling point than substances such as propane or
butane partially because of hydrogen bonds that form between the oxygen atom
of one water molecule and a hydrogen atom of another water molecule, holding
the two molecules together. The hydrogen atom in a hydrogen bond is called a
hydrogen donor, while the other atom is called a hydrogen acceptor.

We can now describe the general chemical knowledge supplied by the domain
expert. The expert noted that hydrogen donors and acceptors are potentially im-
portant for any pharmacophore discovery task, and metal ion sites are potentially
relevant to any task (such as this one) involving a metalloproteinase. Furthermore,
hydrophobic (water repelling) groups such as benzene or alkane chains or rings
are often important for pharmacophore discovery. It was straightforward to en-
code in definite clause form the expert’s definitions for all these potentially relevant
items. In addition, the expert requested that a pharmacophore be expressed as its
points (hydrogen donors, hydrogen acceptors, and zinc sites) and their geometric
arrangement, described by the pairwise distances among them. A molecule is said
to exhibit the pharmacophore if it has atoms or groups that match with each of
the points in the pharmacophore, such that all pairwise distances agree with the
pharmacophore distances to within one Angstrom. Finally, the expert noted that
pharmacophores generally need at least three points to be useful.

Constraints on pharmacophore descriptions Given the requirements of the
domain expert, the following clause would be an acceptable description of a phar-
macophore.

active(X) :- hdonor(X,A), hacc(X,B), zincsite(X,C), dist(X,A,B,3.0,1.0),
dist(X,A,C,4.0,1.0), dist(X,B,C,5.0,1.0)

This clause asserts that a molecule X is active if it has a hydrogen donor A, a
hydrogen acceptor B, and a zincsite C', such that the distance between A and B is
3.0 +/- 1.0 Angstroms, the distance between A and C is 4.0 +/- 1.0 Angstroms,
and the distance between B and C is 5.0 +/- 1.0 Angstroms.

In general, the head of any clause describing a pharmacophore should be ac-
tive(X), while the body should specify the points of the pharmacophore via the
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predicates hdonor, hace, hydrophobic, and zincsite, and should also specify the dis-
tance between each pair of points via the dist predicate. Furthermore, the clause
should specify at least three points for the pharmacophore. These constraints are
specified within PROGOL; the PROGOL input file 1s available from the contact author
on request.

In fact, at the outset of this experiment it was not possible to encode domain-
specific constraints such as these in PROGOL. This experiment motivated a general
change to the PROGOL interface and algorithm. This general change is the ca-
pability to express a declarative bias, a restriction on acceptable hypotheses that
goes beyond the language bias imposed by the representation vocabulary. A user
can now write arbitrary Prolog clauses to specify explicitly which kinds of clauses
within the given vocabulary are or are not acceptable as hypotheses. Already
these general constructs have proven useful in a variety of other applications of
PROGOL as well as the current one. Full details of the mechanism for expressing
declarative bias are beyond the scope of this paper but can be found elsewhere
(Srinivasan and Camacho, 1996).

3.4.  Methodology

Having specified the data and the background knowledge, the methodology for
this blindfold trial was nearly as simple as, “(1) Run PROGOL with the data and
background knowledge given, and (2) compare the result with the proposed phar-
macophore of Mayer et al.” Only one modification was made to this methodology,
which we now motivate. The motivation is applicable to not only PROGOL but any
compression-driven or MDL-like algorithm.

A mismatch exists between PROGOL’s compression heuristic (and compression-
driven search in general) and pharmacophore search. In general, larger pharma-
cophores that are common to a set of active molecules are more interesting than
smaller ones, because large shared structures are less likely to occur by chance. Fur-
thermore, the existence of a large shared structure implies the existence of several
smaller shared structures. For example, if 28 molecules share a four-point phar-
macophore then they share four three-point pharmacophores which can each be
obtained by deleting one point from the four-point pharmacophore. Yet although
the larger pharmacophores are of greater interest, their representations are textu-
ally longer and therefore compression scores them as less interesting. The result is
that PROGOL will never return the larger pharmacophores. This mismatch between
compression and pharmacophore search extends beyond pharmacophore search to
any application domain where textually longer hypotheses are a prior: less likely
to be consistent with random data, that is, less likely to be true by chance.

The mismatch between compression and pharmacophore search was addressed
by the following change to the methodology. PROGOL was run repeatedly, first to
search for three-point pharmacophores, then four-point pharmacophores, etc. In
general with this approach, once a number n is reached such that no n-point phar-
macophore 1s found, the search can be terminated—if no n-point pharmacophore
exists then no (n + 1)-point pharmacophore exists. This approach can be viewed
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as a manual wrapper around PROGOL. A manual wrapper is one of the potential
solutions mentioned in Section 4 when a general machine learning heuristic does
not match a particular problem domain.

3.5. The result

In the experiment PROGOL found four three-point pharmacophores and one four-
point pharmacophore that are common to all 28 ACE inhibitors. The four three-
point pharmacophores are all obtained from the four-point pharmacophore by omit-
ting one point, so the four-point pharmacophore is the most interesting. The largest
potential five-point pharmacophore appears in only 10 of the 28 ACE inhibitors,
this arising from adding one point to the four-point pharmacophore. No other
five-point pharmacophore appears in more than 4 of the 28 molecules.

It is a straightforward matter to translate clauses of a pre-defined form, such
as those representing pharmacophores, into English; PROGOL has the necessary
instructions to do so. Therefore, we present the PROGOL-generated English de-
scription of the four-point pharmacophore here. This four-point pharmacophore
was judged equivalent to the Mayer et al. proposed pharmacophore by the domain
expert.

Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at a site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 +/- 1.0 Angstroms, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 +/- 1.0 Angstroms, and
the distance between C and D is 2.1 +/- 1.0 Angstroms, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 +/- 1.0 Angstroms, and
the distance between C and E is 3.1 +/- 1.0 Angstroms, and
the distance between D and E is 3.8 +/- 1.0 Angstroms.

The ability to generate an English description of the found pharmacophore, in a
form commonly used by chemists, is a significant advantage of this approach. In
addition, this approach makes visualization a relatively simple matter. Because the
pharmacophore is also represented as a logical clause, a logic programming query
can be executed to identify the pharmacophoric points within each molecule. Once
these points are identified, each molecule can be displayed with the instance of the
pharmacophore labeled. Figure 4 shows two of the 28 molecules with the points
of this pharmacophore labeled; notice that the labels correspond to the variable
names in the English description of the pharmacophore.

This experiment confirmed the hypothesis that PROGOL can re-discover the Mayer
et al. pharmacophore given their original assumptions regarding the active confor-
mation and the zinc site. In addition, another result of the experiment was a
thoroughly-tested background theory for use in the further experiments.
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Figure 4. ACE inhibitor numbers 1 (top) and 10 with highlighted 4-point pharmacophore. Molec-
ular structures have been simplified by the removal of hydrogens.
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3.6. Ezperiment 2: Multiple conformations and multiple zinc sites

We have already identified the two shortcomings of the previous blindfold trial
in assessing our approach to pharmacophore discovery. The first shortcoming is
the unrealistic assumption of a single known active conformation for each active
molecule. In a realistic experiment, a set of the lowest-energy conformations should
be used instead, and the only assumption should be that the molecule will exhibit
the desired activity in at least one of these conformations. These low-energy con-
formations can be estimated by a computational chemist using molecular modeling
software. The second shortcoming is the assumption of a single known site for the
zinc ion in ACE relative to the active molecule during binding. In a realistic exper-
iment, a set of possible sites should be used instead. A zinc site is identified by first
finding a functional group within the molecule that is capable of binding to zinc,
and then calculating where the zinc ion should be in geometric relationship to this
group for binding to occur. Sufficient chemical knowledge exists to identify both
the functional groups that can bind to zinc and the geometry of ideal binding. The
experiment we now describe implemented these changes and tested the following
hypothesis.

Hypothesis 2: Given the ten lowest-energy conformations for each ACE inhibitor
(as estimated by a computational chemist using molecular modeling software),
and given potential zinc sites as computed according to general chemistry knowl-
edge, PROGOL will identify at least one pharmacophore for ACE inhibition.

The data for this experiment was the same as for the previous one. Only the back-
ground knowledge changed for this experiment. We now describe this background
knowledge.

3.6.1. The background knowledge Again we divide the background knowledge
into three parts: compound-specific knowledge, general chemical and geometric
knowledge, and constraints on the hypothesis.

Compound-specific knowledge Compound-specific knowledge was encoded in
the same way as for Experiment 1, except that an additional argument was added
to each fact to specify the conformation. The structure of a molecule was repeated
for each conformation, and a given atom of the molecule might have a different
location in each conformation. For example, the following facts give the details of
atom al in conformations c! and c10 of molecule m28. The second argument of
each fact provides the unique conformation identifier.

atom(m28,cl,al,n,am,-0.79,-3.78,4.13).
atom(m28,c10,al,n,am,-1.34,-4.05,0.77).

General chemical and geometric knowledge The additional chemical knowl-
edge used in this experiment concerned zinc binding. The domain expert described
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24 A Zn

R

Figure 5. Ideal geometry for a thiol group binding to zinc. The length of the sulphur—zinc bond is
2.4 Angstroms, and the carbon-sulphur—zinc angle is 97 degrees. The torsion angle is most easily
described by example. A torsion angle of 0 or 180 has zinc in the plane defined by the sulphur,
carbon, and R (the next connected atom in the rest of the molecule); by convention, 0 degrees
is taken to have the zinc and R in the same side (half-plane) of the sulphur—carbon bond. A 90
degree torsion angle has the zinc coming directly out from the page. Thus in the figure the torsion
angle is 180 degrees.

five functional groups that can bind to zinc, four of which appear in the molecules
in the given data set. Functional groups turn out to be surprisingly natural to
represent in definite clause form. Code for these functional groups is available from
the contact author.

Further chemical knowledge from the domain expert specified where the zinc must
be located relative to the functional group. For example, for a thiol group (Figure 5)
the ideal binding geometry locates zinc at 2.4 Angstroms from the sulphur atom to
which it binds, at a 97 degree angle to the C'— S (carbon-sulphur) bond, and at a
torsion angle to the R — C'— S plane of 0 or 180 degrees, plus or minus at most 60
degrees.

In addition to this chemical knowledge, geometric knowledge was encoded to
compute the zinc site. The same code was used to compute the zinc site relative to
each functional group that can bind to zinc. In each case points analogous to R, C|
and S for thiol were used together with ideal bond length, bond angle, and torsion
angle(s) for the given group in order to compute an ideal zinc site. Sites within 2
Angstroms of another atom in the molecule were eliminated, because these would
not be possible due to steric hindrance (crowding).

Constraints on pharmacophore descriptions Given the addition of confor-
mational information, the following is an example of an acceptable clausal repre-
sentation of a pharmacophore.
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), hacc(X,Y,B), zincsite(X,Y,C),
,3.0,1.0), dist(X,Y,A,C,4.0,1.0),
5.0,1.0)

active(X) :- hdonor(X,Y,A
dist(X,Y,A,B
dist(X,Y,B,C

L]

This clause asserts that a molecule X is active if it has a conformation Y, and it
has a hydrogen donor A, a hydrogen acceptor B, and a zincsite C', such that the
distance between A and B within conformation Y is 3.0 4+/- 1.0 Angstroms, the
distance between A and C within conformation Y is 4.0 +/- 1.0 Angstroms, and
the distance between B and C' within conformation Yis 5.0 +/- 1.0 Angstroms.

In general, the same requirements as before were placed on clauses, with one
additional requirement: the conformational variable in the body literals must be
the same throughout the clause. Without this requirement, PROGOL might return
a clause of the following form.

active(X) :- hdonor(X,Y,A), hacc(X,Y,B), zincsite(X,Y,C),
dist(X,Y,A,B,3.0,1.0), dist(X,Z,A,C,4.0,1.0),
dist(X,¥,B,C,5.0,1.0)

Notice that the conformational variables in the last two literals are distinct from
the conformational variable, Y, in the rest of the clause. Such a clause is easier to
satisfy since we need only find some conformation in which the distance between
A and B is roughly 3 Angstroms, some (possibly different) conformation with a
distance of roughly 4 Angstroms between A and C and some (possibly different
again) conformation with a distance of roughly 5 Angstroms between B and C.
Such a clause does not represent a true pharmacophore.

3.6.2. The result The result of the experiment was that no pharmacophore ap-
peared in all 28 ACE inhibitors. Specifically, no pharmacophore appeared in more
than 26 of the ACE inhibitors. This result seemed to indicate that Hypothesis 2
was false and that PROGOL could not successfully meet the challenges of pharma-
cophore prediction with multiple conformations. Nevertheless, before considering
Hypothesis 2 to be disproven, an examination of the possible reasons for this result
was in order. The following are the potential alternative explanations identified by
the authors on first seeing the result.

1. For the two unexplained ACE inhibitors, perhaps additional stereoisomers> were

included in the sample that was tested for activity. Such mixtures are common
because often it is difficult to isolate a stereoisomer.

2. Perhaps some low-energy conformations were omitted for the 2 unexplained

ACE inhibitors.
3. An error may have been made in the background theory.

The first possible explanation was ruled out by the domain expert after a review
of the methodology for testing the 28 compounds for ACE inhibition. The second
possible explanation also was ruled out by the domain expert, for the following rea-
son. While some additional conformations could be added for some of the molecules



262

in the data set, the two unexplained molecules are small and rigid, so that no other
relatively low-energy conformations are possible.

Within the background theory the following assumption had been made by the
knowledge engineers without checking with the domain expert.

Co-reference Assumption A hydrogen acceptor within a pharmacophore can-
not also be the atom that binds to zinc.

The co-reference assumption could have dramatic consequences, because oxygen is
generally a hydrogen acceptor and also can bind to zinc when it appears in one of
two common functional groups—carbonyls and carboxylates. Recognition of the
co-reference assumption led to Experiment 3, which we now describe.

3.7.  FEzrperiment 3

The data and background knowledge for Experiment 3 were the same as for Exper-
iment 2, with the exception that an atom could now be used as both a hydrogen
acceptor and the atom that binds to zinc within a pharmacophore. The result of
this Experiment was that a single four-point pharmacophore was found; it is shown
here.

Molecule A is an ACE inhibitor if for some conformation B:

A contains a hydrogen acceptor C,

A contains a hydrogen acceptor D,

the distance between C and D within conformation B is 3.2 +/- 1.0 Angstroms,
A contains a hydrogen acceptor E,

the distance between C and E within conformation B is 4.0 +/- 1.0 Angstroms,
the distance between D and E within conformation B is 2.2 +/- 1.0 Angstroms,
A can bind to zinc at a site F,

the distance between C and F within conformation B is 3.9 +/- 1.0 Angstroms,
the distance between D and F within conformation B is 2.0 +/- 1.0 Angstroms,
the distance between E and F within conformation B is 3.1 +/- 1.0 Angstroms.

(=]
(=]

Nevertheless, this pharmacophore was judged by the domain expert to be un-
reasonable because the zinc site is too close to the hydrogen acceptors. Further
conversation revealed that the co-reference assumption, although not checked with
the domain expert, actually is sensible. Therefore this assumption was reinstated.

On closer examination, a problem was identified with the definition of thiol. The
definition of thiol initially required that the carbon atom single-bonded to sulphur
must also be bonded to two hydrogen atoms. Such bonding is unnecessary and
the definition was amended accordingly. Both of the unexplained ACE inhibitors
contain thiol groups in which the carbon is not bonded to two hydrogens. This error
was found while sitting with the chemist in front of the computer and together going
through the code defining the functional groups that can bind to zinc. Such a mode
of debugging was facilitated by the declarative nature of the code. This correction
to the background theory lead to Experiment 4.
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3.8. FEzrperiment 4

In Experiment 4, the data and background knowledge were the same as for Experi-
ment 3, except for the changes just described. The result of Experiment 4 was that
28 pharmacophores were found to appear in all 28 ACE inhibitors. These form
two groups that can be represented by one pharmacophore each. The criterion for
grouping is that any pharmacophore in the group can be converted to the represen-
tative pharmacophore by modifying its distances by less than one Angstrom. The
two pharmacophores are as follows.

Molecule A is an ACE inhibitor if for some conformation B:

A contains a hydrogen acceptor C,

A contains a hydrogen acceptor D,

the distance between C and D within conformation B is 3.2 +/- 1.0 Angstroms,
A contains a hydrogen acceptor E,

the distance between C and E within conformation B is 4.0 +/- 1.0 Angstroms,
the distance between D and E within conformation B is 2.2 +/- 1.0 Angstroms,
A can bind to zinc at a site F,

the distance between C and F within conformation B is 5.5 +/- 1.0 Angstroms,
the distance between D and F within conformation B is 7.1 +/- 1.0 Angstroms,
the distance between E and F within conformation B is 8.5 +/- 1.0 Angstroms.

Molecule A is an ACE inhibitor if for some conformation B:

A contains a hydrogen acceptor C,

A contains a hydrogen acceptor D,

the distance between C and D within conformation B is 3.2 +/- 1.0 Angstroms,
A contains a hydrogen acceptor E,

the distance between C and E within conformation B is 4.0 +/- 1.0 Angstroms,
the distance between D and E within conformation B is 2.2 +/- 1.0 Angstroms,
A can bind to zinc at a site F,

the distance between C and F within conformation B is 3.9 +/- 1.0 Angstroms,
the distance between D and F within conformation B is 6.1 +/- 1.0 Angstroms,
the distance between E and F within conformation B is 7.3 +/- 1.0 Angstroms.

The two pharmacophores differ in the position of the zinc site relative to the hy-
drogen acceptors. This result provides three items of information about ACE in-
hibition. First, it confirms the Mayer et al. result. Even though the Mayer et al.
zinc sites do not obey ideal binding geometry and even though some of their con-
formations are not energy-minimized, their result is valid when using ideal binding
geometries and energy-minimized conformations. Second, the result provides an
alternative potential pharmacophore that merits further investigation. A recently
published modeling study of ACE inhibition based on superposition of a small num-
ber of conformationally constrained inhibitors (Bohacek et al., 1996) also identified
two models differing primarily at the zinc site. The models appear similar to ours,
but there is insufficient information in the paper to enable a detailed comparison.
The third item of information the result provides is that these two pharmacophores
are the only ones possible (modulo small perturbations of the distances) given the
assumptions encoded in our background theory.

For machine learning methods that perform a complete search, as PROGOL does,
computational complexity is a particular concern. Indeed the worst-case time com-
plexity for PROGOL on a pharmacophore discovery problem is exponential in the
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size of the target pharmacophore; a worst-case time complexity analysis is available
in an on-line appendix. (In fact, it is straightforward to prove an idealized version
of pharmacophore discovery to be NP-complete, although it is unclear whether the
idealization can be modified to take into account all the relevant constraints from
chemistry and biology.) To be more specific, the time complexity of PROGOL on a
pharmacophore discovery problem involving a target pharmacophore with k& points
is O(n"emp”), where n is the number of potential pharmacophoric points in the
molecule with the fewest such points, ¢ 1s the number of conformations for this
molecule, m is the total number of conformations for all other molecules, and p is
the number of potential pharmacophoric points in the molecule with the most such
points. Nevertheless, in practice PROGOL’s search space often is much smaller than
the worst-case search; this occurs in the present work, where the total run time
of PROGOL in Experiment 4 (the most time-consuming) was only 20.4 minutes on
a Sun SPARC 20. In addition to PROGOL’s search strategy, two decisions helped
keep the runtime low. First, zinc sites and pairwise distances between potential
pharmacophoric points were precomputed. This avoided unnecessary repetition of
costly (though still polynomial-time) computations. Second, three-point pharma-
cophores were first discovered by PROGOL, and these were combined by PROGOL
into four point pharmacophores. It should be noted that this second decision actu-
ally increases the worst-case time complexity, although in practice it yields reduced
computation times.

It is worth noting that large total numbers of molecules and conformations are
not terribly damaging to the PROGOL approach even in the worst case, since the
algorithm’s time complexity is linear in the variable m. Clearly k£ is the most
damaging number, but for many pharmacophore discovery problems a relatively
low value of k can be assumed (pharmacophores of more than four or five points
are rarely found by existing techniques). If & is taken to be a constant (say 3 or
greater), then the most damaging variable in the worst case becomes p, the number
of potential pharmacophoric points in the molecule with the most such points. This
number is particularly high when multiple hypothesized points, such as zinc sites,
must be computed, since this can raise p from a typical value of around 10 or 15 to a
typical value of around 50 or 60. To the extent that conclusions can be drawn from
a worst-case bound, this bound indicates that pharmacophore discovery problems
where hypothesized sites are unnecessary should lead to lower run times than in
the present work.

4. Scientific contributions

The series of experiments described in this paper provide insights at four different
levels. First, regarding Angiotensin-Converting Enzyme (ACE) inhibition the ex-
periments confirm an earlier proposal, provide an alternative proposal, and suggest
that no other alternatives exist within the constraints provided by the domain ex-
pert. Second, the experiments suggest a general methodology for pharmacophore
discovery using Inductive Logic Programming (ILP). Third, the experiments in-
dicate that ILP can be used successfully to learn 3-dimensional concepts and to
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deal naturally with the multiple instance problem (Dietterich et al., 1997) (see Sec-
tion 2.3.3). Fourth, the experiments support four lessons regarding knowledge dis-
covery in general. We now discuss these contributions in further detail in reverse
order, beginning with the most general contributions.

4.1. Lessons and recommendations for knowledge discovery

4.1.1. Lesson 1: Rediscovery step  The first lesson from the experiments reported
in this paper is the value of an initial rediscovery step when beginning work in a new
problem domain. In the present work, Experiment 1 is an attempt to rediscover
a proposed pharmacophore for ACE inhibition, given particular assumptions made
by the original proposers. A rediscovery step is useful for at least two reasons.
First, it builds the confidence of the domain expert. Even if the domain expert
is not skeptical, a successful rediscovery can help to generate further enthusiasm
about potential benefits. Second, a rediscovery step provides a thorough test of
the encoding of domain or background knowledge. Both of the potential benefits
of a rediscovery step can be fully achieved only if it is carried out as a “blindfold
trial,” in which the users of the machine learning algorithm do not know the target
concept. Experiment 1 in the present work was conducted as a blindfold trial. If
a blindfold trial initially is unsuccessful, the failure may be due simply to bugs in
the background knowledge. If so, this will be easier to determine with a test case
where the domain expert knows what the answer should be than in a case of de
novo discovery.

The use of blindfold trials is not original with this work. To our knowledge the
first use of a blindfold trial in knowledge discovery by machine learning occurs
in the work on META-DENDRAL (Buchanan et al., 1972), where the task was to
learn to identify particular organic compounds from within a family of compounds
(e.g., estrogens) given their mass spectrometry readings. Although the authors
do not explicitly state that their trials were blindfold trials, this seems evident
given their discussion. Initial information (background knowledge) was elicited
from experts and provided to META-DENDRAL, and the expert was then asked to
judge the acceptability of the META-DENDRAL results. We suspect there are a
number of other cases where blindfold rediscovery steps have been used, but they
simply do not get discussed explicitly very often (Provost and Aronis, 1996).

Recommendation 1: We recommend further study into the efficacy of blindfold
trials when beginning to apply machine learning to a new application domain. It
is hoped that such study also will lead to recommendations regarding the best
procedure to follow. For example, if the rediscovery step initially is unsuccessful,
how should the researchers proceed? Also, should a new application begin with
two rediscovery tasks, the first of which is not blindfold and is used to develop the
approach, while the second is a blindfold test?
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4.1.2.  Lesson 2: Mismatch between ML heuristics and problem domains General
purpose machine learning heuristics sometimes do not match particular problem
domains. In the present work the MDL principle conflicts with chemists’ intuition
that the most complex pharmacophore common to all active molecules is most likely
to be correct, since it is the least likely to be present due to chance alone. The
following three approaches can be taken when a mismatch occurs between general
heuristics and a particular problem domain.

Wrapper: This is the approach taken in the present work. We have used the
machine learning algorithm in a way that allows us to give preference to more
complex pharmacophores. A wrapper can either be automatic, in the form of
a program that repeatedly calls the machine learning algorithm, or manual, as
in the present work.

Domain-specific Heuristic: An algorithm can be modified to make use of an
alternative, domain-specific heuristic. More generally, machine learning systems
can be built which allow a user to plug in domain-specific heuristics. These
heuristics might modify how the search is done or might simply modify the
scoring of hypotheses. Srinivasan and Camacho describe an ILP algorithm that
minimizes a user-defined cost function (Srinivasan and Camacho, 1997).

New General Heuristic: Work within one or more domains might cause an al-
gorithm designer to see an alternative general-purpose heuristic that is better
suited to a number of domains. For example Muggleton recently has designed
a heuristic that trades coverage of positive examples with specificity, measured
according to a random, unlabeled data set (Muggleton, 1996). Desirable hy-
potheses have high coverage over the positive examples but relatively low cov-
erage over the random data. It appears likely that use of this heuristic in place
of MDL would eliminate the mismatch in the present work and possibly other
problem domains, although this has not yet been tested.

Recommendation 2: We recommend further investigation into the mismatches
that arise when applying general-purpose machine learning heuristics to new prob-
lem domains. Can the heuristics be improved to circumvent some such mismatches?
Would we obtain better knowledge discovery systems if we allowed specialized
problem-dependent heuristics to be specified for each new problem domain, or are
there major benefits that come from committing a system to a general-purpose
heuristic?

4.1.83. Lesson 3: Complete search and automatic experiment proposal Many ma-
chine learning algorithms return a single hypothesis for a given set of data, even
when other plausible hypotheses are available. In some cases it may be possible
to encode user-defined criteria for acceptable hypotheses or to score hypotheses
according to user-defined criteria. In such cases it can be advantageous to return
multiple hypotheses that meet the given criteria or that achieve a high score. This
occurs in the present paper, where two pharmacophores for ACE inhibition are
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found. In addition, if the algorithm performs a complete search, it is possible to
assert that no other reasonable hypotheses exist, given the user’s criteria. When
multiple hypotheses are returned, however, we run the risk of providing a client
with too many solutions. It might be possible in such situations for the machine
learning algorithm to propose experiments that can distinguish between competing
hypotheses. For example, in the present work if the ILP system PROGOL had access
to a database of compounds, it potentially could search the database for compounds
possessing one but not both of the competing pharmacophores for ACE inhibition.
It could then propose testing one or more of these compounds for ACE inhibition,
to distinguish between the two competing pharmacophore hypotheses.

Recommendation 3: We recommend a research program to test the following
claim.

Claim: Automatic proposal of experiments by a machine learning system to dis-
tinguish between competing hypotheses is feasible for real-world applications.

4.1.4. Lesson J: Declarative knowledge representation Because of the nature of
ILP systems, the background knowledge we employed was largely declarative. We
consider it only “largely declarative” because even Prolog code can sometimes be
written is a less declarative, more procedural form. For example, one part of our
background knowledge computes potential sites for a zinc atom given the descrip-
tions of chemical groups that can bind to zinc. This portion of the background
knowledge is highly procedural, although written in Prolog, and includes code for
intersecting planes and spheres, for Gaussian elimination in 3 variables, etc. Fortu-
nately, writing and debugging this portion of the code did not require interaction
with the chemist. By contrast, the part of the background knowledge that defines
chemical groups that can bind to zinc was highly declarative, being almost a direct
translation of pictorial descriptions provided by the chemist. As a result, where am-
biguities or questions arose, or where debugging was necessary, these issues could
be addressed by actually going through that portion of the background knowledge
with the chemist. In addition to a declarative representation for background knowl-
edge, having a declarative representation for hypotheses made it a single day’s task
to write code both to translate hypotheses into English and to display molecules
with the pharmacophore highlighted.

The preceding discussion raises the point that expressions and portions of code
cannot be labeled declarative or non-declarative simply because of the representation
language employed. As a first attempt at an improved definition, which we hope
may stimulate further discussion, we propose the following.

Definition 1. A portion of code in some representation language is declarative
if 1t 1s 1somorphic to a comprehensible expression in natural language.

To make crisp the notion of isomorphic, we require the existence of an algorithm
to translate statements from the representation language into natural language
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statements. The notion of comprehensible 1s inherently subjective, but a relatively
objective test could be achieved by (1) asking a sample of people to read the natu-
ral language description and (2) testing their comprehension. Notice that with this
formulation the relationship to natural language is a property of the representa-
tion language, whereas comprehensibility is a property of both the representation
language (with its translation procedure) and the particular portion of code.

We have admitted that part of the background knowledge in the present work
was not particularly declarative. Another shortcoming in the present work is in
the declarative bias, or the specification of the form of acceptable hypotheses. This
was declarative to the extent that it specified the form of Prolog clauses, but it
could have been written in a more declarative style that described pharmacophores
directly. We see improvement in the form of the declarative bias as an area for
further work with PROGOL in particular.

For machine learning systems that take explicit background knowledge (e.g. META-
DENDRAL, AQ (Michalski et al., 1986), TLP systems), it is widely accepted that a
substantial knowledge engineering effort often is required to encode this knowledge.
But we believe that a substantial knowledge engineering effort is required for the
application of many machine learning systems that do not take explicit background
knowledge as input, such as decision tree learners. In the case of such algorithms,
knowledge engineering issues still arise with code that users invariably write for
precomputing various features. We believe that the value of a declarative represen-
tation applies to these types of machine learning algorithms as well, since developing
the code that precomputes interesting domain-specific features may require a high
degree of interaction with a domain expert.

Recommendation 4: We recommend further study into the relative merits of
declarative vs. non-declarative background knowledge. This investigation should
not be limited to ILP systems; we believe it could involve all manner of machine
learning systems. Such an investigation requires a carefully designed definition of
declarative—it appears to be much easier to label pieces of code as “declarative”
or “non-declarative” than to formulate a definitive set of criteria distinguishing
between the two. In addition, we recommend further investigation into general
kinds of background knowledge that might be re-usable across domains and across
different types of learning algorithms, thus easing the burden of the knowledge
engineering effort. For example, we hypothesize that background knowledge for
geometric concepts might be useful across a wide variety of domains. Even more
specific background knowledge, such as chemical knowledge, might apply to a va-
riety of problem areas.

4.2. Lessons for PROGOL users and for ILP

The first lesson from the present work for ILP is that 3D concepts can be learned
if geometry is represented logically by pairwise distances between points of inter-
est. This could be useful in a variety of other domains as well, for example, the
machining of tools. It should be noted that as the geometric concepts grow more
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complex, additional detail may be necessary, for example, to capture orientation or
to distinguish between mirror images.

The second lesson is that PROGOL, and probably other relational learning algo-
rithms, can be used without modification to address the multiple instance problem
(Section 2.3.3). The present work shows that the multiple instance problem can be
addressed naturally within ILP, without the need to develop a new learning algo-
rithm tailored to the problem and without the loss of information that comes from
averaging over examples in a set. The general approach is based on an “instance”
predicate. The following generic form for hypotheses for multiple instance problems
can be used.

positive(X) « instance(X,Y), pos-properties(Y)

A set X is asserted to be positive just if it has an instance Y such that Y has
the properties required for a label of positive. For illustration, in the present work
the variable X would stand for an example molecule under consideration, and the
variable Y would stand for a conformation of that molecule. In some cases it may
be possible to avoid the need for an explicit instance predicate, by including both of
the variables X and Y as arguments in the literal(s) describing properties necessary
for a positive label. This was done in the present work (Section 3.6).

Recommendation for ILP research: Both PROGOL’s success with a 3D prob-
lem and its natural fit to the multiple instance problem depend on the first-order
definite clause representation, rather than on the details of PROGOL itself. There-
fore we expect that these properties would apply to a variety of other ILP systems
as well. We recommend the application of ILP systems to other 3D problems and
to other domains that exhibit the multiple instance problem.

4.83.  Lessons for pharmacophore discovery

In addition to PROGOL’s general suitability to 3D concepts and the multiple instance
problem, and its output of declarative hypotheses, PROGOL has one additional fea-
ture that makes it particularly effective for pharmacophore discovery. This feature
18 PROGOL’s focus on a “seed” positive example. The use of a seed example can
eliminate many needless portions of a search space, particularly if the smallest or
“simplest” example is chosen as the seed. For illustration, one type of atom that
sometimes 1s of interest in a pharmacophore is a hydrogen donor, for our purposes
defined simply as a hydrogen bonded to an atom other than carbon. But in the
present work the seed example actually had no hydrogen donors at all. As a re-
sult all hypotheses involving hydrogen donors were automatically omitted from the
search.* We expect that the use of a seed molecule is a general idea that can be in-
corporated into other approaches to pharmacophore discovery to reduce their time
complexities as well.

Recommendations for pharmacophore discovery: We recommend investi-
gation into whether “seed molecules” can be used to reduce the time complexities



270

of other approaches to pharmacophore discovery. In addition, we recommend (and
intend to pursue) application of the methodology detailed in Section 3 to other
pharmacophore discovery problems, as well as an investigation of automatically-
proposed experiments where multiple plausible pharmacophores are generated. We
encourage other machine learning researchers to repeat our results with PROGOL,
to apply their own algorithms to the problem of ACE inhibition, or to use the ideas
in this paper to approach other pharmacophore discovery problems, many of which
can be found in the biochemistry literature. To this end the contact author is
pleased to provide all the data and background knowledge code in electronic form,
on request.

4.4. Lessons regarding ACE inhibition

As 1s the case for many enzymes, it has not yet been possible to determine the
binding site for ACE. Hence the question of the most likely pharmacophore for ACE
inhibition remains open and of interest to researchers. The present work provides
further confirmation for an earlier proposal by Mayer et al. (Mayer et al., 1987),
using energy-minimized conformations (according to Tripos’ Sybyl and Advanced
Computation packages) and using ideal binding geometries for zinc. But the present
work also proposes an alternative. Specifically, the alternative places the zinc site at
a location more than one Angstrom closer to the triangle of hydrogen acceptors than
does the original pharmacophore. Furthermore, given the assumptions provided by
the chemists, no other potential pharmacophore exists.

There is no a priori reason to believe one of the proposed pharmacophores over
the other. Subsequent to the experiments described in Section 3, we have tested
eight additional ACE inhibitors published more recently (Lombaert et al., 1996).
These tests confirm our earlier results in that all eight new ACE inhibitors ex-
hibit both pharmacophores. Unfortunately, the new test cases do not distinguish
between the two pharmacophores. The reason it has been difficult to distinguish
between the pharmacophores is that the binding geometries for chemical groups
that can bind to zinc are symmetric. Every ACE inhibitor we have examined
thus far has a chemical group which can bind to zinc either at a location oriented
away from the triangle of hydrogen acceptors—and thus corresponding to the first
pharmacophore—or oriented toward the hydrogen acceptors and corresponding to
the second pharmacophore. It should be possible, though time-consuming, to care-
fully design and synthesize compounds with only one of the two pharmacophores,
and then to test such compounds for ACE inhibition. If successful, such experimen-
tation would provide basic knowledge about the ACE binding site; this knowledge
could possibly lead to improved ACE inhibitors.

Recommendation for the study of ACE inhibition: We recommend the
design and synthesis of molecules that can be tested for ACE inhibition in order to
distinguish between the two competing pharmacophores described in the present
paper. We hope to carry out such testing ourselves as a first step into investigating
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the requirements for the automatic proposal of experiments within pharmacophore
discovery.

5. Conclusion

This paper has presented a case study of a machine-aided knowledge discovery
process within the general area of drug design. Within drug design, the particular
problem of pharmacophore discovery was isolated, and the ILP system PROGOL was
applied to the problem of identifying potential pharmacophores for ACE inhibition.
The domain of pharmacophore discovery presented a natural “next step” beyond
previous applications of ILP to structure-activity prediction within drug design.
The case study reported in this paper supports four general lessons for knowledge
discovery, as well as more specific lessons for pharmacophore discovery, for ILP, and
for ACE inhibition. The general lessons for knowledge discovery are as follows.

1. An initial rediscovery step is a useful tool when approaching a new application
domain.

2. General ML heuristics may fail to match the details of an application domain,
but 1t may be possible to successfully apply a heuristic-based algorithm in spite
of the mismatch.

3. A complete search for all plausible hypotheses can provide useful information to
a user, although experimentation may be required to choose between competing
hypotheses.

4. A declarative knowledge representation facilitates the development and debug-
ging of background knowledge in collaboration with a domain expert, as well
as the communication of final results.
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Notes

1. The term ligand is used for molecules which bind to the protein binding site. A ligand might be
highly active against a target, but not a “drug,” because of a lack of other required properties
such as metabolic stability (it may be broken down within the body), safety (it may be toxic),
or an ability to diffuse from the gut into the bloodstream (if a requirement is that the drug
can be taken by mouth).

2. The experiments reported in this paper were run using the Prolog version of PrROGOL, P-
PROGOL 2.3. This and a C version of PROGOL are available by anonymous ftp to the site
ftp.comlab.ox.ac.uk, in the directory pub/Packages/ILP.

3. Two molecules are stereoisomers if they have the same atom and bond structure but different
3D arrangements, and it is not possible to convert from one to the other without breaking a
bond.

4. We simply chose the first example supplied by the chemist as the seed example, and it was
fortuitous that this happened to be one of the smaller molecules and to have no hydrogen
donors. But a program could be written to examine a data set initially and select a seed
example that is likely to yield a reduced search.
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